1
|
Li X, Wan Y, Wang D, Li X, Wu J, Xiao J, Chen K, Han X, Chen Y. Spatiotemporal transcriptomics reveals key gene regulation for grain yield and quality in wheat. Genome Biol 2025; 26:93. [PMID: 40217326 PMCID: PMC11992740 DOI: 10.1186/s13059-025-03569-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 04/07/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Cereal grain size and quality are critical agronomic traits in crop production. Wheat grain development is governed by intricate regulatory networks that require precise spatiotemporal coordination of gene expression to establish functional compartments in different cell types. RESULTS Here, we perform a spatial transcriptomics study covering the early stages of wheat grain development, from 4 to 12 days after pollination. We classify the grain into 10 distinct cell types and identify 192 marker genes associated with them. WGCNA analysis reveals that highly expressed genes in different cell types exhibit distinct enrichment patterns, significantly influencing grain development and filling. Through co-expression and motif analyses, we identify a specific group of genes that may regulate wheat grain development, including TaABI3-B1, a transcription factor specifically expressed in the embryo and surrounding endosperm, which negatively affects embryo and grain size. CONCLUSIONS This study presents a comprehensive spatiotemporal transcriptional dataset for understanding wheat grain development. Additionally, it identifies key genetic resources with potential applications for improving wheat yield.
Collapse
Affiliation(s)
- Xiaohui Li
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, 261325, China
- College of Life Sciences, National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China
| | - Yiman Wan
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, 261325, China
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Dongzhi Wang
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xingguo Li
- College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Jiajie Wu
- State Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Jun Xiao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Centre of Excellence for Plant and Microbial Science (CEPAMS), JIC-CAS, Beijing, 100101, China
| | - Kunming Chen
- College of Life Sciences, National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China
| | - Xue Han
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, 261325, China.
| | - Yuan Chen
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, 261325, China.
| |
Collapse
|
2
|
Liu S, Li K, Dai X, Qin G, Lu D, Gao Z, Li X, Song B, Bian J, Ren D, Liu Y, Chen X, Xu Y, Liu W, Yang C, Liu X, Chen S, Li J, Li B, He H, Deng XW. A telomere-to-telomere genome assembly coupled with multi-omic data provides insights into the evolution of hexaploid bread wheat. Nat Genet 2025; 57:1008-1020. [PMID: 40195562 PMCID: PMC11985340 DOI: 10.1038/s41588-025-02137-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/19/2025] [Indexed: 04/09/2025]
Abstract
The complete assembly of vast and complex plant genomes, like the hexaploid wheat genome, remains challenging. Here we present CS-IAAS, a comprehensive telomere-to-telomere (T2T) gap-free Triticum aestivum L. genome, encompassing 14.51 billion base pairs and featuring all 21 centromeres and 42 telomeres. Annotation revealed 90.8 Mb additional centromeric satellite arrays and 5,611 rDNA units. Genome-wide rearrangements, centromeric elements, transposable element expansion and segmental duplications were deciphered during tetraploidization and hexaploidization, providing a comprehensive understanding of wheat subgenome evolution. Among them, transposable element insertions during hexaploidization greatly influenced gene expression balances, thus increasing the genome plasticity of transcriptional levels. Additionally, we generated 163,329 full-length cDNA sequences and proteomic data that helped annotate 141,035 high-confidence protein-coding genes. The complete T2T reference genome (CS-IAAS), along with its transcriptome and proteome, represents a significant step in our understanding of wheat genome complexity and provides insights for future wheat research and breeding.
Collapse
Affiliation(s)
- Shoucheng Liu
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
- Peking-Tsinghua Center for Life Sciences, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Kui Li
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Xiuru Dai
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
- College of Agronomy, Shandong Agricultural University, Tai'an, China
| | - Guochen Qin
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Dongdong Lu
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Zhaoxu Gao
- Peking-Tsinghua Center for Life Sciences, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Xiaopeng Li
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Bolong Song
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Jianxin Bian
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Da Ren
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Yongqi Liu
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Xiaofeng Chen
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Yunbi Xu
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Weimin Liu
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Chen Yang
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Xiaoqin Liu
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Shisheng Chen
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Jian Li
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Bosheng Li
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China.
| | - Hang He
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China.
- Peking-Tsinghua Center for Life Sciences, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing, China.
| | - Xing Wang Deng
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China.
- Peking-Tsinghua Center for Life Sciences, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing, China.
| |
Collapse
|
3
|
Jain R, Dhaka N, Krishnan K, Yadav G, Priyam P, Sharma MK, Sharma RA. Temporal Gene Expression Profiles From Pollination to Seed Maturity in Sorghum Provide Core Candidates for Engineering Seed Traits. PLANT, CELL & ENVIRONMENT 2025; 48:2662-2690. [PMID: 39248611 DOI: 10.1111/pce.15134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024]
Abstract
Sorghum (Sorghum bicolor (L.) Moench) is a highly nutritional multipurpose millet crop. However, the genetic and molecular regulatory mechanisms governing sorghum grain development and the associated agronomic traits remain unexplored. In this study, we performed a comprehensive transcriptomic analysis of pistils collected 1-2 days before pollination, and developing seeds collected -2, 10, 20 and 30 days after pollination of S. bicolor variety M35-1. Out of 31 337 genes expressed in these stages, 12 804 were differentially expressed in the consecutive stages of seed development. These exhibited 10 dominant expression patterns correlated with the distinct pathways and gene functions. Functional analysis, based on the pathway mapping, transcription factor enrichment and orthology, delineated the key patterns associated with pollination, fertilization, early seed development, grain filling and seed maturation. Furthermore, colocalization with previously reported quantitative trait loci (QTLs) for grain weight/size revealed 48 differentially expressed genes mapping to these QTL regions. Comprehensive literature mining integrated with QTL mapping and expression data shortlisted 25, 17 and 8 core candidates for engineering grain size, starch and protein content, respectively.
Collapse
Affiliation(s)
- Rubi Jain
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Namrata Dhaka
- Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana, India
| | - Kushagra Krishnan
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Garima Yadav
- Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana, India
| | - Prachi Priyam
- Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana, India
| | | | - Rita A Sharma
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani, Pilani, Rajasthan, India
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| |
Collapse
|
4
|
Sullivan A, Lombardo M, Pasha A, Lau V, Zhuang J, Christendat A, Pereira B, Zhao T, Li Y, Wong R, Qureshi F, Provart N. 20 years of the Bio-Analytic Resource for Plant Biology. Nucleic Acids Res 2025; 53:D1576-D1586. [PMID: 39441075 PMCID: PMC11701662 DOI: 10.1093/nar/gkae920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/19/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
The Bio-Analytic Resource for Plant Biology ('the BAR', at https://bar.utoronto.ca) is celebrating its 20th year in operation in 2025. The BAR encompasses and provides visualization tools for large 'omics data sets from plants. The BAR covers data from Arabidopsis, tomato, wheat, barley and 29 other plant species (with data for 2 others to be released soon). These data include nucleotide and protein sequence data, gene expression data, protein-protein and protein-DNA interactions, protein structures, subcellular localizations, and polymorphisms. The data are stored in more than 200 relational databases holding 186 GB of data and are presented to the researchers via web apps. These web apps provide data analysis and visualization tools. Some of the most popular tools are eFP ('electronic fluorescent pictograph') Browsers, ePlants and ThaleMine (an Arabidopsis-specific instance of InterMine). The BAR was designated a Global Core Biodata Resource in 2023. Like other GCBRs, the BAR has excellent operational stability, provides access without login requirement, and provides an API for researchers to be able to access BAR data programmatically. We present in this update a new overarching search tool called Gaia that permits easy access to all BAR data, powered by machine learning and artificial intelligence.
Collapse
Affiliation(s)
- Alexander Sullivan
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| | - Michael N Lombardo
- Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa ON L1G OC5, Canada
| | - Asher Pasha
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| | - Vincent Lau
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| | - Jian Yun Zhuang
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| | - Ashley Christendat
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| | - Bruno Pereira
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| | - Tianhui Zhao
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| | - Youyang Li
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| | - Rachel Wong
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| | - Faisal Z Qureshi
- Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa ON L1G OC5, Canada
| | - Nicholas J Provart
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| |
Collapse
|
5
|
Zhao L, Chen J, Zhang Z, Wu W, Lin X, Gao M, Yang Y, Zhao P, Xu S, Yang C, Yao Y, Zhang A, Liu D, Wang D, Xiao J. Deciphering the Transcriptional Regulatory Network Governing Starch and Storage Protein Biosynthesis in Wheat for Breeding Improvement. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401383. [PMID: 38943260 PMCID: PMC11434112 DOI: 10.1002/advs.202401383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/02/2024] [Indexed: 07/01/2024]
Abstract
Starch and seed storage protein (SSP) composition profoundly impact wheat grain yield and quality. To unveil regulatory mechanisms governing their biosynthesis, transcriptome, and epigenome profiling is conducted across key endosperm developmental stages, revealing that chromatin accessibility, H3K27ac, and H3K27me3 collectively regulate SSP and starch genes with varying impact. Population transcriptome and phenotype analyses highlight accessible promoter regions' crucial role as a genetic variation resource, influencing grain yield and quality in a core collection of wheat accessions. Integration of time-serial RNA-seq and ATAC-seq enables the construction of a hierarchical transcriptional regulatory network governing starch and SSP biosynthesis, identifying 42 high-confidence novel candidates. These candidates exhibit overlap with genetic regions associated with grain size and quality traits, and their functional significance is validated through expression-phenotype association analysis among wheat accessions and loss-of-function mutants. Functional analysis of wheat abscisic acid insensitive 3-A1 (TaABI3-A1) with genome editing knock-out lines demonstrates its role in promoting SSP accumulation while repressing starch biosynthesis through transcriptional regulation. Excellent TaABI3-A1Hap1 with enhanced grain weight is selected during the breeding process in China, linked to altered expression levels. This study unveils key regulators, advancing understanding of SSP and starch biosynthesis regulation and contributing to breeding enhancement.
Collapse
Affiliation(s)
- Long Zhao
- Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
- College of Advanced Agricultural SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Jinchao Chen
- Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
- College of Advanced Agricultural SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Zhaoheng Zhang
- Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
- College of Advanced Agricultural SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Wenying Wu
- Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
- College of Advanced Agricultural SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Xuelei Lin
- Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
| | - Mingxiang Gao
- State Key Laboratory of North China Crop Improvement and RegulationHebei Agricultural UniversityBaodingHebei071001China
| | - Yiman Yang
- Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjingJiangsu210095China
| | - Peng Zhao
- Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency ProductionCollege of AgronomyNorthwest A&F UniversityYangling712100China
| | - Shengbao Xu
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency ProductionCollege of AgronomyNorthwest A&F UniversityYangling712100China
| | - Changfeng Yang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE)China Agricultural UniversityBeijing100193China
| | - Yingyin Yao
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE)China Agricultural UniversityBeijing100193China
| | - Aimin Zhang
- Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
- State Key Laboratory of North China Crop Improvement and RegulationHebei Agricultural UniversityBaodingHebei071001China
| | - Dongcheng Liu
- State Key Laboratory of North China Crop Improvement and RegulationHebei Agricultural UniversityBaodingHebei071001China
| | - Dongzhi Wang
- Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
| | - Jun Xiao
- Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
- College of Advanced Agricultural SciencesUniversity of Chinese Academy of SciencesBeijing100049China
- Centre of Excellence for Plant and Microbial Science (CEPAMS)JIC‐CASBeijing100101China
| |
Collapse
|
6
|
Zheng D, Lin K, Yang X, Zhang W, Cheng X. Functional Characterization of Accessible Chromatin in Common Wheat. Int J Mol Sci 2024; 25:9384. [PMID: 39273331 PMCID: PMC11395023 DOI: 10.3390/ijms25179384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
Eukaryotic gene transcription is fine-tuned by precise spatiotemporal interactions between cis-regulatory elements (CREs) and trans-acting factors. However, how CREs individually or coordinated with epigenetic marks function in regulating homoeolog bias expression is still largely unknown in wheat. In this study, through comprehensively characterizing open chromatin coupled with DNA methylation in the seedling and spikelet of common wheat, we observed that differential chromatin openness occurred between the seedling and spikelet, which plays important roles in tissue development through regulating the expression of related genes or through the transcription factor (TF)-centered regulatory network. Moreover, we found that CHH methylation may act as a key determinant affecting the differential binding of TFs, thereby resulting in differential expression of target genes. In addition, we found that sequence variations in MNase hypersensitive sites (MHSs) result in the differential expression of key genes responsible for important agronomic traits. Thus, our study provides new insights into the roles of CREs in regulating tissue or homoeolog bias expression, and controlling important agronomic traits in common wheat. It also provides potential CREs for genetic and epigenetic manipulation toward improving desirable traits for wheat molecule breeding.
Collapse
Affiliation(s)
- Dongyang Zheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China
| | - Kande Lin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China
| | - Xueming Yang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Wenli Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China
| | - Xuejiao Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China
| |
Collapse
|
7
|
Go D, Lu B, Alizadeh M, Gazzarrini S, Song L. Voice from both sides: a molecular dialogue between transcriptional activators and repressors in seed-to-seedling transition and crop adaptation. FRONTIERS IN PLANT SCIENCE 2024; 15:1416216. [PMID: 39166233 PMCID: PMC11333834 DOI: 10.3389/fpls.2024.1416216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/20/2024] [Indexed: 08/22/2024]
Abstract
High-quality seeds provide valuable nutrients to human society and ensure successful seedling establishment. During maturation, seeds accumulate storage compounds that are required to sustain seedling growth during germination. This review focuses on the epigenetic repression of the embryonic and seed maturation programs in seedlings. We begin with an extensive overview of mutants affecting these processes, illustrating the roles of core proteins and accessory components in the epigenetic machinery by comparing mutants at both phenotypic and molecular levels. We highlight how omics assays help uncover target-specific functional specialization and coordination among various epigenetic mechanisms. Furthermore, we provide an in-depth discussion on the Seed dormancy 4 (Sdr4) transcriptional corepressor family, comparing and contrasting their regulation of seed germination in the dicotyledonous species Arabidopsis and two monocotyledonous crops, rice and wheat. Finally, we compare the similarities in the activation and repression of the embryonic and seed maturation programs through a shared set of cis-regulatory elements and discuss the challenges in applying knowledge largely gained in model species to crops.
Collapse
Affiliation(s)
- Dongeun Go
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Bailan Lu
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Milad Alizadeh
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Sonia Gazzarrini
- Department of Biological Science, University of Toronto Scarborough, Toronto, ON, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Liang Song
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
8
|
Huo Q, Song R, Ma Z. Recent advances in exploring transcriptional regulatory landscape of crops. FRONTIERS IN PLANT SCIENCE 2024; 15:1421503. [PMID: 38903438 PMCID: PMC11188431 DOI: 10.3389/fpls.2024.1421503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/23/2024] [Indexed: 06/22/2024]
Abstract
Crop breeding entails developing and selecting plant varieties with improved agronomic traits. Modern molecular techniques, such as genome editing, enable more efficient manipulation of plant phenotype by altering the expression of particular regulatory or functional genes. Hence, it is essential to thoroughly comprehend the transcriptional regulatory mechanisms that underpin these traits. In the multi-omics era, a large amount of omics data has been generated for diverse crop species, including genomics, epigenomics, transcriptomics, proteomics, and single-cell omics. The abundant data resources and the emergence of advanced computational tools offer unprecedented opportunities for obtaining a holistic view and profound understanding of the regulatory processes linked to desirable traits. This review focuses on integrated network approaches that utilize multi-omics data to investigate gene expression regulation. Various types of regulatory networks and their inference methods are discussed, focusing on recent advancements in crop plants. The integration of multi-omics data has been proven to be crucial for the construction of high-confidence regulatory networks. With the refinement of these methodologies, they will significantly enhance crop breeding efforts and contribute to global food security.
Collapse
Affiliation(s)
| | | | - Zeyang Ma
- State Key Laboratory of Maize Bio-breeding, Frontiers Science Center for Molecular Design Breeding, Joint International Research Laboratory of Crop Molecular Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Kaushik M, Mulani E, Kumar A, Chauhan H, Saini MR, Bharati A, Gayatri, Iyyappan Y, Madhavan J, Sevanthi AM, Mandal PK. Starch and storage protein dynamics in the developing and matured grains of durum wheat and diploid progenitor species. Int J Biol Macromol 2024; 267:131177. [PMID: 38583842 DOI: 10.1016/j.ijbiomac.2024.131177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/09/2024]
Abstract
Durum wheat, less immunogenically intolerant than bread wheat, originates from diploid progenitors known for nutritional quality and stress tolerance. Present study involves the analysis of major grain parameters, viz. size, weight, sugar, starch, and protein content of Triticum durum (AABB genome) and its diploid progenitors, Triticum monococcum (AA genome) and Aegilops speltoides (BB genome). Samples were collected during 2-5 weeks after anthesis (WAA), and at maturity. The investigation revealed that T. durum displayed the maximum grain size and weight. Expression analysis of Grain Weight 2 (GW2) and Glutamine Synthase (GS2), negative and positive regulators of grain weight and size, respectively, revealed higher GW2 expression in Ae. speltoides and higher GS2 expression in T. durum. Further we explored total starch, sugar and protein content, observing higher levels of starch and sugar in durum wheat while AA genome species exhibited higher protein content dominated by the fractions of albumin/globulin. HPLC profiling revealed unique sub-fractions in all three genome species. Additionally, a comparative transcriptome analysis also corroborated with the starch and protein content in the grains. This study provides valuable insights into the genetic and biochemical distinctions among durum wheat and its diploid progenitors, offering a foundation for their nutritional composition.
Collapse
Affiliation(s)
- Megha Kaushik
- Indian Council of Agricultural Research - National Institute for Plant Biotechnology (ICAR-NIPB), LBS Building, Pusa Campus, New Delhi 110012, India
| | - Ekta Mulani
- Indian Council of Agricultural Research - National Institute for Plant Biotechnology (ICAR-NIPB), LBS Building, Pusa Campus, New Delhi 110012, India
| | - Amit Kumar
- Indian Council of Agricultural Research - National Institute for Plant Biotechnology (ICAR-NIPB), LBS Building, Pusa Campus, New Delhi 110012, India
| | - Harsh Chauhan
- Indian Council of Agricultural Research - National Institute for Plant Biotechnology (ICAR-NIPB), LBS Building, Pusa Campus, New Delhi 110012, India
| | - Manish Ranjan Saini
- Indian Council of Agricultural Research - National Institute for Plant Biotechnology (ICAR-NIPB), LBS Building, Pusa Campus, New Delhi 110012, India
| | - Alka Bharati
- Indian Council of Agricultural Research - National Institute for Plant Biotechnology (ICAR-NIPB), LBS Building, Pusa Campus, New Delhi 110012, India
| | - Gayatri
- Indian Council of Agricultural Research - National Institute for Plant Biotechnology (ICAR-NIPB), LBS Building, Pusa Campus, New Delhi 110012, India
| | - Yuvaraj Iyyappan
- Indian Council of Agricultural Research - National Institute for Plant Biotechnology (ICAR-NIPB), LBS Building, Pusa Campus, New Delhi 110012, India
| | - Jayanthi Madhavan
- Division of Genetics, ICAR - Indian Agriculture Research Institute, Pusa Campus, New Delhi 110012, India
| | - Amitha Mithra Sevanthi
- Indian Council of Agricultural Research - National Institute for Plant Biotechnology (ICAR-NIPB), LBS Building, Pusa Campus, New Delhi 110012, India
| | - Pranab Kumar Mandal
- Indian Council of Agricultural Research - National Institute for Plant Biotechnology (ICAR-NIPB), LBS Building, Pusa Campus, New Delhi 110012, India.
| |
Collapse
|
10
|
Awan MJA, Farooq MA, Naqvi RZ, Karamat U, Bukhari SAR, Waqas MAB, Mahmood MA, Buzdar MI, Rasheed A, Amin I, Saeed NA, Mansoor S. Deciphering the differential expression patterns of yield-related negative regulators in hexaploid wheat cultivars and hybrids at different growth stages. Mol Biol Rep 2024; 51:537. [PMID: 38642174 DOI: 10.1007/s11033-024-09454-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/18/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND Hexaploid bread wheat underwent a series of polyploidization events through interspecific hybridizations that conferred adaptive plasticity and resulted in duplication and neofunctionalization of major agronomic genes. The genetic architecture of polyploid wheat not only confers adaptive plasticity but also offers huge genetic diversity. However, the contribution of different gene copies (homeologs) encoded from different subgenomes (A, B, D) at different growth stages remained unexplored. METHODS In this study, hybrid of elite cultivars of wheat were developed via reciprocal crosses (cytoplasm swapping) and phenotypically evaluated. We assessed differential expression profiles of yield-related negative regulators in these cultivars and their F1 hybrids and identified various cis-regulatory signatures by employing bioinformatics tools. Furthermore, the preferential expression patterns of the syntenic triads encoded from A, B, and D subgenomes were assessed to decipher their functional redundancy at six different growth stages. RESULTS Hybrid progenies showed better heterosis such as up to 17% increase in the average number of grains and up to 50% increase in average thousand grains weight as compared to mid-parents. Based on the expression profiling, our results indicated significant dynamic transcriptional expression patterns, portraying the different homeolog-dominance at the same stage in the different cultivars and their hybrids. Albeit belonging to same syntenic triads, a dynamic trend was observed in the regulatory signatures of these genes that might be influencing their expression profiles. CONCLUSION These findings can substantially contribute and provide insights for the selective introduction of better cultivars into traditional and hybrid breeding programs which can be harnessed for the improvement of future wheat.
Collapse
Affiliation(s)
- Muhammad Jawad Akbar Awan
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan
| | - Muhammad Awais Farooq
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Rubab Zahra Naqvi
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan
| | - Umer Karamat
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Sayyad Ali Raza Bukhari
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
- Department of Biotechnology, University of Sargodha, Sargodha, Pakistan
| | - Muhammad Abu Bakar Waqas
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan
| | - Muhammad Arslan Mahmood
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan
| | - Muhammad Ismail Buzdar
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan
| | - Awais Rasheed
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS) & CIMMYT-China office, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Imran Amin
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan
| | - Nasir A Saeed
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan
| | - Shahid Mansoor
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan.
- International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan.
| |
Collapse
|
11
|
Miao L, Xu W, Liu Y, Huang X, Chen Z, Wang H, Wang Z, Chen Y, Song Q, Zhang J, Han F, Peng H, Yao Y, Xin M, Hu Z, Ni Z, Sun Q, Xing J, Guo W. Reshaped DNA methylation cooperating with homoeolog-divergent expression promotes improved root traits in synthesized tetraploid wheat. THE NEW PHYTOLOGIST 2024; 242:507-523. [PMID: 38362849 DOI: 10.1111/nph.19593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/27/2024] [Indexed: 02/17/2024]
Abstract
Polyploidization is a major event driving plant evolution and domestication. However, how reshaped epigenetic modifications coordinate gene transcription to generate phenotypic variations during wheat polyploidization is currently elusive. Here, we profiled transcriptomes and DNA methylomes of two diploid wheat accessions (SlSl and AA) and their synthetic allotetraploid wheat line (SlSlAA), which displayed elongated root hair and improved root capability for nitrate uptake and assimilation after tetraploidization. Globally decreased DNA methylation levels with a reduced difference between subgenomes were observed in the roots of SlSlAA. DNA methylation changes in first exon showed strong connections with altered transcription during tetraploidization. Homoeolog-specific transcription was associated with biased DNA methylation as shaped by homoeologous sequence variation. The hypomethylated promoters showed significantly enriched binding sites for MYB, which may affect gene transcription in response to root hair growth. Two master regulators in root hair elongation pathway, AlCPC and TuRSL4, exhibited upregulated transcription levels accompanied by hypomethylation in promoter, which may contribute to the elongated root hair. The upregulated nitrate transporter genes, including NPFs and NRTs, also are significantly associated with hypomethylation, indicating an epigenetic-incorporated regulation manner in improving nitrogen use efficiency. Collectively, these results provided new insights into epigenetic changes in response to crop polyploidization and underscored the importance of epigenetic regulation in improving crop traits.
Collapse
Affiliation(s)
- Lingfeng Miao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Weiya Xu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yanhong Liu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Xiangyi Huang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhe Chen
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Huifang Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- Shandong Provincial Key Laboratory of Dryland Farming Technology, Qingdao Agricultural University, Qingdao, 266000, China
| | - Zihao Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yongming Chen
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Qingxin Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jing Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhaorong Hu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Jiewen Xing
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
12
|
Liu Y, Xi W, Wang X, Li H, Liu H, Li T, Hou J, Liu X, Hao C, Zhang X. TabHLH95-TaNF-YB1 module promotes grain starch synthesis in bread wheat. J Genet Genomics 2023; 50:883-894. [PMID: 37062449 DOI: 10.1016/j.jgg.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/18/2023]
Abstract
Starch is the most abundant substance in wheat (Triticum aestivum L.) endosperm and provides the major carbohydrate energy for human daily life. Starch synthesis-related (SSR) genes are believed to be spatiotemporally specific, but their transcriptional regulation remains unclear in wheat. Here, we investigate the role of the basic helix-loop-helix (bHLH) transcription factor TabHLH95 in starch synthesis. TabHLH95 is preferentially expressed in the developing grains in wheat and encodes a nucleus localized protein without autoactivation activity. The Tabhlh95 knockout mutants display smaller grain size and less starch content than wild type, whereas overexpression of TabHLH95 enhances starch accumulation and significantly improves thousand grain weight. Transcriptome analysis reveals that the expression of multiple SSR genes is significantly reduced in the Tabhlh95 mutants. TabHLH95 binds to the promoters of ADP-glucose pyrophosphorylase large subunit 1 (AGPL1-1D/-1B), AGPL2-5D, and isoamylase (ISA1-7D) and enhances their transcription. Intriguingly, TabHLH95 interacts with the nuclear factor Y (NF-Y) family transcription factor TaNF-YB1, thereby synergistically regulating starch synthesis. These results suggest that the TabHLH95-TaNF-YB1 complex positively modulates starch synthesis and grain weight by regulating the expression of a subset of SSR genes, thus providing a good potential approach for genetic improvement of grain productivity in wheat.
Collapse
Affiliation(s)
- Yunchuan Liu
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wei Xi
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; State Key Laboratory of Aridland Crop Science (Gansu Agricultural University)/Gansu Provincial Key Laboratory of Crop Improvement & Germplasm Enhancement, Lanzhou, Gansu 730070, China; College of Agronomy, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Xiaolu Wang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Huifang Li
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongxia Liu
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tian Li
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jian Hou
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xu Liu
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Chenyang Hao
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Xueyong Zhang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
13
|
Wang Z, Miao L, Chen Y, Peng H, Ni Z, Sun Q, Guo W. Deciphering the evolution and complexity of wheat germplasm from a genomic perspective. J Genet Genomics 2023; 50:846-860. [PMID: 37611848 DOI: 10.1016/j.jgg.2023.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/29/2023] [Accepted: 08/09/2023] [Indexed: 08/25/2023]
Abstract
Bread wheat provides an essential fraction of the daily calorific intake for humanity. Due to its huge and complex genome, progress in studying on the wheat genome is substantially trailed behind those of the other two major crops, rice and maize, for at least a decade. With rapid advances in genome assembling and reduced cost of high-throughput sequencing, emerging de novo genome assemblies of wheat and whole-genome sequencing data are leading to a paradigm shift in wheat research. Here, we review recent progress in dissecting the complex genome and germplasm evolution of wheat since the release of the first high-quality wheat genome. New insights have been gained in the evolution of wheat germplasm during domestication and modern breeding progress, genomic variations at multiple scales contributing to the diversity of wheat germplasm, and complex transcriptional and epigenetic regulations of functional genes in polyploid wheat. Genomics databases and bioinformatics tools meeting the urgent needs of wheat genomics research are also summarized. The ever-increasing omics data, along with advanced tools and well-structured databases, are expected to accelerate deciphering the germplasm and gene resources in wheat for future breeding advances.
Collapse
Affiliation(s)
- Zihao Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Lingfeng Miao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yongming Chen
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
14
|
Rogo U, Fambrini M, Pugliesi C. Embryo Rescue in Plant Breeding. PLANTS (BASEL, SWITZERLAND) 2023; 12:3106. [PMID: 37687352 PMCID: PMC10489947 DOI: 10.3390/plants12173106] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023]
Abstract
Embryo rescue (ER) techniques are among the oldest and most successful in vitro tissue culture protocols used with plant species. ER refers to a series of methods that promote the development of an immature or lethal embryo into a viable plant. Intraspecific, interspecific, or intergeneric crosses allow the introgression of important alleles of agricultural interest from wild species, such as resistance or tolerance to abiotic and biotic stresses or morphological traits in crops. However, pre-zygotic and post-zygotic reproductive barriers often present challenges in achieving successful hybridization. Pre-zygotic barriers manifest as incompatibility reactions that hinder pollen germination, pollen tube growth, or penetration into the ovule occurring in various tissues, such as the stigma, style, or ovary. To overcome these barriers, several strategies are employed, including cut-style or graft-on-style techniques, the utilization of mixed pollen from distinct species, placenta pollination, and in vitro ovule pollination. On the other hand, post-zygotic barriers act at different tissues and stages ranging from early embryo development to the subsequent growth and reproduction of the offspring. Many crosses among different genera result in embryo abortion due to the failure of endosperm development. In such cases, ER techniques are needed to rescue these hybrids. ER holds great promise for not only facilitating successful crosses but also for obtaining haploids, doubled haploids, and manipulating the ploidy levels for chromosome engineering by monosomic and disomic addition as well substitution lines. Furthermore, ER can be used to shorten the reproductive cycle and for the propagation of rare plants. Additionally, it has been repeatedly used to study the stages of embryonic development, especially in embryo-lethal mutants. The most widely used ER procedure is the culture of immature embryos taken and placed directly on culture media. In certain cases, the in vitro culture of ovule, ovaries or placentas enables the successful development of young embryos from the zygote stage to maturity.
Collapse
Affiliation(s)
| | | | - Claudio Pugliesi
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (U.R.); (M.F.)
| |
Collapse
|
15
|
Guo Y, Chen Y, Wang Y, Wu X, Zhang X, Mao W, Yu H, Guo K, Xu J, Ma L, Guo W, Hu Z, Xin M, Yao Y, Ni Z, Sun Q, Peng H. The translational landscape of bread wheat during grain development. THE PLANT CELL 2023; 35:1848-1867. [PMID: 36905284 PMCID: PMC10226598 DOI: 10.1093/plcell/koad075] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/09/2023] [Accepted: 02/19/2023] [Indexed: 05/30/2023]
Abstract
The dynamics of gene expression in crop grains has typically been investigated at the transcriptional level. However, this approach neglects translational regulation, a widespread mechanism that rapidly modulates gene expression to increase the plasticity of organisms. Here, we performed ribosome profiling and polysome profiling to obtain a comprehensive translatome data set of developing bread wheat (Triticum aestivum) grains. We further investigated the genome-wide translational dynamics during grain development, revealing that the translation of many functional genes is modulated in a stage-specific manner. The unbalanced translation between subgenomes is pervasive, which increases the expression flexibility of allohexaploid wheat. In addition, we uncovered widespread previously unannotated translation events, including upstream open reading frames (uORFs), downstream open reading frames (dORFs), and open reading frames (ORFs) in long noncoding RNAs, and characterized the temporal expression dynamics of small ORFs. We demonstrated that uORFs act as cis-regulatory elements that can repress or even enhance the translation of mRNAs. Gene translation may be combinatorially modulated by uORFs, dORFs, and microRNAs. In summary, our study presents a translatomic resource that provides a comprehensive and detailed overview of the translational regulation in developing bread wheat grains. This resource will facilitate future crop improvements for optimal yield and quality.
Collapse
Affiliation(s)
- Yiwen Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yongming Chen
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yongfa Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Xiaojia Wu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Xiaoyu Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Weiwei Mao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Hongjian Yu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Kai Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jin Xu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Liang Ma
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhaorong Hu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| |
Collapse
|
16
|
Zhi J, Zeng J, Wang Y, Zhao H, Wang G, Guo J, Wang Y, Chen M, Yang G, He G, Chen X, Chang J, Li Y. A multi-omic resource of wheat seed tissues for nutrient deposition and improvement for human health. Sci Data 2023; 10:269. [PMID: 37164961 PMCID: PMC10172328 DOI: 10.1038/s41597-023-02133-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/03/2023] [Indexed: 05/12/2023] Open
Abstract
As a globally important staple crop, wheat seeds provide us with nutrients and proteins. The trend of healthy dietary has become popular recently, emphasizing the consumption of whole-grain wheat products and the dietary benefits. However, the dynamic changes in nutritional profiles of different wheat seed regions (i.e., the embryo, endosperm and outer layers) during developmental stages and the molecular regulation have not been well studied. Here, we provide this multi-omic resource of wheat seeds and describe the generation, technical assessment and preliminary analyses. This resource includes a time-series RNA-seq dataset of the embryo, endosperm and outer layers of wheat seeds and their corresponding metabolomic dataset, covering the middle and late stages of seed development. Our RNA-seq experiments profile the expression of 63,708 genes, while the metabolomic data includes the abundance of 984 metabolites. We believe that this was the first reported transcriptome and metabolome dataset of wheat seeds that helps understand the molecular regulation of the deposition of beneficial nutrients and hence improvements for nutritional and processing quality traits.
Collapse
Affiliation(s)
- Jingjing Zhi
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, 430074, China
| | - Jian Zeng
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, 512005, China
| | - Yaqiong Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, 430074, China
| | - Hongyan Zhao
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, 430074, China
| | - Guoli Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, 430074, China
| | - Jing Guo
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, 512005, China
| | - Yuesheng Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, 430074, China
| | - Mingjie Chen
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, 430074, China
| | - Guangxiao Yang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, 430074, China
| | - Guangyuan He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, 430074, China
| | - Xiaoyuan Chen
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, 512005, China.
| | - Junli Chang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, 430074, China.
| | - Yin Li
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, 430074, China.
| |
Collapse
|
17
|
Yu B, Gao P, Song J, Yang H, Qin L, Yu X, Song H, Coulson J, Bekkaoui Y, Akhov L, Han X, Cram D, Wei Y, Zaharia LI, Zou J, Konkin D, Quilichini TD, Fobert P, Patterson N, Datla R, Xiang D. Spatiotemporal transcriptomics and metabolic profiling provide insights into gene regulatory networks during lentil seed development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023. [PMID: 36965062 DOI: 10.1111/tpj.16205] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
Lentil (Lens culinaris Medik.) is a nutritious legume with seeds rich in protein, minerals and an array of diverse specialized metabolites. The formation of a seed requires regulation and tight coordination of developmental programs to form the embryo, endosperm and seed coat compartments, which determines the structure and composition of mature seed and thus its end-use quality. Understanding the molecular and cellular events and metabolic processes of seed development is essential for improving lentil yield and seed nutritional value. However, such information remains largely unknown, especially at the seed compartment level. In this study, we generated high-resolution spatiotemporal gene expression profiles in lentil embryo, seed coat and whole seeds from fertilization through maturation. Apart from anatomic differences between the embryo and seed coat, comparative transcriptomics and weighted gene co-expression network analysis revealed embryo- and seed coat-specific genes and gene modules predominant in specific tissues and stages, which highlights distinct genetic programming. Furthermore, we investigated the dynamic profiles of flavonoid, isoflavone, phytic acid and saponin in seed compartments across seed development. Coupled with transcriptome data, we identified sets of candidate genes involved in the biosynthesis of these metabolites. The global view of the transcriptional and metabolic changes of lentil seed tissues throughout development provides a valuable resource for dissecting the genetic control of secondary metabolism and development of molecular tools for improving seed nutritional quality.
Collapse
Affiliation(s)
- Bianyun Yu
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Peng Gao
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Jingpu Song
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Hui Yang
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Li Qin
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, S7N 4L8, Canada
| | - Xiaoyu Yu
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, S7N 4L8, Canada
| | - Halim Song
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Justin Coulson
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Yasmina Bekkaoui
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Leonid Akhov
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Xiumei Han
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Dustin Cram
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Yangdou Wei
- College of Art & Science, University of Saskatchewan, 9 Campus Drive, Saskatoon, SK, S7N 5A5, Canada
| | - L Irina Zaharia
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Jitao Zou
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - David Konkin
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Teagen D Quilichini
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Pierre Fobert
- Aquatic and Crop Resource Development, National Research Council Canada, Ottawa, Ontario, K1A 0R6, Canada
| | - Nii Patterson
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Raju Datla
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, S7N 4L8, Canada
| | - Daoquan Xiang
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, Saskatchewan, S7N 0W9, Canada
| |
Collapse
|
18
|
Pei H, Li Y, Liu Y, Liu P, Zhang J, Ren X, Lu Z. Chromatin accessibility landscapes revealed the subgenome-divergent regulation networks during wheat grain development. ABIOTECH 2023; 4:8-19. [PMID: 37220536 PMCID: PMC10199822 DOI: 10.1007/s42994-023-00095-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/22/2023] [Indexed: 05/25/2023]
Abstract
Development of wheat (Triticum aestivum L.) grain mainly depends on the processes of starch synthesis and storage protein accumulation, which are critical for grain yield and quality. However, the regulatory network underlying the transcriptional and physiological changes of grain development is still not clear. Here, we combined ATAC-seq and RNA-seq to discover the chromatin accessibility and gene expression dynamics during these processes. We found that the chromatin accessibility changes are tightly associated with differential transcriptomic expressions, and the proportion of distal ACRs was increased gradually during grain development. Specific transcription factor (TF) binding sites were enriched at different stages and were diversified among the 3 subgenomes. We further predicted the potential interactions between key TFs and genes related with starch and storage protein biosynthesis and found different copies of some key TFs played diversified roles. Overall, our findings have provided numerous resources and illustrated the regulatory network during wheat grain development, which would shed light on the improvement of wheat yields and qualities. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-023-00095-8.
Collapse
Affiliation(s)
- Hongcui Pei
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Yushan Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Yanhong Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Pan Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Jialin Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xueni Ren
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Zefu Lu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|
19
|
Legland D, Le TDQ, Alvarado C, Girousse C, Chateigner-Boutin AL. New Growth-Related Features of Wheat Grain Pericarp Revealed by Synchrotron-Based X-ray Micro-Tomography and 3D Reconstruction. PLANTS (BASEL, SWITZERLAND) 2023; 12:1038. [PMID: 36903900 PMCID: PMC10005608 DOI: 10.3390/plants12051038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Wheat (Triticum aestivum L.) is one of the most important crops as it provides 20% of calories and proteins to the human population. To overcome the increasing demand in wheat grain production, there is a need for a higher grain yield, and this can be achieved in particular through an increase in the grain weight. Moreover, grain shape is an important trait regarding the milling performance. Both the final grain weight and shape would benefit from a comprehensive knowledge of the morphological and anatomical determinism of wheat grain growth. Synchrotron-based phase-contrast X-ray microtomography (X-ray µCT) was used to study the 3D anatomy of the growing wheat grain during the first developmental stages. Coupled with 3D reconstruction, this method revealed changes in the grain shape and new cellular features. The study focused on a particular tissue, the pericarp, which has been hypothesized to be involved in the control of grain development. We showed considerable spatio-temporal diversity in cell shape and orientations, and in tissue porosity associated with stomata detection. These results highlight the growth-related features rarely studied in cereal grains, which may contribute significantly to the final grain weight and shape.
Collapse
Affiliation(s)
- David Legland
- INRAE, UR BIA, 44316 Nantes, France
- INRAE, PROBE Research Infrastructure, BIBS Facility, 44316 Nantes, France
| | - Thang Duong Quoc Le
- INRAE, UR BIA, 44316 Nantes, France
- INRAE, PROBE Research Infrastructure, BIBS Facility, 44316 Nantes, France
| | | | - Christine Girousse
- INRAE, Université Clermont-Auvergne, UMR GDEC, 63000 Clermont-Ferrand, France
| | | |
Collapse
|
20
|
Combes MC, Joët T, Stavrinides AK, Lashermes P. New cup out of old coffee: contribution of parental gene expression legacy to phenotypic novelty in coffee beans of the allopolyploid Coffea arabica L. ANNALS OF BOTANY 2023; 131:157-170. [PMID: 35325016 PMCID: PMC9904342 DOI: 10.1093/aob/mcac041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/21/2022] [Indexed: 05/25/2023]
Abstract
BACKGROUND AND AIMS Allopolyploidization is a widespread phenomenon known to generate novel phenotypes by merging evolutionarily distinct parental genomes and regulatory networks in a single nucleus. The objective of this study was to investigate the transcriptional regulation associated with phenotypic novelty in coffee beans of the allotetraploid Coffea arabica. METHODS A genome-wide comparative transcriptomic analysis was performed in C. arabica and its two diploid progenitors, C. canephora and C. eugenioides. Gene expression patterns and homeologue expression were studied on seeds at five different maturation stages. The involvement of homeologue expression bias (HEB) in specific traits was addressed both by functional enrichment analyses and by the study of gene expression in the caffeine and chlorogenic acid biosynthesis pathways. KEY RESULTS Expression-level dominance in C. arabica seed was observed for most of the genes differentially expressed between the species. Approximately a third of the genes analysed showed HEB. This proportion increased during seed maturation but the biases remained equally distributed between the sub-genomes. The relative expression levels of homeologues remained relatively constant during maturation and were correlated with those estimated in leaves of C. arabica and interspecific hybrids between C. canephora and C. eugenioides. Functional enrichment analyses performed on genes exhibiting HEB enabled the identification of processes potentially associated with physiological traits. The expression profiles of the genes involved in caffeine biosynthesis mirror the differences observed in the caffeine content of mature seeds of C. arabica and its parental species. CONCLUSIONS Neither of the two sub-genomes is globally preferentially expressed in C. arabica seeds, and homeologues appear to be co-regulated by shared trans-regulatory mechanisms. The observed HEBs are thought to be a legacy of gene expression differences inherited from diploid progenitor species. Pre-existing functional divergences between parental species appear to play an important role in controlling the phenotype of C. arabica seeds.
Collapse
Affiliation(s)
| | - Thierry Joët
- DIADE, Univ Montpellier, CIRAD, IRD, Montpellier, France
| | | | | |
Collapse
|
21
|
Chen Y, Guo Y, Guan P, Wang Y, Wang X, Wang Z, Qin Z, Ma S, Xin M, Hu Z, Yao Y, Ni Z, Sun Q, Guo W, Peng H. A wheat integrative regulatory network from large-scale complementary functional datasets enables trait-associated gene discovery for crop improvement. MOLECULAR PLANT 2023; 16:393-414. [PMID: 36575796 DOI: 10.1016/j.molp.2022.12.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/28/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Gene regulation is central to all aspects of organism growth, and understanding it using large-scale functional datasets can provide a whole view of biological processes controlling complex phenotypic traits in crops. However, the connection between massive functional datasets and trait-associated gene discovery for crop improvement is still lacking. In this study, we constructed a wheat integrative gene regulatory network (wGRN) by combining an updated genome annotation and diverse complementary functional datasets, including gene expression, sequence motif, transcription factor (TF) binding, chromatin accessibility, and evolutionarily conserved regulation. wGRN contains 7.2 million genome-wide interactions covering 5947 TFs and 127 439 target genes, which were further verified using known regulatory relationships, condition-specific expression, gene functional information, and experiments. We used wGRN to assign genome-wide genes to 3891 specific biological pathways and accurately prioritize candidate genes associated with complex phenotypic traits in genome-wide association studies. In addition, wGRN was used to enhance the interpretation of a spike temporal transcriptome dataset to construct high-resolution networks. We further unveiled novel regulators that enhance the power of spike phenotypic trait prediction using machine learning and contribute to the spike phenotypic differences among modern wheat accessions. Finally, we developed an interactive webserver, wGRN (http://wheat.cau.edu.cn/wGRN), for the community to explore gene regulation and discover trait-associated genes. Collectively, this community resource establishes the foundation for using large-scale functional datasets to guide trait-associated gene discovery for crop improvement.
Collapse
Affiliation(s)
- Yongming Chen
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yiwen Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Panfeng Guan
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yongfa Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Xiaobo Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zihao Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhen Qin
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Shengwei Ma
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, China; State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhaorong Hu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
22
|
Coate JE. Beyond Transcript Concentrations: Quantifying Polyploid Expression Responses per Biomass, per Genome, and per Cell with RNA-Seq. Methods Mol Biol 2023; 2545:227-250. [PMID: 36720816 DOI: 10.1007/978-1-0716-2561-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
RNA-seq has been used extensively to study expression responses to polyploidy. Most current methods for normalizing RNA-seq data yield estimates of transcript concentrations (transcripts per transcriptome). The implicit assumption of these normalization methods is that transcriptome size is equivalent between the samples being compared such that transcript concentrations are equivalent to transcripts per cell. In recent years, however, evidence has mounted that transcriptome size can vary dramatically in response to a range of factors including polyploidy and that such variation is ubiquitous. Where such variation exists, transcript concentration is often a poor or even misleading proxy for expression responses at other biologically relevant scales (e.g., expression per cell). Thus, it is important that transcriptomic studies of polyploids move beyond simply comparing transcript concentrations if we are to gain a complete understanding of how genome multiplication affects gene expression. I discuss this issue in more detail and summarize a suite of approaches that can leverage RNA-seq to quantify expression responses per genome, per cell, and per unit of biomass.
Collapse
|
23
|
Julca I, Tan QW, Mutwil M. Toward kingdom-wide analyses of gene expression. TRENDS IN PLANT SCIENCE 2023; 28:235-249. [PMID: 36344371 DOI: 10.1016/j.tplants.2022.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/22/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Gene expression data for Archaeplastida are accumulating exponentially, with more than 300 000 RNA-sequencing (RNA-seq) experiments available for hundreds of species. The gene expression data stem from thousands of experiments that capture gene expression in various organs, tissues, cell types, (a)biotic perturbations, and genotypes. Advances in software tools make it possible to process all these data in a matter of weeks on modern office computers, giving us the possibility to study gene expression in a kingdom-wide manner for the first time. We discuss how the expression data can be accessed and processed and outline analyses that take advantage of cross-species analyses, allowing us to generate powerful and robust hypotheses about gene function and evolution.
Collapse
Affiliation(s)
- Irene Julca
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Qiao Wen Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Marek Mutwil
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| |
Collapse
|
24
|
Zhao L, Yang Y, Chen J, Lin X, Zhang H, Wang H, Wang H, Bie X, Jiang J, Feng X, Fu X, Zhang X, Du Z, Xiao J. Dynamic chromatin regulatory programs during embryogenesis of hexaploid wheat. Genome Biol 2023; 24:7. [PMID: 36639687 PMCID: PMC9837924 DOI: 10.1186/s13059-022-02844-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 12/31/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Plant and animal embryogenesis have conserved and distinct features. Cell fate transitions occur during embryogenesis in both plants and animals. The epigenomic processes regulating plant embryogenesis remain largely elusive. RESULTS Here, we elucidate chromatin and transcriptomic dynamics during embryogenesis of the most cultivated crop, hexaploid wheat. Time-series analysis reveals stage-specific and proximal-distal distinct chromatin accessibility and dynamics concordant with transcriptome changes. Following fertilization, the remodeling kinetics of H3K4me3, H3K27ac, and H3K27me3 differ from that in mammals, highlighting considerable species-specific epigenomic dynamics during zygotic genome activation. Polycomb repressive complex 2 (PRC2)-mediated H3K27me3 deposition is important for embryo establishment. Later H3K27ac, H3K27me3, and chromatin accessibility undergo dramatic remodeling to establish a permissive chromatin environment facilitating the access of transcription factors to cis-elements for fate patterning. Embryonic maturation is characterized by increasing H3K27me3 and decreasing chromatin accessibility, which likely participates in restricting totipotency while preventing extensive organogenesis. Finally, epigenomic signatures are correlated with biased expression among homeolog triads and divergent expression after polyploidization, revealing an epigenomic contributor to subgenome diversification in an allohexaploid genome. CONCLUSIONS Collectively, we present an invaluable resource for comparative and mechanistic analysis of the epigenomic regulation of crop embryogenesis.
Collapse
Affiliation(s)
- Long Zhao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yiman Yang
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.,Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jinchao Chen
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuelei Lin
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hao Zhang
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Wang
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongzhe Wang
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaomin Bie
- Shandong Agricultural University, Tai'an, Shandong, China
| | - Jiafu Jiang
- Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xiaoqi Feng
- John Innes Centre, Colney Lane, Norwich, NR4 7UH, UK
| | - Xiangdong Fu
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | - Zhuo Du
- University of Chinese Academy of Sciences, Beijing, 100049, China.,State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jun Xiao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
25
|
Pan Y, Surendra A, Liu Z, Ouellet T, Foroud NA. Differential Expression Feature Extraction (DEFE): A Case Study in Wheat FHB RNA-Seq Data Analysis. Methods Mol Biol 2023; 2659:137-159. [PMID: 37249891 DOI: 10.1007/978-1-0716-3159-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In differential gene expression data analysis, one objective is to identify groups of co-expressed genes from a large dataset in order to detect the association between such a group of genes and an experimental condition. This is often done through a clustering approach, such as k-means or bipartition hierarchical clustering, based on particular similarity measures in the grouping process. In such a dataset, the gene differential expression itself is an innate attribute that can be used in the feature extraction process. For example, in a dataset consisting of multiple treatments versus their controls, the expression of a gene in each treatment would have three possible behaviors, upregulated, downregulated, or unchanged. We present in this chapter, a differential expression feature extraction (DEFE) method by using a string consisting of three numerical values at each character to denote such behavior, i.e., 1 = up, 2 = down, and 0 = unchanged, which results in up to 3B differential expression patterns across all B comparisons. This approach has been successfully applied in many research projects, and among these, we demonstrate the strength of DEFE in a case study on RNA-sequencing (RNA-seq) data analysis of wheat challenged with the phytopathogenic fungus, Fusarium graminearum. Combinations of multiple schemes of DEFE patterns revealed groups of genes putatively associated with resistance or susceptibility to FHB.
Collapse
Affiliation(s)
- Youlian Pan
- Digital Technologies Research Centre, National Research Council Canada, Ottawa, ON, Canada.
| | - Anuradha Surendra
- Digital Technologies Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Ziying Liu
- Digital Technologies Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Thérèse Ouellet
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Nora A Foroud
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| |
Collapse
|
26
|
Jia Z, Gao P, Yin F, Quilichini TD, Sheng H, Song J, Yang H, Gao J, Chen T, Yang B, Kochian LV, Zou J, Patterson N, Yang Q, Gillmor CS, Datla R, Li Q, Xiang D. Asymmetric gene expression in grain development of reciprocal crosses between tetraploid and hexaploid wheats. Commun Biol 2022; 5:1412. [PMID: 36564439 PMCID: PMC9789062 DOI: 10.1038/s42003-022-04374-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Production of viable progeny from interploid crosses requires precise regulation of gene expression from maternal and paternal chromosomes, yet the transcripts contributed to hybrid seeds from polyploid parent species have rarely been explored. To investigate the genome-wide maternal and paternal contributions to polyploid grain development, we analyzed the transcriptomes of developing embryos, from zygote to maturity, alongside endosperm in two stages of development, using reciprocal crosses between tetraploid and hexaploid wheats. Reciprocal crosses between species with varied levels of ploidy displayed broad impacts on gene expression, including shifts in alternative splicing events in select crosses, as illustrated by active splicing events, enhanced protein synthesis and chromatin remodeling. Homoeologous gene expression was repressed on the univalent D genome in pentaploids, but this suppression was attenuated in crosses with a higher ploidy maternal parent. Imprinted genes were identified in endosperm and early embryo tissues, supporting predominant maternal effects on early embryogenesis. By systematically investigating the complex transcriptional networks in reciprocal-cross hybrids, this study presents a framework for understanding the genomic incompatibility and transcriptome shock that results from interspecific hybridization and uncovers the transcriptional impacts on hybrid seeds created from agriculturally-relevant polyploid species.
Collapse
Affiliation(s)
- Zhen Jia
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Peng Gao
- grid.25152.310000 0001 2154 235XGlobal Institute for Food Security, University of Saskatchewan, Saskatoon, SK S7N 4J8 Canada
| | - Feifan Yin
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China ,grid.35155.370000 0004 1790 4137Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, 430070 Wuhan, China
| | - Teagen D. Quilichini
- grid.24433.320000 0004 0449 7958Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9 Canada
| | - Huajin Sheng
- grid.25152.310000 0001 2154 235XGlobal Institute for Food Security, University of Saskatchewan, Saskatoon, SK S7N 4J8 Canada
| | - Jingpu Song
- grid.24433.320000 0004 0449 7958Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9 Canada
| | - Hui Yang
- grid.24433.320000 0004 0449 7958Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9 Canada
| | - Jie Gao
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Ting Chen
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Bo Yang
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Leon V. Kochian
- grid.25152.310000 0001 2154 235XGlobal Institute for Food Security, University of Saskatchewan, Saskatoon, SK S7N 4J8 Canada
| | - Jitao Zou
- grid.24433.320000 0004 0449 7958Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9 Canada
| | - Nii Patterson
- grid.24433.320000 0004 0449 7958Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9 Canada
| | - Qingyong Yang
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China ,grid.35155.370000 0004 1790 4137Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, 430070 Wuhan, China
| | - C. Stewart Gillmor
- grid.512574.0Langebio, Unidad de Genómica Avanzada, Centro de Investigación y Estudios Avanzados del IPN (CINVESTAV-IPN), Irapuato, Guanajuato, 36821 México
| | - Raju Datla
- grid.25152.310000 0001 2154 235XGlobal Institute for Food Security, University of Saskatchewan, Saskatoon, SK S7N 4J8 Canada
| | - Qiang Li
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Daoquan Xiang
- grid.24433.320000 0004 0449 7958Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9 Canada
| |
Collapse
|
27
|
Transcriptome Analysis Reveals Potential Mechanism in Storage Protein Trafficking within Developing Grains of Common Wheat. Int J Mol Sci 2022; 23:ijms232314851. [PMID: 36499182 PMCID: PMC9738083 DOI: 10.3390/ijms232314851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/07/2022] [Accepted: 10/18/2022] [Indexed: 12/03/2022] Open
Abstract
Gluten proteins are the major storage protein fraction in the mature wheat grain. They are restricted to the starchy endosperm, which defines the viscoelastic properties of wheat dough. The synthesis of these storage proteins is controlled by the endoplasmic reticulum (ER) and is directed into the vacuole via the Golgi apparatus. In the present study, transcriptome analysis was used to explore the potential mechanism within critical stages of grain development of wheat cultivar "Shaannong 33" and its sister line used as the control (CK). Samples were collected at 10 DPA (days after anthesis), 14 DPA, 20 DPA, and 30 DPA for transcriptomic analysis. The comparative transcriptome analysis identified that a total of 18,875 genes were differentially expressed genes (DEGs) between grains of four groups "T10 vs. CK10, T14 vs. CK14, T20 vs. CK20, and T30 vs. CK30", including 2824 up-regulated and 5423 down-regulated genes in T30 vs. CK30. Further, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment highlighted the maximum number of genes regulating protein processing in the endoplasmic reticulum (ER) during grain enlargement stages (10-20 DPA). In addition, KEGG database analysis reported 1362 and 788 DEGs involved in translation, ribosomal structure, biogenesis, flavonoid biosynthesis pathway and intracellular trafficking, secretion, and vesicular transport through protein processing within ER pathway (ko04141). Notably, consistent with the higher expression of intercellular storage protein trafficking genes at the initial 10 DPA, there was relatively low expression at later stages. Expression levels of nine randomly selected genes were verified by qRT-PCR, which were consistent with the transcriptome data. These data suggested that the initial stages of "cell division" played a significant role in protein quality control within the ER, thus maintaining the protein quality characteristics at grain maturity. Furthermore, our data suggested that the protein synthesis, folding, and trafficking pathways directed by a different number of genes during the grain enlargement stage contributed to the observed high-quality characteristics of gluten protein in Shaannong 33 (Triticum aestivum L.).
Collapse
|
28
|
Shi P, Sun H, Liu G, Zhang X, Zhou J, Song R, Xiao J, Yuan C, Sun L, Wang Z, Lou Q, Jiang J, Wang X, Wang H. Chromosome painting reveals inter-chromosomal rearrangements and evolution of subgenome D of wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:55-67. [PMID: 35998122 DOI: 10.1111/tpj.15926] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/16/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Aegilops species represent the most important gene pool for breeding bread wheat (Triticum aestivum). Thus, understanding the genome evolution, including chromosomal structural rearrangements and syntenic relationships among Aegilops species or between Aegilops and wheat, is important for both basic genome research and practical breeding applications. In the present study, we attempted to develop subgenome D-specific fluorescence in situ hybridization (FISH) probes by selecting D-specific oligonucleotides based on the reference genome of Chinese Spring. The oligo-based chromosome painting probes consisted of approximately 26 000 oligos per chromosome and their specificity was confirmed in both diploid and polyploid species containing the D subgenome. Two previously reported translocations involving two D chromosomes have been confirmed in wheat varieties and their derived lines. We demonstrate that the oligo painting probes can be used not only to identify the translocations involving D subgenome chromosomes, but also to determine the precise positions of chromosomal breakpoints. Chromosome painting of 56 accessions of Ae. tauschii from different origins led us to identify two novel translocations: a reciprocal 3D-7D translocation in two accessions and a complex 4D-5D-7D translocation in one accession. Painting probes were also used to analyze chromosomes from more diverse Aegilops species. These probes produced FISH signals in four different genomes. Chromosome rearrangements were identified in Aegilops umbellulata, Aegilops markgrafii, and Aegilops uniaristata, thus providing syntenic information that will be valuable for the application of these wild species in wheat breeding.
Collapse
Affiliation(s)
- Peiyao Shi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agronomy, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China
| | - Haojie Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agronomy, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China
| | - Guanqing Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Co-Innovation Centre for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Xu Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agronomy, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China
| | - Jiawen Zhou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agronomy, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China
| | - Rongrong Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agronomy, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China
| | - Jin Xiao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agronomy, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China
| | - Chunxia Yuan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agronomy, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China
| | - Li Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agronomy, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China
| | - Zongkuan Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agronomy, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China
| | - Qunfeng Lou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiming Jiang
- Department of Plant Biology, Department of Horticulture, MSU AgBioResearch, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Xiue Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agronomy, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China
| | - Haiyan Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agronomy, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China
| |
Collapse
|
29
|
Xiao J, Liu B, Yao Y, Guo Z, Jia H, Kong L, Zhang A, Ma W, Ni Z, Xu S, Lu F, Jiao Y, Yang W, Lin X, Sun S, Lu Z, Gao L, Zhao G, Cao S, Chen Q, Zhang K, Wang M, Wang M, Hu Z, Guo W, Li G, Ma X, Li J, Han F, Fu X, Ma Z, Wang D, Zhang X, Ling HQ, Xia G, Tong Y, Liu Z, He Z, Jia J, Chong K. Wheat genomic study for genetic improvement of traits in China. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1718-1775. [PMID: 36018491 DOI: 10.1007/s11427-022-2178-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/10/2022] [Indexed: 01/17/2023]
Abstract
Bread wheat (Triticum aestivum L.) is a major crop that feeds 40% of the world's population. Over the past several decades, advances in genomics have led to tremendous achievements in understanding the origin and domestication of wheat, and the genetic basis of agronomically important traits, which promote the breeding of elite varieties. In this review, we focus on progress that has been made in genomic research and genetic improvement of traits such as grain yield, end-use traits, flowering regulation, nutrient use efficiency, and biotic and abiotic stress responses, and various breeding strategies that contributed mainly by Chinese scientists. Functional genomic research in wheat is entering a new era with the availability of multiple reference wheat genome assemblies and the development of cutting-edge technologies such as precise genome editing tools, high-throughput phenotyping platforms, sequencing-based cloning strategies, high-efficiency genetic transformation systems, and speed-breeding facilities. These insights will further extend our understanding of the molecular mechanisms and regulatory networks underlying agronomic traits and facilitate the breeding process, ultimately contributing to more sustainable agriculture in China and throughout the world.
Collapse
Affiliation(s)
- Jun Xiao
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics, Northeast Normal University, Changchun, 130024, China
| | - Yingyin Yao
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zifeng Guo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Haiyan Jia
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lingrang Kong
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Aimin Zhang
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wujun Ma
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Shengbao Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Fei Lu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuannian Jiao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Wuyun Yang
- Institute of Crop Research, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Xuelei Lin
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Silong Sun
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Zefu Lu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lifeng Gao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guangyao Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shuanghe Cao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qian Chen
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Kunpu Zhang
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, 450002, China
| | - Mengcheng Wang
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Meng Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Zhaorong Hu
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Weilong Guo
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Guoqiang Li
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xin Ma
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Junming Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Fangpu Han
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangdong Fu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhengqiang Ma
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Daowen Wang
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Xueyong Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Hong-Qing Ling
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Guangmin Xia
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China.
| | - Yiping Tong
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Zhiyong Liu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Zhonghu He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
- CIMMYT China Office, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Jizeng Jia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Kang Chong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
30
|
Gao P, Qiu S, Ma X, Parkin IAP, Xiang D, Datla R. Spatiotemporal Transcriptomic Atlas of Developing Embryos and Vegetative Tissues in Flax. PLANTS 2022; 11:plants11152031. [PMID: 35956508 PMCID: PMC9370790 DOI: 10.3390/plants11152031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/24/2022] [Accepted: 07/30/2022] [Indexed: 11/16/2022]
Abstract
Flax (Linum usitatissimum L.) is an important multipurpose crop widely grown for oil and fiber. Despite recent advances in genomics, detailed gene activities during the important reproductive phase of its development are not well defined. In this study, we employed high-throughput RNA-sequencing methods to generate in-depth transcriptome profiles of flax tissues with emphasis on the reproductive phases of five key stages of embryogenesis (globular embryo, heart embryo, torpedo embryo, cotyledon embryo, and mature embryo), mature seed, and vegetative tissues viz. ovary, anther, and root. These datasets were used to establish the co-expression networks covering 36 gene modules based on the expression patterns for each gene through weighted gene co-expression network analysis (WGCNA). Functional interrogation with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) of dominantly expressed genetic modules in tissues revealed pathways involved in the development of different tissues. Moreover, the essential genes in embryo development and synthesis of storage reserves were identified based on their dynamic expression patterns. Together, this comprehensive dataset for developing embryos, mature seeds and vegetative tissues provides new insights into molecular mechanisms of seed development with potential for flax crop improvement.
Collapse
Affiliation(s)
- Peng Gao
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK S7N 4L8, Canada
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2, Canada
| | - Shuqing Qiu
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada
| | - Xingliang Ma
- Department of Plant Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Isobel A. P. Parkin
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2, Canada
- Correspondence: (I.A.P.P.); (D.X.); (R.D.); Tel.: +1-306-3859434 (I.A.P.P.); +1-306-9755580 (D.X.); +1-306-2293924 (R.D.)
| | - Daoquan Xiang
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada
- Correspondence: (I.A.P.P.); (D.X.); (R.D.); Tel.: +1-306-3859434 (I.A.P.P.); +1-306-9755580 (D.X.); +1-306-2293924 (R.D.)
| | - Raju Datla
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK S7N 4L8, Canada
- Correspondence: (I.A.P.P.); (D.X.); (R.D.); Tel.: +1-306-3859434 (I.A.P.P.); +1-306-9755580 (D.X.); +1-306-2293924 (R.D.)
| |
Collapse
|
31
|
Wei L, Du H, Li X, Fan Y, Qian M, Li Y, Wang H, Qu C, Qian W, Xu X, Tang Z, Zhang K, Li J, Lu K. Spatio-temporal transcriptome profiling and subgenome analysis in Brassica napus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1123-1138. [PMID: 35763512 DOI: 10.1111/tpj.15881] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Brassica napus is an important oil crop and an allotetraploid species. However, the detailed analysis of gene function and homoeologous gene expression in all tissues at different developmental stages was not explored. In this study, we performed a global transcriptome analysis of 24 vegetative and reproductive tissues at six developmental stages (totally 111 tissues). These samples were clustered into eight groups. The gene functions of silique pericarp were similar to roots, stems and leaves. In particular, glucosinolate metabolic process was associated with root and silique pericarp. Genes involved in protein phosphorylation were often associated with stamen, anther and the early developmental stage of seeds. Transcription factor (TF) genes were more specific than structural genes. A total of 17 100 genes that were preferentially expressed in one tissue (tissue-preferred genes, TPGs), including 889 TFs (5.2%), were identified in the 24 tissues. Some TPGs were identified as hub genes in the co-expression network analysis, and some TPGs in different tissues were involved in different hormone pathways. About 67.0% of the homoeologs showed balanced expression, whereas biased expression of homoeologs was associated with structural divergence. In addition, the spatiotemporal expression of homoeologs was related to the presence of transposable elements (TEs) and regulatory elements (REs); more TEs and fewer REs in the promoters resulted in divergent expression in different tissues. This study provides a valuable transcriptional map for understanding the growth and development of B. napus, for identifying important genes for future crop improvement, and for exploring gene expression patterns in the B. napus.
Collapse
Affiliation(s)
- Lijuan Wei
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, 400715, China
| | - Hai Du
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, 400715, China
| | - Xiaodong Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, 400715, China
| | - Yonghai Fan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, 400715, China
| | - Mingchao Qian
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, 400715, China
| | - Yali Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, 400715, China
| | - Huiyi Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, 400715, China
| | - Cunmin Qu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, 400715, China
| | - Wei Qian
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, 400715, China
| | - Xinfu Xu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, 400715, China
| | - Zhanglin Tang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, 400715, China
| | - Kai Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, 400715, China
| | - Jiana Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, 400715, China
| | - Kun Lu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, 400715, China
| |
Collapse
|
32
|
Yang F, Liu G, Wu Z, Zhang D, Zhang Y, You M, Li B, Zhang X, Liang R. Cloning and Functional Analysis of TaWRI1Ls, the Key Genes for Grain Fatty Acid Synthesis in Bread Wheat. Int J Mol Sci 2022; 23:ijms23105293. [PMID: 35628114 PMCID: PMC9141799 DOI: 10.3390/ijms23105293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 01/16/2023] Open
Abstract
WRINKLED1 (WRI1), an APETALA2 (AP2) transcription factor (TF), critically regulates the processes related to fatty acid synthesis, storage oil accumulation, and seed development in plants. However, the WRI1 genes remain unknown in allohexaploid bread wheat (Triticum aestivum L.). In this study, based on the sequence of Arabidopsis AtWRI1, two TaWRI1Ls genes of bread wheat, TaWRI1L1 and TaWRI1L2, were cloned. TaWRI1L2 was closely related to monocotyledons and clustered in one subgroup with AtWRI1, while TaWRI1L1 was clustered in another subgroup with AtWRI3 and AtWRI4. Both were expressed highly in the developmental grain, subcellular localized in the nucleus, and showed transcriptional activation activity. TaWRI1L2, rather than TaWRI1L1, promoted oil body accumulation and significantly increased triglyceride (TAG) content in tobacco leaves. Overexpression of TaWRI1L2 compensated for the functional loss of AtWRI1 in an Arabidopsis mutant and restored the wild-type phenotypes of seed shape, generation, and fatty acid synthesis and accumulation. Knockout of TaWRI1L2 reduced grain size, 1000 grain weight, and grain fatty acid synthesis in bread wheat. Conclusively, TaWRI1L2, rather than TaWRI1L1, was the key transcriptional factor in the regulation of grain fatty acid synthesis in bread wheat. This study lays a foundation for gene regulation and genetic manipulation of fatty acid synthesis in wheat genetic breeding programs.
Collapse
Affiliation(s)
- Fengping Yang
- Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; (F.Y.); (G.L.); (Z.W.); (D.Z.); (Y.Z.); (M.Y.); (B.L.)
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Guoyu Liu
- Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; (F.Y.); (G.L.); (Z.W.); (D.Z.); (Y.Z.); (M.Y.); (B.L.)
| | - Ziyan Wu
- Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; (F.Y.); (G.L.); (Z.W.); (D.Z.); (Y.Z.); (M.Y.); (B.L.)
| | - Dongxue Zhang
- Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; (F.Y.); (G.L.); (Z.W.); (D.Z.); (Y.Z.); (M.Y.); (B.L.)
| | - Yufeng Zhang
- Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; (F.Y.); (G.L.); (Z.W.); (D.Z.); (Y.Z.); (M.Y.); (B.L.)
| | - Mingshan You
- Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; (F.Y.); (G.L.); (Z.W.); (D.Z.); (Y.Z.); (M.Y.); (B.L.)
| | - Baoyun Li
- Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; (F.Y.); (G.L.); (Z.W.); (D.Z.); (Y.Z.); (M.Y.); (B.L.)
| | - Xiuhai Zhang
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- Correspondence: (X.Z.); (R.L.)
| | - Rongqi Liang
- Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; (F.Y.); (G.L.); (Z.W.); (D.Z.); (Y.Z.); (M.Y.); (B.L.)
- Correspondence: (X.Z.); (R.L.)
| |
Collapse
|
33
|
Gao P, Quilichini TD, Yang H, Li Q, Nilsen KT, Qin L, Babic V, Liu L, Cram D, Pasha A, Esteban E, Condie J, Sidebottom C, Zhang Y, Huang Y, Zhang W, Bhowmik P, Kochian LV, Konkin D, Wei Y, Provart NJ, Kagale S, Smith M, Patterson N, Gillmor CS, Datla R, Xiang D. Evolutionary divergence in embryo and seed coat development of U's Triangle Brassica species illustrated by a spatiotemporal transcriptome atlas. THE NEW PHYTOLOGIST 2022; 233:30-51. [PMID: 34687557 DOI: 10.1111/nph.17759] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
The economically valuable Brassica species include the six related members of U's Triangle. Despite the agronomic and economic importance of these Brassicas, the impacts of evolution and relatively recent domestication events on the genetic landscape of seed development have not been comprehensively examined in these species. Here we present a 3D transcriptome atlas for the six species of U's Triangle, producing a unique resource that captures gene expression data for the major subcompartments of the seed, from the unfertilized ovule to the mature embryo and seed coat. This comprehensive dataset for seed development in tetraploid and ancestral diploid Brassicas provides new insights into evolutionary divergence and expression bias at the gene and subgenome levels during the domestication of these valued crop species. Comparisons of gene expression associated with regulatory networks and metabolic pathways operating in the embryo and seed coat during seed development reveal differences in storage reserve accumulation and fatty acid metabolism among the six Brassica species. This study illustrates the genetic underpinnings of seed traits and the selective pressures placed on seed production, providing an immense resource for continued investigation of Brassica polyploid biology, genomics and evolution.
Collapse
Affiliation(s)
- Peng Gao
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, S7N 4L8, Canada
| | - Teagen D Quilichini
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Hui Yang
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Qiang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kirby T Nilsen
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, 2701 Grand Valley Road, Brandon, MB, R7C 1A1, Canada
| | - Li Qin
- College of Art & Science, University of Saskatchewan, 9 Campus Dr, Saskatoon, SK, S7N 5A5, Canada
| | - Vivijan Babic
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Li Liu
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, S7N 4L8, Canada
| | - Dustin Cram
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Asher Pasha
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St., Toronto, ON, M5S 3B2, Canada
| | - Eddi Esteban
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St., Toronto, ON, M5S 3B2, Canada
| | - Janet Condie
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Christine Sidebottom
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Yan Zhang
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Yi Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Wentao Zhang
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Pankaj Bhowmik
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Leon V Kochian
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, S7N 4L8, Canada
| | - David Konkin
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Yangdou Wei
- College of Art & Science, University of Saskatchewan, 9 Campus Dr, Saskatoon, SK, S7N 5A5, Canada
| | - Nicholas J Provart
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St., Toronto, ON, M5S 3B2, Canada
| | - Sateesh Kagale
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Mark Smith
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Nii Patterson
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - C Stewart Gillmor
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, Centro de Investigación y Estudios Avanzados del IPN (CINVESTAV-IPN), Irapuato, Guanajuato, 36821, México
| | - Raju Datla
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, S7N 4L8, Canada
| | - Daoquan Xiang
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| |
Collapse
|
34
|
Gómez-Mena C, Honys D, Datla R, Testillano PS. Editorial: Advances in Pollen Research: Biology, Biotechnology, and Plant Breeding Applications. FRONTIERS IN PLANT SCIENCE 2022; 13:876502. [PMID: 35422829 PMCID: PMC9002229 DOI: 10.3389/fpls.2022.876502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/10/2022] [Indexed: 05/07/2023]
Affiliation(s)
- Concepción Gómez-Mena
- Department of Plant Development and Hormone Action, Instituto de Biología Molecular y Celular de Plantas (CSIC-Universitat Politècnica de València), Ciudad Politécnica de la Innovación, Valencia, Spain
- *Correspondence: Concepción Gómez-Mena
| | - David Honys
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Raju Datla
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
| | - Pilar S. Testillano
- Pollen Biotechnology of Crop Plants Group, Margarita Salas Center of Biological Research, CIB -CSIC, Madrid, Spain
- Pilar S. Testillano
| |
Collapse
|
35
|
Luo G, Shen L, Zhao S, Li R, Song Y, Song S, Yu K, Yang W, Li X, Sun J, Wang Y, Gao C, Liu D, Zhang A. Genome-wide identification of seed storage protein gene regulators in wheat through coexpression analysis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1704-1720. [PMID: 34634158 DOI: 10.1111/tpj.15538] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 09/27/2021] [Indexed: 12/31/2022]
Abstract
Only a few transcriptional regulators of seed storage protein (SSP) genes have been identified in common wheat (Triticum aestivum L.). Coexpression analysis could be an efficient approach to characterize novel transcriptional regulators at the genome-scale considering the correlated expression between transcriptional regulators and target genes. As the A genome donor of common wheat, Triticum urartu is more suitable for coexpression analysis than common wheat considering the diploid genome and single gene copy. In this work, the transcriptome dynamics in endosperm of T. urartu throughout grain filling were revealed by RNA-Seq analysis. In the coexpression analysis, a total of 71 transcription factors (TFs) from 23 families were found to be coexpressed with SSP genes. Among these TFs, TuNAC77 enhanced the transcription of SSP genes by binding to cis-elements distributed in promoters. The homolog of TuNAC77 in common wheat, TaNAC77, shared an identical function, and the total SSPs were reduced by about 24% in common wheat when TaNAC77 was knocked down. This is the first genome-wide identification of transcriptional regulators of SSP genes in wheat, and the newly characterized transcriptional regulators will undoubtedly expand our knowledge of the transcriptional regulation of SSP synthesis.
Collapse
Affiliation(s)
- Guangbin Luo
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology/Innovative Academy of Seed Design, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, China
| | - Lisha Shen
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology/Innovative Academy of Seed Design, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shancen Zhao
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen, 518120, China
| | - Ruidong Li
- Graduate Program in Genetics, Genomics and Bioinformatics, University of California, Riverside, CA, USA
| | - Yanhong Song
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology/Innovative Academy of Seed Design, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, China
- College of Agronomy, The Collaborative Innovation Center of Grain Crops in Henan, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Shuyi Song
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology/Innovative Academy of Seed Design, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, China
- College of Agronomy, The Collaborative Innovation Center of Grain Crops in Henan, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Kang Yu
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen, 518120, China
| | - Wenlong Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xin Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology/Innovative Academy of Seed Design, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, China
| | - Jiazhu Sun
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology/Innovative Academy of Seed Design, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, China
| | - Yanpeng Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology/Innovative Academy of Seed Design, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, China
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology/Innovative Academy of Seed Design, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, China
| | - Dongcheng Liu
- State Key Laboratory of North China Crop Improvement and Regulation, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Aimin Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology/Innovative Academy of Seed Design, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of North China Crop Improvement and Regulation, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, 071000, China
| |
Collapse
|
36
|
Tekeu H, Ngonkeu ELM, Bélanger S, Djocgoué PF, Abed A, Torkamaneh D, Boyle B, Tsimi PM, Tadesse W, Jean M, Belzile F. GWAS identifies an ortholog of the rice D11 gene as a candidate gene for grain size in an international collection of hexaploid wheat. Sci Rep 2021; 11:19483. [PMID: 34593838 PMCID: PMC8484655 DOI: 10.1038/s41598-021-98626-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 08/09/2021] [Indexed: 12/26/2022] Open
Abstract
Grain size is a key agronomic trait that contributes to grain yield in hexaploid wheat. Grain length and width were evaluated in an international collection of 157 wheat accessions. These accessions were genetically characterized using a genotyping-by-sequencing (GBS) protocol that produced 73,784 single nucleotide polymorphism (SNP) markers. GBS-derived genotype calls obtained on Chinese Spring proved extremely accurate when compared to the reference (> 99.9%) and showed > 95% agreement with calls made at SNP loci shared with the 90 K SNP array on a subset of 71 Canadian wheat accessions for which both types of data were available. This indicates that GBS can yield a large amount of highly accurate SNP data in hexaploid wheat. The genetic diversity analysis performed using this set of SNP markers revealed the presence of six distinct groups within this collection. A GWAS was conducted to uncover genomic regions controlling variation for grain length and width. In total, seven SNPs were found to be associated with one or both traits, identifying three quantitative trait loci (QTLs) located on chromosomes 1D, 2D and 4A. In the vicinity of the peak SNP on chromosome 2D, we found a promising candidate gene (TraesCS2D01G331100), whose rice ortholog (D11) had previously been reported to be involved in the regulation of grain size. These markers will be useful in breeding for enhanced wheat productivity.
Collapse
Affiliation(s)
- Honoré Tekeu
- Département de Phytologie, Université Laval, Quebec City, QC, Canada.,Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec City, QC, Canada.,Department of Plant Biology, University of Yaoundé I, Yaoundé, Cameroon
| | - Eddy L M Ngonkeu
- Institute of Agricultural Research for Development, Yaoundé, Cameroon.,Department of Plant Biology, University of Yaoundé I, Yaoundé, Cameroon
| | - Sébastien Bélanger
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec City, QC, Canada.,Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Pierre F Djocgoué
- Department of Plant Biology, University of Yaoundé I, Yaoundé, Cameroon
| | - Amina Abed
- Département de Phytologie, Université Laval, Quebec City, QC, Canada.,Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec City, QC, Canada
| | - Davoud Torkamaneh
- Département de Phytologie, Université Laval, Quebec City, QC, Canada.,Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec City, QC, Canada.,Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | - Brian Boyle
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec City, QC, Canada
| | - Patrick M Tsimi
- Department of Plant Biology, University of Yaoundé I, Yaoundé, Cameroon
| | - Wuletaw Tadesse
- International Center for Agricultural Research in the Dry Areas (ICARDA), Beirut, Lebanon
| | - Martine Jean
- Département de Phytologie, Université Laval, Quebec City, QC, Canada.,Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec City, QC, Canada
| | - François Belzile
- Département de Phytologie, Université Laval, Quebec City, QC, Canada. .,Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
37
|
Hao Z, Zhang Z, Xiang D, Venglat P, Chen J, Gao P, Datla R, Weijers D. Conserved, divergent and heterochronic gene expression during Brachypodium and Arabidopsis embryo development. PLANT REPRODUCTION 2021; 34:207-224. [PMID: 33950292 PMCID: PMC8360882 DOI: 10.1007/s00497-021-00413-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/23/2021] [Indexed: 05/09/2023]
Abstract
KEY MESSAGE Developmental and transcriptomic analysis of Brachypodium embryogenesis and comparison with Arabidopsis identifies conserved and divergent phases of embryogenesis and reveals widespread heterochrony of developmental gene expression. Embryogenesis, transforming the zygote into the mature embryo, represents a fundamental process for all flowering plants. Current knowledge of cell specification and differentiation during plant embryogenesis is largely based on studies of the dicot model plant Arabidopsis thaliana. However, the major crops are monocots and the transcriptional programs associated with the differentiation processes during embryogenesis in this clade were largely unknown. Here, we combined analysis of cell division patterns with development of a temporal transcriptomic resource during embryogenesis of the monocot model plant Brachypodium distachyon. We found that early divisions of the Brachypodium embryo were highly regular, while later stages were marked by less stereotypic patterns. Comparative transcriptomic analysis between Brachypodium and Arabidopsis revealed that early and late embryogenesis shared a common transcriptional program, whereas mid-embryogenesis was divergent between species. Analysis of orthology groups revealed widespread heterochronic expression of potential developmental regulators between the species. Interestingly, Brachypodium genes tend to be expressed at earlier stages than Arabidopsis counterparts, which suggests that embryo patterning may occur early during Brachypodium embryogenesis. Detailed investigation of auxin-related genes shows that the capacity to synthesize, transport and respond to auxin is established early in the embryo. However, while early PIN1 polarity could be confirmed, it is unclear if an active response is mounted. This study presents a resource for studying Brachypodium and grass embryogenesis and shows that divergent angiosperms share a conserved genetic program that is marked by heterochronic gene expression.
Collapse
Affiliation(s)
- Zhaodong Hao
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, Wageningen, The Netherlands
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Zhongjuan Zhang
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, Wageningen, The Netherlands
| | - Daoquan Xiang
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, SK, Canada
| | - Prakash Venglat
- Department of Plant Sciences, College of Agriculture, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jinhui Chen
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Peng Gao
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
| | - Raju Datla
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, Wageningen, The Netherlands.
| |
Collapse
|
38
|
Yang Y, Amo A, Wei D, Chai Y, Zheng J, Qiao P, Cui C, Lu S, Chen L, Hu YG. Large-scale integration of meta-QTL and genome-wide association study discovers the genomic regions and candidate genes for yield and yield-related traits in bread wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3083-3109. [PMID: 34142166 DOI: 10.1007/s00122-021-03881-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 06/02/2021] [Indexed: 05/20/2023]
Abstract
Based on the large-scale integration of meta-QTL and Genome-Wide Association Study, 76 high-confidence MQTL regions and 237 candidate genes that affected wheat yield and yield-related traits were discovered. Improving yield and yield-related traits are key goals in wheat breeding program. The integration of accumulated wheat genetic resources provides an opportunity to uncover important genomic regions and candidate genes that affect wheat yield. Here, a comprehensive meta-QTL analysis was conducted on 2230 QTL of yield-related traits obtained from 119 QTL studies. These QTL were refined into 145 meta-QTL (MQTL), and 89 MQTL were verified by GWAS with different natural populations. The average confidence interval (CI) of these MQTL was 2.92 times less than that of the initial QTL. Furthermore, 76 core MQTL regions with a physical distance less than 25 Mb were detected. Based on the homology analysis and expression patterns, 237 candidate genes in the MQTL involved in photoperiod response, grain development, multiple plant growth regulator pathways, carbon and nitrogen metabolism and spike and flower organ development were determined. A novel candidate gene TaKAO-4A was confirmed to be significantly associated with grain size, and a CAPS marker was developed based on its dominant haplotype. In summary, this study clarified a method based on the integration of meta-QTL, GWAS and homology comparison to reveal the genomic regions and candidate genes that affect important yield-related traits in wheat. This work will help to lay a foundation for the identification, transfer and aggregation of these important QTL or candidate genes in wheat high-yield breeding.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Aduragbemi Amo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Di Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Yongmao Chai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Jie Zheng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Pengfang Qiao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Chunge Cui
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Shan Lu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Liang Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.
| | - Yin-Gang Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.
- Institute of Water Saving Agriculture in Arid Regions of China, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
39
|
RNA-Seq-based DNA marker analysis of the genetics and molecular evolution of Triticeae species. Funct Integr Genomics 2021; 21:535-542. [PMID: 34405283 DOI: 10.1007/s10142-021-00799-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/08/2021] [Accepted: 07/23/2021] [Indexed: 10/20/2022]
Abstract
The release of high-quality chromosome-level genome sequences of members of the Triticeae tribe has greatly facilitated genetic and genomic analyses of important crops such as wheat (Triticum aestivum) and barley (Hordeum vulgare). Due to the large diploid genome size of Triticeae plants (ca. 5 Gbp), transcript analysis is an important method for identifying genetic and genomic differences among Triticeae species. In this review, we summarize our results of RNA-Seq analyses of diploid wheat accessions belonging to the genera Aegilops and Triticum. We also describe studies of the molecular relationships among these accessions and provide insight into the evolution of common hexaploid wheat. DNA markers based on polymorphisms within species can be used to map loci of interest. Even though the genome sequence of diploid Aegilops tauschii, the D-genome donor of common wheat, has been released, the diploid barley genome continues to provide key information about the physical structures of diploid wheat genomes. We describe how a series of RNA-Seq analyses of wheat relatives has helped uncover the structural and evolutionary features of genomic and genetic systems in wild and cultivated Triticeae species.
Collapse
|
40
|
Gao P, Quilichini TD, Zhai C, Qin L, Nilsen KT, Li Q, Sharpe AG, Kochian LV, Zou J, Reddy AS, Wei Y, Pozniak C, Patterson N, Gillmor CS, Datla R, Xiang D. Alternative splicing dynamics and evolutionary divergence during embryogenesis in wheat species. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1624-1643. [PMID: 33706417 PMCID: PMC8384600 DOI: 10.1111/pbi.13579] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/25/2021] [Accepted: 03/08/2021] [Indexed: 05/07/2023]
Abstract
Among polyploid species with complex genomic architecture, variations in the regulation of alternative splicing (AS) provide opportunities for transcriptional and proteomic plasticity and the potential for generating trait diversities. However, the evolution of AS and its influence on grain development in diploid grass and valuable polyploid wheat crops are poorly understood. To address this knowledge gap, we developed a pipeline for the analysis of alternatively spliced transcript isoforms, which takes the high sequence similarity among polyploid wheat subgenomes into account. Through analysis of synteny and detection of collinearity of homoeologous subgenomes, conserved and specific AS events across five wheat and grass species were identified. A global analysis of the regulation of AS in diploid grass and polyploid wheat grains revealed diversity in AS events not only between the endosperm, pericarp and embryo overdevelopment, but also between subgenomes. Analysis of AS in homoeologous triads of polyploid wheats revealed evolutionary divergence between gene-level and transcript-level regulation of embryogenesis. Evolutionary age analysis indicated that the generation of novel transcript isoforms has occurred in young genes at a more rapid rate than in ancient genes. These findings, together with the development of comprehensive AS resources for wheat and grass species, advance understanding of the evolution of regulatory features of AS during embryogenesis and grain development in wheat.
Collapse
Affiliation(s)
- Peng Gao
- Global Institute for Food SecurityUniversity of SaskatchewanSaskatoonSKCanada
| | - Teagen D. Quilichini
- Aquatic and Crop Resource DevelopmentNational Research Council CanadaSaskatoonSKCanada
| | - Chun Zhai
- Agriculture and Agri‐Food CanadaSaskatoon Research and Development CentreSaskatoonSKCanada
| | - Li Qin
- College of Art & ScienceUniversity of SaskatchewanSaskatoonSKCanada
| | - Kirby T. Nilsen
- Agriculture and Agri‐Food CanadaBrandon Research and Development CentreBrandonMBCanada
| | - Qiang Li
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Andrew G. Sharpe
- Global Institute for Food SecurityUniversity of SaskatchewanSaskatoonSKCanada
| | - Leon V. Kochian
- Global Institute for Food SecurityUniversity of SaskatchewanSaskatoonSKCanada
| | - Jitao Zou
- Aquatic and Crop Resource DevelopmentNational Research Council CanadaSaskatoonSKCanada
| | - Anireddy S.N. Reddy
- Department of Biology and Program in Cell and Molecular BiologyColorado State UniversityFort CollinsCOUSA
| | - Yangdou Wei
- College of Art & ScienceUniversity of SaskatchewanSaskatoonSKCanada
| | - Curtis Pozniak
- Crop Development CentreUniversity of SaskatchewanSaskatoonSKCanada
| | - Nii Patterson
- Aquatic and Crop Resource DevelopmentNational Research Council CanadaSaskatoonSKCanada
| | - C. Stewart Gillmor
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio)Unidad de Genómica AvanzadaCentro de Investigación y Estudios Avanzados del IPN (CINVESTAV‐IPN)IrapuatoGuanajuatoMexico
| | - Raju Datla
- Global Institute for Food SecurityUniversity of SaskatchewanSaskatoonSKCanada
| | - Daoquan Xiang
- Aquatic and Crop Resource DevelopmentNational Research Council CanadaSaskatoonSKCanada
| |
Collapse
|
41
|
Chen J, Xue M, Liu H, Fernie AR, Chen W. Exploring the genic resources underlying metabolites through mGWAS and mQTL in wheat: From large-scale gene identification and pathway elucidation to crop improvement. PLANT COMMUNICATIONS 2021; 2:100216. [PMID: 34327326 PMCID: PMC8299079 DOI: 10.1016/j.xplc.2021.100216] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/04/2021] [Accepted: 06/28/2021] [Indexed: 05/23/2023]
Abstract
Common wheat (Triticum aestivum L.) is a leading cereal crop, but has lagged behind with respect to the interpretation of the molecular mechanisms of phenotypes compared with other major cereal crops such as rice and maize. The recently available genome sequence of wheat affords the pre-requisite information for efficiently exploiting the potential molecular resources for decoding the genetic architecture of complex traits and identifying valuable breeding targets. Meanwhile, the successful application of metabolomics as an emergent large-scale profiling methodology in several species has demonstrated this approach to be accessible for reaching the above goals. One such productive avenue is combining metabolomics approaches with genetic designs. However, this trial is not as widespread as that for sequencing technologies, especially when the acquisition, understanding, and application of metabolic approaches in wheat populations remain more difficult and even arguably underutilized. In this review, we briefly introduce the techniques used in the acquisition of metabolomics data and their utility in large-scale identification of functional candidate genes. Considerable progress has been made in delivering improved varieties, suggesting that the inclusion of information concerning these metabolites and genes and metabolic pathways enables a more explicit understanding of phenotypic traits and, as such, this procedure could serve as an -omics-informed roadmap for executing similar improvement strategies in wheat and other species.
Collapse
Affiliation(s)
- Jie Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Mingyun Xue
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongbo Liu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Alisdair R. Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
| | - Wei Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
42
|
Oddy J, Alarcón-Reverte R, Wilkinson M, Ravet K, Raffan S, Minter A, Mead A, Elmore JS, de Almeida IM, Cryer NC, Halford NG, Pearce S. Reduced free asparagine in wheat grain resulting from a natural deletion of TaASN-B2: investigating and exploiting diversity in the asparagine synthetase gene family to improve wheat quality. BMC PLANT BIOLOGY 2021; 21:302. [PMID: 34187359 PMCID: PMC8240372 DOI: 10.1186/s12870-021-03058-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/17/2021] [Indexed: 05/31/2023]
Abstract
BACKGROUND Understanding the determinants of free asparagine concentration in wheat grain is necessary to reduce levels of the processing contaminant acrylamide in baked and toasted wheat products. Although crop management strategies can help reduce asparagine concentrations, breeders have limited options to select for genetic variation underlying this trait. Asparagine synthetase enzymes catalyse a critical step in asparagine biosynthesis in plants and, in wheat, are encoded by five homeologous gene triads that exhibit distinct expression profiles. Within this family, TaASN2 genes are highly expressed during grain development but TaASN-B2 is absent in some varieties. RESULTS Natural genetic diversity in the asparagine synthetase gene family was assessed in different wheat varieties revealing instances of presence/absence variation and other polymorphisms, including some predicted to affect the function of the encoded protein. The presence and absence of TaASN-B2 was determined across a range of UK and global common wheat varieties and related species, showing that the deletion encompassing this gene was already present in some wild emmer wheat genotypes. Expression profiling confirmed that TaASN2 transcripts were only detectable in the grain, while TaASN3.1 genes were highly expressed during the early stages of grain development. TaASN-A2 was the most highly expressed TaASN2 homeologue in most assayed wheat varieties. TaASN-B2 and TaASN-D2 were expressed at similar, lower levels in varieties possessing TaASN-B2. Expression of TaASN-A2 and TaASN-D2 did not increase to compensate for the absence of TaASN-B2, so total TaASN2 expression was lower in varieties lacking TaASN-B2. Consequently, free asparagine concentrations in field-produced grain were, on average, lower in varieties lacking TaASN-B2, although the effect was lost when free asparagine accumulated to very high concentrations as a result of sulphur deficiency. CONCLUSIONS Selecting wheat genotypes lacking the TaASN-B2 gene may be a simple and rapid way for breeders to reduce free asparagine concentrations in commercial wheat grain.
Collapse
Affiliation(s)
- Joseph Oddy
- Plant Sciences Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ UK
| | - Rocío Alarcón-Reverte
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523 USA
| | - Mark Wilkinson
- Plant Sciences Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ UK
| | - Karl Ravet
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523 USA
| | - Sarah Raffan
- Plant Sciences Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ UK
| | - Andrea Minter
- Computational and Analytical Sciences Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ UK
| | - Andrew Mead
- Computational and Analytical Sciences Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ UK
| | - J. Stephen Elmore
- Department of Food & Nutritional Sciences, University of Reading, Whiteknights, Reading, RG6 6DZ UK
| | | | - Nicholas C. Cryer
- Mondelēz UK R&D Ltd, Bournville Lane, Bournville, Birmingham, B30 2LU UK
| | - Nigel G. Halford
- Plant Sciences Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ UK
| | - Stephen Pearce
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523 USA
| |
Collapse
|
43
|
Hawkins E, Chen J, Watson-Lazowski A, Ahn-Jarvis J, Barclay JE, Fahy B, Hartley M, Warren FJ, Seung D. STARCH SYNTHASE 4 is required for normal starch granule initiation in amyloplasts of wheat endosperm. THE NEW PHYTOLOGIST 2021; 230:2371-2386. [PMID: 33714222 DOI: 10.1111/nph.17342] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 03/05/2021] [Indexed: 05/26/2023]
Abstract
Starch granule initiation is poorly understood at the molecular level. The glucosyltransferase, STARCH SYNTHASE 4 (SS4), plays a central role in granule initiation in Arabidopsis leaves, but its function in cereal endosperms is unknown. We investigated the role of SS4 in wheat, which has a distinct spatiotemporal pattern of granule initiation during grain development. We generated TILLING mutants in tetraploid wheat (Triticum turgidum) that are defective in both SS4 homoeologs. The morphology of endosperm starch was examined in developing and mature grains. SS4 deficiency led to severe alterations in endosperm starch granule morphology. During early grain development, while the wild-type initiated single 'A-type' granules per amyloplast, most amyloplasts in the mutant formed compound granules due to multiple initiations. This phenotype was similar to mutants deficient in B-GRANULE CONTENT 1 (BGC1). SS4 deficiency also reduced starch content in leaves and pollen grains. We propose that SS4 and BGC1 are required for the proper control of granule initiation during early grain development that leads to a single A-type granule per amyloplast. The absence of either protein results in a variable number of initiations per amyloplast and compound granule formation.
Collapse
Affiliation(s)
- Erica Hawkins
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Jiawen Chen
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | | | | | | | - Brendan Fahy
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Matthew Hartley
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | | | - David Seung
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
44
|
Alseekh S, Scossa F, Wen W, Luo J, Yan J, Beleggia R, Klee HJ, Huang S, Papa R, Fernie AR. Domestication of Crop Metabolomes: Desired and Unintended Consequences. TRENDS IN PLANT SCIENCE 2021; 26:650-661. [PMID: 33653662 DOI: 10.1016/j.tplants.2021.02.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 05/02/2023]
Abstract
The majority of the crops and vegetables of today were domesticated from their wild progenitors within the past 12 000 years. Considerable research effort has been expended on characterizing the genes undergoing positive and negative selection during the processes of crop domestication and improvement. Many studies have also documented how the contents of a handful of metabolites have been altered during human selection, but we are only beginning to unravel the true extent of the metabolic consequences of breeding. We highlight how crop metabolomes have been wittingly or unwittingly shaped by the processes of domestication, and highlight how we can identify new targets for metabolite engineering for the purpose of de novo domestication of crop wild relatives.
Collapse
Affiliation(s)
- Saleh Alseekh
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany; Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
| | - Federico Scossa
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany; Council for Agricultural Research and Economics (CREA), Research Centre for Genomics and Bioinformatics (CREA-GB), 00178 Rome, Italy
| | - Weiwei Wen
- Key laboratory of Horticultural Plant Biology (MOE),College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Hubei, Wuhan 430070, China
| | - Jie Luo
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University Hubei, Wuhan 430070, China; College of Tropical Crops, Hainan University, Haikou, Hainan, China
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University Hubei, Wuhan 430070, China
| | - Romina Beleggia
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops (CREA-, CI), 71122 Foggia, Italy
| | - Harry J Klee
- Horticultural Sciences, University of Florida, Gainesville, FL, USA
| | - Sanwen Huang
- Genome Analysis Laboratory of the Ministry of Agriculture - Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Roberto Papa
- Department of Agricultural, Food, and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy.
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany; Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria.
| |
Collapse
|
45
|
The Landscape of the Genomic Distribution and the Expression of the F-Box Genes Unveil Genome Plasticity in Hexaploid Wheat during Grain Development and in Response to Heat and Drought Stress. Int J Mol Sci 2021; 22:ijms22063111. [PMID: 33803701 PMCID: PMC8002965 DOI: 10.3390/ijms22063111] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/01/2021] [Accepted: 03/15/2021] [Indexed: 11/17/2022] Open
Abstract
FBX proteins are subunits of the SCF complex (Skp1-cullin-FBX) belonging to the E3 ligase family, which is involved in the ubiquitin-proteasome 26S (UPS) pathway responsible for the post-translational protein turnover. By targeting, in a selective manner, key regulatory proteins for ubiquitination and 26S proteasome degradation, FBX proteins play a major role in plant responses to diverse developmental and stress conditions. Although studies on the genomic organization of the FBX gene family in various species have been reported, knowledge related to bread wheat (Triticum aestivum) is scarce and needs to be broadened. Using the latest assembly of the wheat genome, we identified 3670 TaFBX genes distributed non-homogeneously within the three subgenomes (A, B and D) and between the 21 chromosomes, establishing it as one of the richest gene families among plant species. Based on the presence of the five different chromosomal regions previously identified, the present study focused on the genomic distribution of the TaFBX family and the identification of differentially expressed genes during the embryogenesis stages and in response to heat and drought stress. Most of the time, when comparing the expected number of genes (taking into account the formal gene distribution on the entire wheat genome), the TaFBX family harbors a different pattern at the various stratum of observation (subgenome, chromosome, chromosomal regions). We report here that the local gene expansion of the TaFBX family must be the consequence of multiple and complex events, including tandem and small-scale duplications. Regarding the differentially expressed TaFBX genes, while the majority of the genes are localized in the distal chromosomal regions (R1 and R3), differentially expressed genes are more present in the interstitial regions (R2a and R2b) than expected, which could be an indication of the preservation of major genes in those specific chromosomal regions.
Collapse
|
46
|
Armenta-Medina A, Gillmor CS, Gao P, Mora-Macias J, Kochian LV, Xiang D, Datla R. Developmental and genomic architecture of plant embryogenesis: from model plant to crops. PLANT COMMUNICATIONS 2021; 2:100136. [PMID: 33511346 PMCID: PMC7816075 DOI: 10.1016/j.xplc.2020.100136] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/05/2020] [Accepted: 12/11/2020] [Indexed: 05/08/2023]
Abstract
Embryonic development represents an important reproductive phase of sexually reproducing plant species. The fusion of egg and sperm produces the plant zygote, a totipotent cell that, through cell division and cell identity specification in early embryogenesis, establishes the major cell lineages and tissues of the adult plant. The subsequent morphogenesis phase produces the full-sized embryo, while the late embryogenesis maturation process prepares the seed for dormancy and subsequent germination, ensuring continuation of the plant life cycle. In this review on embryogenesis, we compare the model eudicot Arabidopsis thaliana with monocot crops, focusing on genome activation, paternal and maternal regulation of early zygote development, and key organizers of patterning, such as auxin and WOX transcription factors. While the early stages of embryo development are apparently conserved among plant species, embryo maturation programs have diversified between eudicots and monocots. This diversification in crop species reflects the likely effects of domestication on seed quality traits that are determined during embryo maturation, and also assures seed germination in different environmental conditions. This review describes the most important features of embryonic development in plants, and the scope and applications of genomics in plant embryo studies.
Collapse
Affiliation(s)
- Alma Armenta-Medina
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK S7N 4J8, Canada
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, Centro de Investigación y Estudios Avanzados del IPN (CINVESTAV-IPN), Irapuato, Guanajuato, México
| | - C. Stewart Gillmor
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, Centro de Investigación y Estudios Avanzados del IPN (CINVESTAV-IPN), Irapuato, Guanajuato, México
| | - Peng Gao
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK S7N 4J8, Canada
| | - Javier Mora-Macias
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK S7N 4J8, Canada
| | - Leon V. Kochian
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK S7N 4J8, Canada
| | - Daoquan Xiang
- National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada
| | - Raju Datla
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK S7N 4J8, Canada
| |
Collapse
|
47
|
Boudichevskaia A, Ruban A, Thiel J, Fiebig A, Houben A. Tissue-Specific Transcriptome Analysis Reveals Candidate Transcripts Associated with the Process of Programmed B Chromosome Elimination in Aegilops speltoides. Int J Mol Sci 2020; 21:ijms21207596. [PMID: 33066598 PMCID: PMC7593951 DOI: 10.3390/ijms21207596] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/09/2020] [Accepted: 10/11/2020] [Indexed: 11/30/2022] Open
Abstract
Some eukaryotes exhibit dramatic genome size differences between cells of different organs, resulting from programmed elimination of chromosomes. Here, we present the first transcriptome analysis of programmed chromosome elimination using laser capture microdissection (LCM)-based isolation of the central meristematic region of Aegilops speltoides embryos where B chromosome (B) elimination occurs. The comparative RNA-seq analysis of meristematic cells of embryos with (Bplus) and without Bs (B0) allowed the identification of 14,578 transcript isoforms (35% out of 41,615 analyzed transcript isoforms) that are differentially expressed during the elimination of Bs. A total of 2908 annotated unigenes were found to be up-regulated in Bplus condition. These genes are either associated with the process of B chromosome elimination or with the presence of B chromosomes themselves. GO enrichment analysis categorized up-regulated transcript isoforms into 27 overrepresented terms related to the biological process, nine terms of the molecular function aspect and three terms of the cellular component category. A total of 2726 annotated unigenes were down-regulated in Bplus condition. Based on strict filtering criteria, 341 B-unique transcript isoforms could be identified in central meristematic cells, of which 70 were functionally annotated. Beside others, genes associated with chromosome segregation, kinetochore function and spindle checkpoint activity were retrieved as promising candidates involved in the process of B chromosome elimination.
Collapse
Affiliation(s)
- Anastassia Boudichevskaia
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, 06466 OT Gatersleben, Germany; (A.R.); (J.T.); (A.F.)
- KWS SAAT SE & Co. KGaA, 37574 Einbeck, Germany
- Correspondence: (A.B.); (A.H.)
| | - Alevtina Ruban
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, 06466 OT Gatersleben, Germany; (A.R.); (J.T.); (A.F.)
- KWS SAAT SE & Co. KGaA, 37574 Einbeck, Germany
| | - Johannes Thiel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, 06466 OT Gatersleben, Germany; (A.R.); (J.T.); (A.F.)
| | - Anne Fiebig
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, 06466 OT Gatersleben, Germany; (A.R.); (J.T.); (A.F.)
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, 06466 OT Gatersleben, Germany; (A.R.); (J.T.); (A.F.)
- Correspondence: (A.B.); (A.H.)
| |
Collapse
|
48
|
Liu Y, Hou J, Wang X, Li T, Majeed U, Hao C, Zhang X. The NAC transcription factor NAC019-A1 is a negative regulator of starch synthesis in wheat developing endosperm. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5794-5807. [PMID: 32803271 DOI: 10.1093/jxb/eraa333] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 07/29/2020] [Indexed: 05/20/2023]
Abstract
Starch is a major component of wheat (Triticum aestivum L.) endosperm and is an important part of the human diet. The functions of many starch synthesis genes have been elucidated. However, little is known about their regulatory mechanisms in wheat. Here, we identified a novel NAC transcription factor, TaNAC019-A1 (TraesCS3A02G077900), that negatively regulates starch synthesis in wheat and rice (Oryza sativa L.) endosperms. TaNAC019-A1 was highly expressed in the endosperm of developing grains and encoded a nucleus-localized transcriptional repressor. Overexpression of TaNAC019-A1 in rice and wheat led to significantly reduced starch content, kernel weight, and kernel width. The TaNAC019-A1-overexpression wheat lines had smaller A-type starch granules and fewer B-type starch granules than wild-type. Moreover, TaNAC019-A1 could directly bind to the 'ACGCAG' motif in the promoter regions of ADP-glucose pyrophosphorylase small subunit 1 (TaAGPS1-A1, TraesCS7A02G287400) and TaAGPS1-B1 (TraesCS7B02G183300) and repress their expression, thereby inhibiting starch synthesis in wheat endosperm. One haplotype of TaNAC019-B1 (TaNAC019-B1-Hap2, TraesCS3B02G092800) was positively associated with thousand-kernel weight and underwent positive selection during the Chinese wheat breeding process. Our data demonstrate that TaNAC019-A1 is a negative regulator of starch synthesis in wheat endosperm and provide novel insight into wheat yield improvement.
Collapse
Affiliation(s)
- Yunchuan Liu
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jian Hou
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaolu Wang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tian Li
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Uzma Majeed
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chenyang Hao
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xueyong Zhang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
49
|
Tian R, Yang Y, Chen M. Genome-wide survey of the amino acid transporter gene family in wheat (Triticum aestivum L.): Identification, expression analysis and response to abiotic stress. Int J Biol Macromol 2020; 162:1372-1387. [PMID: 32781128 DOI: 10.1016/j.ijbiomac.2020.07.302] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/30/2020] [Accepted: 07/29/2020] [Indexed: 12/11/2022]
Abstract
Amino acid transporters (AATs), which transport amino acids across cell membranes, play important roles in alleviating plant damage under stresses and in plant growth. To data, little is known about the AAT genes in wheat because of its complex genome. In this study, a total of 296 AAT genes were identified from the latest wheat genome sequence (IWGSC v1.1) and classified into 12 distinct subfamilies based upon their sequence composition and phylogenetic relationship. The expansion of the wheat AAT family was mainly the results of whole-genome duplication (WGD) and tandem events. The unequal expansion of different subfamilies brought new features to TaAATs. TaAATs were highly expressed and exhibited distinct expression patterns in different tissues. On the basis of homology and expression pattern analysis, we identified several wheat AAT family members that may affect grain quality. In addition, TaAAP3, TaATLa2 and TaATLb13 exhibited sustained expression in response to drought and high-temperature stress. These genes are involved in the response of wheat to abiotic stress by regulating the transport and distribution of amino acids. Overall, our results help to understand the complexity of TaAATs and provide a theoretical basis for further identification and utilization of AATs in wheat and other crop species.
Collapse
Affiliation(s)
- Ruizheng Tian
- Northwest A&F University, State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| | - Yang Yang
- Northwest A&F University, State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Yangling 712100, China
| | - Maohua Chen
- Northwest A&F University, State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs, Yangling 712100, China.
| |
Collapse
|
50
|
Yang Y, Chai Y, Zhang X, Lu S, Zhao Z, Wei D, Chen L, Hu YG. Multi-Locus GWAS of Quality Traits in Bread Wheat: Mining More Candidate Genes and Possible Regulatory Network. FRONTIERS IN PLANT SCIENCE 2020; 11:1091. [PMID: 32849679 PMCID: PMC7411135 DOI: 10.3389/fpls.2020.01091] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/02/2020] [Indexed: 05/20/2023]
Abstract
In wheat breeding, improved quality traits, including grain quality and dough rheological properties, have long been a critical goal. To understand the genetic basis of key quality traits of wheat, two single-locus and five multi-locus GWAS models were performed for six grain quality traits and three dough rheological properties based on 19, 254 SNPs in 267 bread wheat accessions. As a result, 299 quantitative trait nucleotides (QTNs) within 105 regions were identified to be associated with these quality traits in four environments. Of which, 40 core QTN regions were stably detected in at least three environments, 19 of which were novel. Compared with the previous studies, these novel QTN regions explained smaller phenotypic variation, which verified the advantages of the multi-locus GWAS models in detecting important small effect QTNs associated with complex traits. After characterization of the function and expression in-depth, 67 core candidate genes involved in protein/sugar synthesis, histone modification and the regulation of transcription factor were observed to be associated with the formation of grain quality, which showed that multi-level regulations influenced wheat grain quality. Finally, a preliminary network of gene regulation that may affect wheat quality formation was inferred. This study verified the power and reliability of multi-locus GWAS methods in wheat quality trait research, and increased the understanding of wheat quality formation mechanisms. The detected QTN regions and candidate genes in this study could be further used for gene cloning and marker-assisted selection in high-quality breeding of bread wheat.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Yongmao Chai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Xuan Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Shan Lu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Zhangchen Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Di Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Liang Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Yin-Gang Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
- Institute of Water Saving Agriculture in Arid Regions of China, Northwest A&F University, Yangling, China
| |
Collapse
|