1
|
Chiba K, Tezuka T, Watanabe M, Nagasawa N, Satoh-Nagasawa N. A semi-dominant mutation in the gene encoding histidine kinase influences rice morphology. Genes Genet Syst 2025; 100:n/a. [PMID: 39909425 DOI: 10.1266/ggs.24-00223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025] Open
Abstract
Cytokinin plays a major role in the regulation of plant development. It is perceived by receptors with histidine kinase activity to regulate the expression of various transcription factors. In a previous study, we reported a semi-dominant mutant, named adaxial-abaxial bipolar leaf1 (abl1)-d, which exhibited a characteristic feature in the fourth leaf of rice, and that the ABL1 gene encodes a cytokinin receptor with histidine kinase activity. Our further analysis suggested that the abl1-d mutation is associated with an active form of histidine kinase and altered cytokinin signaling. However, it remained unclear whether the abl1-d mutation indeed triggers aberrant cytokinin signaling in rice plants, and how the abl1-d mutation affects developmental processes throughout the life cycle of rice. In the present study, we found that homozygous abl1-1d calli have the capacity to regenerate shoots in the absence of cytokinin, suggesting that the abl1-1d homozygous mutation is associated with constitutive cytokinin signaling in rice. We next examined morphological characteristics of both homozygous and heterozygous abl1-1d plants from the post-germination vegetative phase through to reproduction. The results showed that homozygous abl1-1d plants had a reduced number of panicles and were completely sterile, and that leaf size and the midrib structure were altered. Furthermore, the adaxial-abaxial bipolar leaf, a phenotype that is characteristic of the abl1-1d mutant, has previously been observed to resemble two normal leaves fused together at their abaxial sides. Leaves with this particular phenotype exhibited enhanced photosynthetic efficiency under certain environmental conditions. Thus, the abl1-1d mutation, which results in a putative active form of receptor histidine kinase, affects various developmental traits throughout the rice life cycle, probably due to altered cytokinin signaling.
Collapse
Affiliation(s)
- Kaito Chiba
- Department of Biological Production, Akita Prefectural University
| | - Takumi Tezuka
- Department of Biological Production, Akita Prefectural University
- Department of Genomics and Evolutionary Biology, National Institute of Genetics
| | - Mayo Watanabe
- Department of Biological Production, Akita Prefectural University
| | | | | |
Collapse
|
2
|
Uragami T, Kiba T, Kojima M, Takebayashi Y, Tozawa Y, Hayashi Y, Kinoshita T, Sakakibara H. The cytokinin efflux transporter ABCC4 participates in Arabidopsis root system development. PLANT PHYSIOLOGY 2024; 197:kiae628. [PMID: 39719052 PMCID: PMC11668331 DOI: 10.1093/plphys/kiae628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/30/2024] [Indexed: 12/26/2024]
Abstract
The directional and sequential flow of cytokinin in plants is organized by a complex network of transporters. Genes involved in several aspects of cytokinin transport have been characterized; however, much of the elaborate system remains elusive. In this study, we used a transient expression system in tobacco (Nicotiana benthamiana) leaves to screen Arabidopsis (Arabidopsis thaliana) transporter genes and isolated ATP-BINDING CASSETTE TRANSPORTER C4 (ABCC4). Validation through drug-induced expression in Arabidopsis and heterologous expression in budding yeast revealed that ABCC4 effluxes the active form of cytokinins. During the seedling stage, ABCC4 was highly expressed in roots, and its expression was upregulated in response to cytokinin application. Loss-of-function mutants of ABCC4 displayed enhanced primary root elongation, similar to mutants impaired in cytokinin biosynthesis or signaling, that was suppressed by exogenous trans-zeatin treatment. In contrast, overexpression of the gene led to suppression of root elongation. These results suggest that ABCC4 plays a role in the efflux of active cytokinin, thereby contributing to root growth regulation. Additionally, cytokinin-dependent enlargement of stomatal aperture was impaired in the loss-of-function and overexpression lines. Our findings contribute to unraveling the many complexities of cytokinin flow and enhance our understanding of the regulatory mechanisms underlying root system development and stomatal opening in plants.
Collapse
Affiliation(s)
- Takuya Uragami
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Takatoshi Kiba
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| | - Mikiko Kojima
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| | - Yumiko Takebayashi
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| | - Yuzuru Tozawa
- Graduate School of Science and Engineering, Saitama University, Sakura, Saitama 338-8570, Japan
| | - Yuki Hayashi
- Graduate School of Science and Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Toshinori Kinoshita
- Graduate School of Science and Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Hitoshi Sakakibara
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| |
Collapse
|
3
|
Tezuka T, Sato R, Itoh JI, Kobayashi T, Watanabe T, Chiba K, Shimizu H, Nabeta T, Sunohara H, Wabiko H, Nagasawa N, Satoh-Nagasawa N. Adaxial-abaxial bipolar leaf genes encode a putative cytokinin receptor and HD-Zip III, and control the formation of ectopic shoot meristems in rice. Development 2024; 151:dev202607. [PMID: 39206939 DOI: 10.1242/dev.202607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 07/18/2024] [Indexed: 09/04/2024]
Abstract
Shoot apical meristems (SAMs) continuously initiate organ formation and maintain pluripotency through dynamic genetic regulations and cell-to-cell communications. The activity of meristems directly affects the plant's structure by determining the number and arrangement of organs and tissues. We have taken a forward genetic approach to dissect the genetic pathway that controls cell differentiation around the SAM. The rice mutants, adaxial-abaxial bipolar leaf 1 and 2 (abl1 and abl2), produce an ectopic leaf that is fused back-to-back with the fourth leaf, the first leaf produced after embryogenesis. The abaxial-abaxial fusion is associated with the formation of an ectopic shoot meristem at the adaxial base of the fourth leaf primordium. We cloned the ABL1 and ABL2 genes of rice by mapping their chromosomal positions. ABL1 encodes OsHK6, a histidine kinase, and ABL2 encodes a transcription factor, OSHB3 (Class III homeodomain leucine zipper). Expression analyses of these mutant genes as well as OSH1, a rice ortholog of the Arabidopsis STM gene, unveiled a regulatory circuit that controls the formation of an ectopic meristem near the SAM at germination.
Collapse
Affiliation(s)
- Takumi Tezuka
- Faculty of Bioresource Sciences, Department of Biological Production, Akita Prefectural University, Akita 010-0195, Japan
- National Institute of Genetics, Shizuoka 411-8540, Japan
| | - Rie Sato
- Faculty of Bioresource Sciences, Department of Biological Production, Akita Prefectural University, Akita 010-0195, Japan
| | - Jun-Ichi Itoh
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Toshiki Kobayashi
- Faculty of Bioresource Sciences, Department of Biological Production, Akita Prefectural University, Akita 010-0195, Japan
| | - Tomokazu Watanabe
- Faculty of Bioresource Sciences, Department of Biological Production, Akita Prefectural University, Akita 010-0195, Japan
| | - Kaito Chiba
- Faculty of Bioresource Sciences, Department of Biological Production, Akita Prefectural University, Akita 010-0195, Japan
| | - Haruki Shimizu
- Faculty of Bioresource Sciences, Department of Biological Production, Akita Prefectural University, Akita 010-0195, Japan
| | - Takuma Nabeta
- Faculty of Bioresource Sciences, Department of Biological Production, Akita Prefectural University, Akita 010-0195, Japan
| | - Hidehiko Sunohara
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | - Hiroetsu Wabiko
- Faculty of Bioresource Sciences, Department of Biological Production, Akita Prefectural University, Akita 010-0195, Japan
| | - Nobuhiro Nagasawa
- Faculty of Bioresource Sciences, Department of Biological Production, Akita Prefectural University, Akita 010-0195, Japan
| | - Namiko Satoh-Nagasawa
- Faculty of Bioresource Sciences, Department of Biological Production, Akita Prefectural University, Akita 010-0195, Japan
| |
Collapse
|
4
|
Xu X, Wang Y, Lu H, Zhao X, Jiang J, Liu M, Yang C. Morphological characterization and transcriptome analysis of rolled and narrow leaf mutant in soybean. BMC PLANT BIOLOGY 2024; 24:686. [PMID: 39026194 PMCID: PMC11264519 DOI: 10.1186/s12870-024-05389-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/05/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND In plants, the leaf functions as a solar panel, where photosynthesis converts carbon dioxide and water into carbohydrates and oxygen. In soybean, leaf type traits, including leaf shape, leaf area, leaf width, and leaf width so on, are considered to be associated with yield. In this study, we performed morphological characterization, transcriptome analysis, and endogenous hormone analysis of a rolled and narrow leaf mutant line (rl) in soybean. RESULTS Compared with wild type HX3, mutant line rl showed rolled and narrower leaflet, and smaller leaf, meanwhile rl also performed narrower pod and narrower seed. Anatomical analysis of leaflet demonstrated that cell area of upper epidermis was bigger than the cell area of lower epidermis in rl, which may lead rolled and narrow leaf. Transcriptome analysis revealed that several cytokinin oxidase/dehydrogenase (CKX) genes (Glyma.06G028900, Glyma.09G225400, Glyma.13G104700, Glyma.14G099000, and Glyma.17G054500) were up-regulation dramatically, which may cause lower cytokinin level in rl. Endogenous hormone analysis verified that cytokinin content of rl was lower. Hormone treatment results indicated that 6-BA rescued rolled leaf enough, rescued partly narrow leaf. And after 6-BA treatment, the cell area was similar between upper epidermis and lower epidermis in rl. Although IAA content and ABA content were reduced in rl, but exogenous IAA and ABA didn't affect leaf type of HX3 and rl. CONCLUSIONS Our results suggest abnormal cytokinin metabolism caused rolled and narrow leaf in rl, and provide valuable clues for further understanding the mechanisms underlying leaf development in soybean.
Collapse
Affiliation(s)
- Xiaomin Xu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Yongzhen Wang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Housheng Lu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Xueqian Zhao
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Jiacan Jiang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Mengshi Liu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Cunyi Yang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
- Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
5
|
Jia X, Xu S, Wang Y, Jin L, Gao T, Zhang Z, Yang C, Qing Y, Li C, Ma F. Age-dependent changes in leaf size in apple are governed by a cytokinin-integrated module. PLANT PHYSIOLOGY 2024; 195:2406-2427. [PMID: 38588053 DOI: 10.1093/plphys/kiae201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/01/2024] [Accepted: 03/02/2024] [Indexed: 04/10/2024]
Abstract
Plants undergo various age-dependent changes in leaf morphology during juvenile to adult vegetative stage. However, the precise molecular mechanisms governing these changes in apple (Malus domestica) remain unknown. Here, we showed that CYTOKININ OXIDASE/DEHYDROGENASE5 (MdCKX5), an age-dependent gene, encodes a functional CKX enzyme and serves as the common downstream target of SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factor MdSPL14 and WRKY transcription factor MdWRKY24 to control the degradation of cytokinin (CK). As the target of mdm-microRNA156a, MdSPL14 interacts with MdWRKY24 to coordinately repress the transcription of MdCKX5 by forming the age-mediated mdm-miR156a-MdSPL14-MdWRKY24 module, which regulates age-dependent changes in CK during the juvenile-to-adult phase transition. We further demonstrated that MdARR6, a type-A ARABIDOPSIS RESPONSE REGULATOR (ARR), is a negative feedback regulator in the CK signaling pathway. Silencing of MdARR6 in apple resulted in large leaves with smaller epidermal cells and a greater number of epidermal cells. Biochemical analysis showed that the mdm-miR156a-MdSPL14-MdWRKY24 module acts as a transcriptional repressor to directly regulate MdARR6 expression, thus controlling the age-dependent changes in leaf size by reducing CK responses. These findings established a link between the age pathway and CK signaling and revealed the molecular mechanism underlying age-dependent changes during the juvenile-to-adult phase transition; our results also provide targets for the genetic improvement of the vegetative phase transition in apple.
Collapse
Affiliation(s)
- Xumei Jia
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Shuo Xu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Yuting Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Lu Jin
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Tengteng Gao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Zhijun Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Chao Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Yubin Qing
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Chao Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| |
Collapse
|
6
|
Vlad D, Zaidem M, Perico C, Sedelnikova O, Bhattacharya S, Langdale JA. The WIP6 transcription factor TOO MANY LATERALS specifies vein type in C 4 and C 3 grass leaves. Curr Biol 2024; 34:1670-1686.e10. [PMID: 38531358 DOI: 10.1016/j.cub.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/04/2024] [Accepted: 03/07/2024] [Indexed: 03/28/2024]
Abstract
Grass leaves are invariantly strap shaped with an elongated distal blade and a proximal sheath that wraps around the stem. Underpinning this shape is a scaffold of leaf veins, most of which extend in parallel along the proximo-distal leaf axis. Differences between species are apparent both in the vein types that develop and in the distance between veins across the medio-lateral leaf axis. A prominent engineering goal is to increase vein density in leaves of C3 photosynthesizing species to facilitate the introduction of the more efficient C4 pathway. Here, we discover that the WIP6 transcription factor TOO MANY LATERALS (TML) specifies vein rank in both maize (C4) and rice (C3). Loss-of-function tml mutations cause large lateral veins to develop in positions normally occupied by smaller intermediate veins, and TML transcript localization in wild-type leaves is consistent with a role in suppressing lateral vein development in procambial cells that form intermediate veins. Attempts to manipulate TML function in rice were unsuccessful because transgene expression was silenced, suggesting that precise TML expression is essential for shoot viability. This finding may reflect the need to prevent the inappropriate activation of downstream targets or, given that transcriptome analysis revealed altered cytokinin and auxin signaling profiles in maize tml mutants, the need to prevent local or general hormonal imbalances. Importantly, rice tml mutants display an increased occupancy of veins in the leaf, providing a step toward an anatomical chassis for C4 engineering. Collectively, a conserved mechanism of vein rank specification in grass leaves has been revealed.
Collapse
Affiliation(s)
- Daniela Vlad
- Department of Biology, University of Oxford, South Parks Rd, Oxford OX1 3RB, UK
| | - Maricris Zaidem
- Department of Biology, University of Oxford, South Parks Rd, Oxford OX1 3RB, UK
| | - Chiara Perico
- Department of Biology, University of Oxford, South Parks Rd, Oxford OX1 3RB, UK
| | - Olga Sedelnikova
- Department of Biology, University of Oxford, South Parks Rd, Oxford OX1 3RB, UK
| | - Samik Bhattacharya
- Resolve BioSciences GmbH, Alfred-Nobel-Straße 10, 40789 Monheim am Rhein, Germany
| | - Jane A Langdale
- Department of Biology, University of Oxford, South Parks Rd, Oxford OX1 3RB, UK.
| |
Collapse
|
7
|
Yang Y, Yin J, Zhu L, Xu L, Wu W, Lu Y, Chen J, Shi J, Hao Z. Genome-Wide Analysis of the Liriodendron chinense Hsf Gene Family under Abiotic Stress and Characterization of the LcHsfA2a Gene. Int J Mol Sci 2024; 25:2733. [PMID: 38473982 DOI: 10.3390/ijms25052733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/18/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Heat shock factors (Hsfs) play a crucial role in plant defense processes. However, the distribution and functional characteristics of Hsf genes in the relict plant Liriodendron chinense are still unclear. In this study, a total of 19 LcHsfs were identified and divided into three separate subgroups, comprising 10 LcHsfA, 7 LcHsfB, and 2 LcHsfC genes, respectively, based on their phylogenetic tree and the presence/absence of conserved protein domains. Whole-genome duplication and segmental duplication led to an expansion of the LhHsf gene family. The promoters of LcHsf genes are enriched for different types of cis-acting elements, including hormone responsive and abiotic-stress-responsive elements. The expression of LcHsfA3, LcHsfA4b, LcHsfA5, LcHsfB1b, and LcHsfB2b increased significantly as a result of both cold and drought treatments. LcHsfA2a, LcHsfA2b, and LcHsfA7 act as important genes whose expression levels correlate strongly with the expression of the LcHsp70, LcHsp110, and LcAPX genes under heat stress. In addition, we found that transiently transformed 35S:LcHsfA2a seedlings showed significantly lower levels of hydrogen peroxide (H2O2) after heat stress and showed a stronger thermotolerance. This study sheds light on the possible functions of LcHsf genes under abiotic stress and identifies potentially useful genes to target for molecular breeding, in order to develop more stress-resistant varieties.
Collapse
Affiliation(s)
- Yun Yang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Jianchao Yin
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Liming Zhu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Lin Xu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Weihuang Wu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Ye Lu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Jinhui Chen
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Jisen Shi
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Zhaodong Hao
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
8
|
Chun Y, Fang J, Savelieva EM, Lomin SN, Shang J, Sun Y, Zhao J, Kumar A, Yuan S, Yao X, Liu CM, Arkhipov DV, Romanov GA, Li X. The cytokinin receptor OHK4/OsHK4 regulates inflorescence architecture in rice via an IDEAL PLANT ARCHITECTURE1/WEALTHY FARMER'S PANICLE-mediated positive feedback circuit. THE PLANT CELL 2023; 36:40-64. [PMID: 37811656 PMCID: PMC10734611 DOI: 10.1093/plcell/koad257] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/07/2023] [Accepted: 08/18/2023] [Indexed: 10/10/2023]
Abstract
Inflorescence architecture is important for rice (Oryza sativa) grain yield. The phytohormone cytokinin (CK) has been shown to regulate rice inflorescence development; however, the underlying mechanism mediated by CK perception is still unclear. Employing a forward genetic approach, we isolated an inactive variant of the CK receptor OHK4/OsHK4 gene named panicle length1, which shows decreased panicle size due to reduced inflorescence meristem (IM) activity. A 2-amino acid deletion in the long α-helix stalk of the sensory module of OHK4 impairs the homodimerization and ligand-binding capacity of the receptor, even though the residues do not touch the ligand-binding domain or the dimerization interface. This deletion impairs CK signaling that occurs through the type-B response regulator OsRR21, which acts downstream of OHK4 in controlling inflorescence size. Meanwhile, we found that IDEAL PLANT ARCHITECTURE1(IPA1)/WEALTHY FARMER'S PANICLE (WFP), encoding a positive regulator of IM development, acts downstream of CK signaling and is directly activated by OsRR21. Additionally, we revealed that IPA1/WFP directly binds to the OHK4 promoter and upregulates its expression through interactions with 2 TCP transcription factors, forming a positive feedback circuit. Altogether, we identified the OHK4-OsRR21-IPA1 regulatory module, providing important insights into the role of CK signaling in regulating rice inflorescence architecture.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Xueyong Li
- Author for correspondence: (X.L.), (G.A.R.)
| |
Collapse
|
9
|
Lv Z, Zhao W, Kong S, Li L, Lin S. Overview of molecular mechanisms of plant leaf development: a systematic review. FRONTIERS IN PLANT SCIENCE 2023; 14:1293424. [PMID: 38146273 PMCID: PMC10749370 DOI: 10.3389/fpls.2023.1293424] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/22/2023] [Indexed: 12/27/2023]
Abstract
Leaf growth initiates in the peripheral region of the meristem at the apex of the stem, eventually forming flat structures. Leaves are pivotal organs in plants, serving as the primary sites for photosynthesis, respiration, and transpiration. Their development is intricately governed by complex regulatory networks. Leaf development encompasses five processes: the leaf primordium initiation, the leaf polarity establishment, leaf size expansion, shaping of leaf, and leaf senescence. The leaf primordia starts from the side of the growth cone at the apex of the stem. Under the precise regulation of a series of genes, the leaf primordia establishes adaxial-abaxial axes, proximal-distal axes and medio-lateral axes polarity, guides the primordia cells to divide and differentiate in a specific direction, and finally develops into leaves of a certain shape and size. Leaf senescence is a kind of programmed cell death that occurs in plants, and as it is the last stage of leaf development. Each of these processes is meticulously coordinated through the intricate interplay among transcriptional regulatory factors, microRNAs, and plant hormones. This review is dedicated to examining the regulatory influences of major regulatory factors and plant hormones on these five developmental aspects of leaves.
Collapse
Affiliation(s)
- Zhuo Lv
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, China
- College of Life Science, Nanjing Forestry University, Nanjing, China
| | - Wanqi Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, China
- College of Life Science, Nanjing Forestry University, Nanjing, China
| | - Shuxin Kong
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, China
- College of Life Science, Nanjing Forestry University, Nanjing, China
| | - Long Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, China
- College of Life Science, Nanjing Forestry University, Nanjing, China
| | - Shuyan Lin
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, China
- College of Life Science, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
10
|
Wang X, Li J, Han L, Liang C, Li J, Shang X, Miao X, Luo Z, Zhu W, Li Z, Li T, Qi Y, Li H, Lu X, Li L. QTG-Miner aids rapid dissection of the genetic base of tassel branch number in maize. Nat Commun 2023; 14:5232. [PMID: 37633966 PMCID: PMC10460418 DOI: 10.1038/s41467-023-41022-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023] Open
Abstract
Genetic dissection of agronomic traits is important for crop improvement and global food security. Phenotypic variation of tassel branch number (TBN), a major breeding target, is controlled by many quantitative trait loci (QTLs). The lack of large-scale QTL cloning methodology constrains the systematic dissection of TBN, which hinders modern maize breeding. Here, we devise QTG-Miner, a multi-omics data-based technique for large-scale and rapid cloning of quantitative trait genes (QTGs) in maize. Using QTG-Miner, we clone and verify seven genes underlying seven TBN QTLs. Compared to conventional methods, QTG-Miner performs well for both major- and minor-effect TBN QTLs. Selection analysis indicates that a substantial number of genes and network modules have been subjected to selection during maize improvement. Selection signatures are significantly enriched in multiple biological pathways between female heterotic groups and male heterotic groups. In summary, QTG-Miner provides a large-scale approach for rapid cloning of QTGs in crops and dissects the genetic base of TBN for further maize breeding.
Collapse
Affiliation(s)
- Xi Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Juan Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Linqian Han
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Chengyong Liang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Jiaxin Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Xiaoyang Shang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Xinxin Miao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Zi Luo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Wanchao Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Zhao Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Tianhuan Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Yongwen Qi
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510325, Guangdong, China
| | - Huihui Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Xiaoduo Lu
- Institute of Molecular Breeding for Maize, Qilu Normal University, Jinan, 250200, China
| | - Lin Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
| |
Collapse
|
11
|
Liu Z, Li P, Ren W, Chen Z, Olukayode T, Mi G, Yuan L, Chen F, Pan Q. Hybrid performance evaluation and genome-wide association analysis of root system architecture in a maize association population. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:194. [PMID: 37606710 DOI: 10.1007/s00122-023-04442-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 08/04/2023] [Indexed: 08/23/2023]
Abstract
KEY MESSAGE The genetic architecture of RSA traits was dissected by GWAS and coexpression networks analysis in a maize association population. Root system architecture (RSA) is a crucial determinant of water and nutrient uptake efficiency in crops. However, the maize genetic architecture of RSA is still poorly understood due to the challenges in quantifying root traits and the lack of dense molecular markers. Here, an association mapping panel including 356 inbred lines were crossed with a common tester, Zheng58, and the test crosses were phenotyped for 12 RSA traits in three locations. We observed a 1.3 ~ sixfold phenotypic variation for measured RSA in the association panel. The association panel consisted of four subpopulations, non-stiff stalk (NSS) lines, stiff stalk (SS), tropical/subtropical (TST), and mixed. Zheng58 × TST has a 2.1% higher crown root number (CRN) and 8.6% less brace root number (BRN) than Zheng58 × NSS and Zheng58 × SS, respectively. Using a genome-wide association study (GWAS) with 1.25 million SNPs and correction for population structure, 191 significant SNPs were identified for root traits. Ninety (47%) of the significant SNPs showed positive allelic effects, and 101 (53%) showed negative effects. Each locus could explain 0.39% to 11.8% of phenotypic variation. By integrating GWAS results and comparing coexpression networks, 26 high-priority candidate genes were identified. Gene GRMZM2G377215, which belongs to the COBRA-like gene family, affected root growth and development. Gene GRMZM2G468657 encodes the aspartic proteinase nepenthesin-1, related to root development and N-deficient response. Collectively, our research provides progress in the genetic dissection of root system architecture. These findings present the further possibility for the genetic improvement of root traits in maize.
Collapse
Affiliation(s)
- Zhigang Liu
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing, China
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, Canada
| | - Pengcheng Li
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Wei Ren
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing, China
| | - Zhe Chen
- College of Resources and Environment, Jilin Agricultural University, Changchun, China
| | - Toluwase Olukayode
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, Canada
| | - Guohua Mi
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing, China
| | - Lixing Yuan
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing, China
| | - Fanjun Chen
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, Sanya, China
| | - Qingchun Pan
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing, China.
- Sanya Institute of China Agricultural University, Sanya, China.
| |
Collapse
|
12
|
Uyehara AN, Del Valle-Echevarria AR, Hunter CT, Nelissen H, Demuynck K, Cahill JF, Gorman Z, Jander G, Muszynski MG. Cytokinin Promotes Jasmonic Acid Accumulation in the Control of Maize Leaf Growth. PLANTS (BASEL, SWITZERLAND) 2023; 12:3014. [PMID: 37631225 PMCID: PMC10459232 DOI: 10.3390/plants12163014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/18/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023]
Abstract
Plant organ growth results from the combined activity of cell division and cell expansion. The co-ordination of these two processes depends on the interplay between multiple hormones that determine the final organ size. Using the semidominant Hairy Sheath Frayed1 (Hsf1) maize mutant that hypersignals the perception of cytokinin (CK), we show that CK can reduce leaf size and growth rate by decreasing cell division. Linked to CK hypersignaling, the Hsf1 mutant has an increased jasmonic acid (JA) content, a hormone that can inhibit cell division. The treatment of wild-type seedlings with exogenous JA reduces maize leaf size and growth rate, while JA-deficient maize mutants have increased leaf size and growth rate. Expression analysis revealed the increased transcript accumulation of several JA pathway genes in the Hsf1 leaf growth zone. A transient treatment of growing wild-type maize shoots with exogenous CK also induced the expression of JA biosynthetic genes, although this effect was blocked by the co-treatment with cycloheximide. Together, our results suggest that CK can promote JA accumulation, possibly through the increased expression of specific JA pathway genes.
Collapse
Affiliation(s)
- Aimee N. Uyehara
- Department of Tropical Plant and Soil Sciences, University of Hawaiʻi at Mānoa, Honolulu, HI 96822, USA
| | | | - Charles T. Hunter
- Chemistry Research, Center for Medical, Agricultural and Veterinary Entomology, USDA-ARS, Gainesville, FL 32608, USA; (C.T.H.)
| | - Hilde Nelissen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| | - Kirin Demuynck
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| | - James F. Cahill
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Zachary Gorman
- Chemistry Research, Center for Medical, Agricultural and Veterinary Entomology, USDA-ARS, Gainesville, FL 32608, USA; (C.T.H.)
| | - Georg Jander
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| | - Michael G. Muszynski
- Department of Tropical Plant and Soil Sciences, University of Hawaiʻi at Mānoa, Honolulu, HI 96822, USA
| |
Collapse
|
13
|
Li Q, Liu N, Wu C. Novel insights into maize (Zea mays) development and organogenesis for agricultural optimization. PLANTA 2023; 257:94. [PMID: 37031436 DOI: 10.1007/s00425-023-04126-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
In maize, intrinsic hormone activities and sap fluxes facilitate organogenesis patterning and plant holistic development; these hormone movements should be a primary focus of developmental biology and agricultural optimization strategies. Maize (Zea mays) is an important crop plant with distinctive life history characteristics and structural features. Genetic studies have extended our knowledge of maize developmental processes, genetics, and molecular ecophysiology. In this review, the classical life cycle and life history strategies of maize are analyzed to identify spatiotemporal organogenesis properties and develop a definitive understanding of maize development. The actions of genes and hormones involved in maize organogenesis and sex determination, along with potential molecular mechanisms, are investigated, with findings suggesting central roles of auxin and cytokinins in regulating maize holistic development. Furthermore, investigation of morphological and structural characteristics of maize, particularly node ubiquity and the alternate attachment pattern of lateral organs, yields a novel regulatory model suggesting that maize organ initiation and subsequent development are derived from the stimulation and interaction of auxin and cytokinin fluxes. Propositions that hormone activities and sap flow pathways control organogenesis are thoroughly explored, and initiation and development processes of distinctive maize organs are discussed. Analysis of physiological factors driving hormone and sap movement implicates cues of whole-plant activity for hormone and sap fluxes to stimulate maize inflorescence initiation and organ identity determination. The physiological origins and biogenetic mechanisms underlying maize floral sex determination occurring at the tassel and ear spikelet are thoroughly investigated. The comprehensive outline of maize development and morphogenetic physiology developed in this review will enable farmers to optimize field management and will provide a reference for de novo crop domestication and germplasm improvement using genome editing biotechnologies, promoting agricultural optimization.
Collapse
Affiliation(s)
- Qinglin Li
- Crop Genesis and Novel Agronomy Center, Yangling, 712100, Shaanxi, China.
| | - Ning Liu
- Shandong ZhongnongTiantai Seed Co., Ltd, Pingyi, 273300, Shandong, China
| | - Chenglai Wu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
- College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
14
|
Robil JM, McSteen P. Hormonal control of medial-lateral growth and vein formation in the maize leaf. THE NEW PHYTOLOGIST 2023; 238:125-141. [PMID: 36404129 DOI: 10.1111/nph.18625] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Parallel veins are characteristic of monocots, including grasses (Poaceae). Therefore, how parallel veins develop as the leaf grows in the medial-lateral (ML) dimension is a key question in grass leaf development. Using fluorescent protein reporters, we mapped auxin, cytokinin (CK), and gibberellic acid (GA) response patterns in maize (Zea mays) leaf primordia. We further defined the roles of these hormones in ML growth and vein formation through combinatorial genetic analyses and measurement of hormone concentrations. We discovered a novel pattern of auxin response in the adaxial protoderm that we hypothesize has important implications for the orderly formation of 3° veins early in leaf development. In addition, we found an auxin transport and response pattern in the margins that correlate with the transition from ML to proximal-distal growth. We present evidence that auxin efflux precedes CK response in procambial strand development. We also determined that GA plays an early role in the shoot apical meristem as well as a later role in the primordium to restrict ML growth. We propose an integrative model whereby auxin regulates ML growth and vein formation in the maize leaf through control of GA and CK.
Collapse
Affiliation(s)
- Janlo M Robil
- Division of Biological Sciences, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, Columbia, MO, 65211, USA
- Department of Biology, School of Science and Engineering, Ateneo de Manila University, Loyola Heights, Quezon City, Metro Manila, 1108, Philippines
| | - Paula McSteen
- Division of Biological Sciences, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
15
|
Ding M, Zhu Y, Kinoshita T. Stomatal properties of Arabidopsis cauline and rice flag leaves and their contributions to seed production and grain yield. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:1957-1973. [PMID: 36520996 PMCID: PMC10049919 DOI: 10.1093/jxb/erac492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
Cauline leaves on the inflorescence stem of Arabidopsis thaliana may play important roles in supplying photosynthetic products to sinks, such as floral organs. Flag leaves in rice (Oryza sativa) have a higher photosynthetic capacity than other leaves, and are crucial for increasing grain yield. However, the detailed properties of stomata in cauline and flag leaves have not been investigated. In Arabidopsis, stomatal conductance and CO2 assimilation rate were higher in cauline leaves under white light than in rosette leaves, consistent with higher levels of plasma membrane (PM) H+-ATPase, a key enzyme for stomatal opening, in guard cells. Moreover, removal of cauline leaves significantly reduced the shoot biomass by approximately 20% and seed production by approximately 46%. In rice, higher stomatal density, stomatal conductance, and CO2 assimilation rate were observed in flag leaves than in fully expanded second leaves. Removal of the flag leaves significantly reduced grain yield by approximately 49%. Taken together, these results show that cauline and flag leaves have important roles in seed production and grain yield through enhanced stomatal conductance and CO2 assimilation rate.
Collapse
Affiliation(s)
- Ming Ding
- Plant Physiology laboratory, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Yiyong Zhu
- College of Resource and Environment Science, Nanjing Agricultural University, Nanjing 210095, China
| | | |
Collapse
|
16
|
Li L, Zheng Q, Jiang W, Xiao N, Zeng F, Chen G, Mak M, Chen ZH, Deng F. Molecular Regulation and Evolution of Cytokinin Signaling in Plant Abiotic Stresses. PLANT & CELL PHYSIOLOGY 2023; 63:1787-1805. [PMID: 35639886 DOI: 10.1093/pcp/pcac071] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/04/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
The sustainable production of crops faces increasing challenges from global climate change and human activities, which leads to increasing instances of many abiotic stressors to plants. Among the abiotic stressors, drought, salinity and excessive levels of toxic metals cause reductions in global agricultural productivity and serious health risks for humans. Cytokinins (CKs) are key phytohormones functioning in both normal development and stress responses in plants. Here, we summarize the molecular mechanisms on the biosynthesis, metabolism, transport and signaling transduction pathways of CKs. CKs act as negative regulators of both root system architecture plasticity and root sodium exclusion in response to salt stress. The functions of CKs in mineral-toxicity tolerance and their detoxification in plants are reviewed. Comparative genomic analyses were performed to trace the origin, evolution and diversification of the critical regulatory networks linking CK signaling and abiotic stress. We found that the production of CKs and their derivatives, pathways of signal transduction and drought-response root growth regulation are evolutionarily conserved in land plants. In addition, the mechanisms of CK-mediated sodium exclusion under salt stress are suggested for further investigations. In summary, we propose that the manipulation of CK levels and their signaling pathways is important for plant abiotic stress and is, therefore, a potential strategy for meeting the increasing demand for global food production under changing climatic conditions.
Collapse
Affiliation(s)
- Lijun Li
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Qingfeng Zheng
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Wei Jiang
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Nayun Xiao
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Fanrong Zeng
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Guang Chen
- Central Laboratory, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China
| | - Michelle Mak
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Fenglin Deng
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
| |
Collapse
|
17
|
Dai W, Yu H, Liu K, Chengxu Y, Yan J, Zhang C, Xi N, Liu H, Xiangchen C, Zou C, Zhang M, Gao S, Pan G, Ma L, Shen Y. Combined linkage mapping and association analysis uncovers candidate genes for 25 leaf-related traits across three environments in maize. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:12. [PMID: 36662253 DOI: 10.1007/s00122-023-04285-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Combined linkage and association analysis revealed five co-localized genetic loci across multiple environments. The key gene Zm00001d026491 was further verified to influence leaf length by candidate gene association analysis. Leaf morphology and number determine the canopy structure and thus affect crop yield. Herein, the genetic basis and key genes for 25 leaf-related traits, including leaf lengths (LL), leaf widths (LW), and leaf areas (LA) of eight continuous leaves under the tassel, and the number of leaves above the primary ear (LAE), were dissected by using an association panel and a biparental population. Using an intermated B73 × Mo17 (IBM) Syn10 doubled haploid (DH) population, 290 quantitative trait loci (QTL) controlling these traits were detected across different locations, among which 115 QTL were individually repeatedly identified in at least two environments. Using the association panel, 165 unique significant single-nucleotide polymorphisms (SNPs) were associated with target traits (P < 2.15E-06), of which 35 were separately detected across multiple environments. In total, 42 pleiotropic QTL/SNPs (pQTL/SNPs) were responsible for at least two of the LL, LW, LA, and LAE traits across multiple environments. Combining the QTL mapping and association study, five unique SNPs were located within the confidence intervals of seven QTL, and 77 genes were identified based on the linkage disequilibrium regions of co-localized SNP loci. Gene-based association studies verified that the intragenic variants in the candidate gene Zm00001d026491 influenced LL of the third leaf counted from the top node. These findings will provide vital information to understanding the genetic basis of leaf-related traits and help to cultivate maize varieties with ideal plant architecture.
Collapse
Affiliation(s)
- Wei Dai
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hong Yu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Kai Liu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yujuan Chengxu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiaquan Yan
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chen Zhang
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Na Xi
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hao Liu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chaoyang Xiangchen
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chaoying Zou
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Minyan Zhang
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shibin Gao
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guangtang Pan
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Langlang Ma
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Yaou Shen
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
18
|
Navarro-Cartagena S, Micol JL. Is auxin enough? Cytokinins and margin patterning in simple leaves. TRENDS IN PLANT SCIENCE 2023; 28:54-73. [PMID: 36180378 DOI: 10.1016/j.tplants.2022.08.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 06/16/2023]
Abstract
The interplay between auxin and cytokinins affects facets of plant development as different as ovule formation and lateral root initiation. Moreover, cytokinins favor complexity in the development of Solanum lycopersicum and Cardamine hirsuta compound leaves. Nevertheless, no role has been proposed for cytokinins in patterning the margins of the simple leaves of Arabidopsis thaliana, a process that is assumed to be sufficiently explained by auxin localization. Here, we discuss evidence supporting the hypothesis that cytokinins play a role in simple leaf margin morphogenesis via crosstalk with auxin, as occurs in other plant developmental events. Indeed, mutant or transgenic arabidopsis plants defective in cytokinin biosynthesis or signaling, or with increased cytokinin degradation have leaf margins less serrated than the wild type.
Collapse
Affiliation(s)
- Sergio Navarro-Cartagena
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | - José Luis Micol
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain.
| |
Collapse
|
19
|
Draves MA, Muench RL, Lang MG, Kelley DR. Maize Seedling Growth and Hormone Response Assays Using the Rolled Towel Method. Curr Protoc 2022; 2:e562. [PMID: 36194012 PMCID: PMC11648833 DOI: 10.1002/cpz1.562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Root system architecture is a critical factor in maize health and stress resilience. Determining the genetic and environmental factors that shape maize root system architecture is an active research area. However, the ability to phenotype juvenile root systems is hindered by the use of field-grown and soil-based systems. An alternative to soil- and field-based growing conditions for maize seedlings is a controlled environment with a soil-free medium, which can facilitate root system phenotyping. Here, we describe how to grow maize under soil-free conditions for up to 12 days to facilitate root phenotyping. Maize seeds are sterilized and planted on specialized seed germination paper to minimize fungal contamination and ensure synchronized seedling growth, followed by imaging at the desired time point. The root images are then analyzed to quantify traits of interest, such as primary root length, lateral root density, seminal root length, and seminal root number. In addition, juvenile shoot traits can be quantified using manual annotation methods. We also outline the steps for performing rigorous hormone response assays for four classical phytohormones: auxin, brassinosteroid, cytokinin, and jasmonic acid. This protocol can be rapidly scaled up and is compatible with genetic screens and sample collection for downstream molecular analyses such as transcriptomics and proteomics. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Maize seedling rolled towel assay and phenotyping Basic Protocol 2: Maize seedling hormone response assays using the rolled towel assay.
Collapse
Affiliation(s)
- Melissa A. Draves
- Department of Genetics, Development, and Cell BiologyIowa State UniversityAmesIowa
| | - Rebekah L. Muench
- Department of Genetics, Development, and Cell BiologyIowa State UniversityAmesIowa
| | - Michelle G. Lang
- Current address: Corteva Agriscience8325 NW 62nd AveJohnstonIowa
| | - Dior R. Kelley
- Department of Genetics, Development, and Cell BiologyIowa State UniversityAmesIowa
| |
Collapse
|
20
|
Richardson AE, Hake S. The power of classic maize mutants: Driving forward our fundamental understanding of plants. THE PLANT CELL 2022; 34:2505-2517. [PMID: 35274692 PMCID: PMC9252469 DOI: 10.1093/plcell/koac081] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/08/2022] [Indexed: 05/12/2023]
Abstract
Since Mendel, maize has been a powerhouse of fundamental genetics research. From testing the Mendelian laws of inheritance, to the first genetic and cytogenetic maps, to the use of whole-genome sequencing data for crop improvement, maize is at the forefront of genetics advances. Underpinning much of this revolutionary work are the classic morphological mutants; the "freaks" that stood out in the field to even the untrained eye. Here we review some of these classic developmental mutants and their importance in the history of genetics, as well as their key role in our fundamental understanding of plant development.
Collapse
Affiliation(s)
- Annis E Richardson
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Sarah Hake
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| |
Collapse
|
21
|
Matthes MS, Darnell Z, Best NB, Guthrie K, Robil JM, Amstutz J, Durbak A, McSteen P. Defects in meristem maintenance, cell division, and cytokinin signaling are early responses in the boron deficient maize mutant tassel-less1. PHYSIOLOGIA PLANTARUM 2022; 174:e13670. [PMID: 35292977 DOI: 10.1111/ppl.13670] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/28/2022] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Meristems house the stem cells needed for the developmental plasticity observed in adverse environmental conditions and are crucial for determining plant architecture. Meristem development is particularly sensitive to deficiencies of the micronutrient boron, yet how boron integrates into meristem development pathways is unknown. We addressed this question using the boron-deficient maize mutant, tassel-less1 (tls1). Reduced boron uptake in tls1 leads to a progressive impairment of meristem development that manifests in vegetative and reproductive defects. We show, that the tls1 tassel phenotype (male reproductive structure) was partially suppressed by mutations in the CLAVATA1 (CLV1)-ortholog, thick tassel dwarf1 (td1), but not by other mutants in the well characterized CLV-WUSCHEL pathway, which controls meristem size. The suppression of tls1 by td1 correlates with altered signaling of the phytohormone cytokinin. In contrast, mutations in the meristem maintenance gene knotted1 (kn1) enhanced both vegetative and reproductive defects in tls1. In addition, reduced transcript levels of kn1 and cell cycle genes are early defects in tls1 tassel meristems. Our results show that specific meristem maintenance and hormone pathways are affected in tls1, and suggest that reduced boron levels induced by tls1 are the underlying cause of the observed defects. We, therefore, provide new insights into the molecular mechanisms affected by boron deficiency in maize, leading to a better understanding of how genetic and environmental factors integrate during shoot meristem development.
Collapse
Affiliation(s)
- Michaela S Matthes
- Division of Biological Sciences, Bond Life Sciences Center, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, Columbia, Missouri, USA
| | - Zoe Darnell
- Division of Biological Sciences, Bond Life Sciences Center, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, Columbia, Missouri, USA
| | - Norman B Best
- Division of Biological Sciences, Bond Life Sciences Center, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, Columbia, Missouri, USA
| | - Katy Guthrie
- Division of Biological Sciences, Bond Life Sciences Center, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, Columbia, Missouri, USA
| | - Janlo M Robil
- Division of Biological Sciences, Bond Life Sciences Center, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, Columbia, Missouri, USA
| | - Jen Amstutz
- Division of Biological Sciences, Bond Life Sciences Center, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, Columbia, Missouri, USA
| | - Amanda Durbak
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA
| | - Paula McSteen
- Division of Biological Sciences, Bond Life Sciences Center, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
22
|
Cao Y, Zhong Z, Wang H, Shen R. Leaf angle: a target of genetic improvement in cereal crops tailored for high-density planting. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:426-436. [PMID: 35075761 PMCID: PMC8882799 DOI: 10.1111/pbi.13780] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 05/12/2023]
Abstract
High-density planting is an effective measure for increasing crop yield per unit land area. Leaf angle (LA) is a key trait of plant architecture and a target for genetic improvement of crops. Upright leaves allow better light capture in canopy under high-density planting, thus enhancing photosynthesis efficiency, ventilation and stress resistance, and ultimately higher grain yield. Here, we summarized the latest progress on the cellular and molecular mechanisms regulating LA formation in rice and maize. We suggest several standing out questions for future studies and then propose some promising strategies to manipulate LA for breeding of cereal crops tailored for high-density planting.
Collapse
Affiliation(s)
- Yingying Cao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
| | - Zhuojun Zhong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
| | - Haiyang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| | - Rongxin Shen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
23
|
Cytokinin Perception in Ancient Plants beyond Angiospermae. Int J Mol Sci 2021; 22:ijms222313077. [PMID: 34884882 PMCID: PMC8657898 DOI: 10.3390/ijms222313077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/17/2022] Open
Abstract
Cytokinins (CKs) control many plant developmental processes and responses to environmental cues. Although the CK signaling is well understood, we are only beginning to decipher its evolution. Here, we investigated the CK perception apparatus in early-divergent plant species such as bryophyte Physcomitrium patens, lycophyte Selaginella moellendorffii, and gymnosperm Picea abies. Of the eight CHASE-domain containing histidine kinases (CHKs) examined, two CHKs, PpCHK3 and PpCHK4, did not bind CKs. All other CHK receptors showed high-affinity CK binding (KD of nM range), with a strong preference for isopentenyladenine over other CK nucleobases in the moss and for trans-zeatin over cis-zeatin in the gymnosperm. The pH dependences of CK binding for these six CHKs showed a wide range, which may indicate different subcellular localization of these receptors at either the plasma- or endoplasmic reticulum membrane. Thus, the properties of the whole CK perception apparatuses in early-divergent lineages were demonstrated. Data show that during land plant evolution there was a diversification of the ligand specificity of various CHKs, in particular, the rise in preference for trans-zeatin over cis-zeatin, which indicates a steadily increasing specialization of receptors to various CKs. Finally, this distinct preference of individual receptors to different CK versions culminated in vascular plants, especially angiosperms.
Collapse
|
24
|
Strable J, Nelissen H. The dynamics of maize leaf development: Patterned to grow while growing a pattern. CURRENT OPINION IN PLANT BIOLOGY 2021; 63:102038. [PMID: 33940553 DOI: 10.1016/j.pbi.2021.102038] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 05/12/2023]
Abstract
Leaves are a significant component of the shoot system in grasses, functioning in light capture and photosynthesis. Leaf width, length, and angle are expressions of development that collectively define canopy architecture. Thus, the distinctive morphology of grass leaves is an interdependent readout of developmental patterning and growth along the proximal-distal, medial-lateral, and adaxial-abaxial axes. Here, we review the chronology of patterning and growth, namely along the proximal-distal axis, during maize leaf development. We underscore that patterning and growth occur simultaneously, making use of shared developmental gradients and molecular pathways.
Collapse
Affiliation(s)
- Josh Strable
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA 27695.
| | - Hilde Nelissen
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052, Ghent, Belgium; VIB Center for Plant Systems Biology, 9052, Ghent, Belgium.
| |
Collapse
|
25
|
Auxin and Cytokinin Interplay during Leaf Morphogenesis and Phyllotaxy. PLANTS 2021; 10:plants10081732. [PMID: 34451776 PMCID: PMC8400353 DOI: 10.3390/plants10081732] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/24/2021] [Accepted: 07/29/2021] [Indexed: 12/03/2022]
Abstract
Auxins (IAA) and cytokinins (CKs) are the most influential phytohormones, having multifaceted roles in plants. They are key regulators of plant growth and developmental processes. Additionally, their interplay exerts tight control on plant development and differentiation. Although several reviews have been published detailing the auxin-cytokinin interplay in controlling root growth and differentiation, their roles in the shoot, particularly in leaf morphogenesis are largely unexplored. Recent reports have provided new insights on the roles of these two hormones and their interplay on leaf growth and development. In this review, we focus on the effect of auxins, CKs, and their interactions in regulating leaf morphogenesis. Additionally, the regulatory effects of the auxins and CKs interplay on the phyllotaxy of plants are discussed.
Collapse
|
26
|
Wu W, Du K, Kang X, Wei H. The diverse roles of cytokinins in regulating leaf development. HORTICULTURE RESEARCH 2021; 8:118. [PMID: 34059666 PMCID: PMC8167137 DOI: 10.1038/s41438-021-00558-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/11/2021] [Accepted: 03/22/2021] [Indexed: 05/24/2023]
Abstract
Leaves provide energy for plants, and consequently for animals, through photosynthesis. Despite their important functions, plant leaf developmental processes and their underlying mechanisms have not been well characterized. Here, we provide a holistic description of leaf developmental processes that is centered on cytokinins and their signaling functions. Cytokinins maintain the growth potential (pluripotency) of shoot apical meristems, which provide stem cells for the generation of leaf primordia during the initial stage of leaf formation; cytokinins and auxins, as well as their interaction, determine the phyllotaxis pattern. The activities of cytokinins in various regions of the leaf, especially at the margins, collectively determine the final leaf morphology (e.g., simple or compound). The area of a leaf is generally determined by the number and size of the cells in the leaf. Cytokinins promote cell division and increase cell expansion during the proliferation and expansion stages of leaf cell development, respectively. During leaf senescence, cytokinins reduce sugar accumulation, increase chlorophyll synthesis, and prolong the leaf photosynthetic period. We also briefly describe the roles of other hormones, including auxin and ethylene, during the whole leaf developmental process. In this study, we review the regulatory roles of cytokinins in various leaf developmental stages, with a focus on cytokinin metabolism and signal transduction processes, in order to shed light on the molecular mechanisms underlying leaf development.
Collapse
Affiliation(s)
- Wenqi Wu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, PR China
| | - Kang Du
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, PR China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China
- Key Laboratory for Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xiangyang Kang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, PR China.
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China.
- Key Laboratory for Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, USA.
| |
Collapse
|
27
|
Strable J. Developmental genetics of maize vegetative shoot architecture. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:19. [PMID: 37309417 PMCID: PMC10236122 DOI: 10.1007/s11032-021-01208-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/25/2021] [Indexed: 06/13/2023]
Abstract
More than 1.1 billion tonnes of maize grain were harvested across 197 million hectares in 2019 (FAOSTAT 2020). The vast global productivity of maize is largely driven by denser planting practices, higher yield potential per area of land, and increased yield potential per plant. Shoot architecture, the three-dimensional structural arrangement of the above-ground plant body, is critical to maize grain yield and biomass. Structure of the shoot is integral to all aspects of modern agronomic practices. Here, the developmental genetics of the maize vegetative shoot is reviewed. Plant architecture is ultimately determined by meristem activity, developmental patterning, and growth. The following topics are discussed: shoot apical meristem, leaf architecture, axillary meristem and shoot branching, and intercalary meristem and stem activity. Where possible, classical and current studies in maize developmental genetics, as well as recent advances leveraged by "-omics" analyses, are highlighted within these sections. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-021-01208-1.
Collapse
Affiliation(s)
- Josh Strable
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853 USA
- Present Address: Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695 USA
| |
Collapse
|
28
|
Chen Z, Gallavotti A. Improving architectural traits of maize inflorescences. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:21. [PMID: 37309422 PMCID: PMC10236070 DOI: 10.1007/s11032-021-01212-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/02/2021] [Indexed: 06/13/2023]
Abstract
The domestication and improvement of maize resulted in radical changes in shoot architecture relative to its wild progenitor teosinte. In particular, critical modifications involved a reduction of branching and an increase in inflorescence size to meet the needs for human consumption and modern agricultural practices. Maize is a major contributor to global agricultural production by providing large and inexpensive quantities of food, animal feed, and ethanol. Maize is also a classic system for studying the genetic regulation of inflorescence formation and its enlarged female inflorescences directly influence seed production and yield. Studies on the molecular and genetic networks regulating meristem proliferation and maintenance, including receptor-ligand interactions, transcription factor regulation, and hormonal control, provide important insights into maize inflorescence development and reveal potential avenues for the targeted modification of specific architectural traits. In this review, we summarize recent findings on the molecular mechanisms controlling inflorescence formation and discuss how this knowledge can be applied to improve maize productivity in the face of present and future environmental challenges.
Collapse
Affiliation(s)
- Zongliang Chen
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854-8020 USA
| | - Andrea Gallavotti
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854-8020 USA
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901 USA
| |
Collapse
|
29
|
An Y, Chen L, Tao L, Liu S, Wei C. QTL Mapping for Leaf Area of Tea Plants ( Camellia sinensis) Based on a High-Quality Genetic Map Constructed by Whole Genome Resequencing. FRONTIERS IN PLANT SCIENCE 2021; 12:705285. [PMID: 34394160 PMCID: PMC8358608 DOI: 10.3389/fpls.2021.705285] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/07/2021] [Indexed: 05/08/2023]
Abstract
High-quality genetic maps play important roles in QTL mapping and molecular marker-assisted breeding. Tea leaves are not only important vegetative organs but are also the organ for harvest with important economic value. However, the key genes and genetic mechanism of regulating leaf area have not been clarified. In this study, we performed whole-genome resequencing on "Jinxuan," "Yuncha 1" and their 96 F1 hybrid offspring. From the 1.84 Tb of original sequencing data, abundant genetic variation loci were identified, including 28,144,625 SNPs and 2,780,380 indels. By integrating the markers of a previously reported genetic map, a high-density genetic map consisting of 15 linkage groups including 8,956 high-quality SNPs was constructed. The total length of the genetic map is 1,490.81 cM, which shows good collinearity with the genome. A total of 25 representative markers (potential QTLs) related to leaf area were identified, and there were genes differentially expressed in large and small leaf samples near these markers. GWAS analysis further verified the reliability of QTL mapping. Thirty-one pairs of newly developed indel markers located near these potential QTLs showed high polymorphism and had good discrimination between large and small leaf tea plant samples. Our research will provide necessary support and new insights for tea plant genetic breeding, quantitative trait mapping and yield improvement.
Collapse
Affiliation(s)
- Yanlin An
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Linbo Chen
- Yunnan Provincial Key Laboratory of Tea Science, Tea Research Institute, Yunnan Academy of Agricultural Sciences, Menghai, China
| | - Lingling Tao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Shengrui Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Chaoling Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
- *Correspondence: Chaoling Wei,
| |
Collapse
|
30
|
Manuela D, Xu M. Patterning a Leaf by Establishing Polarities. FRONTIERS IN PLANT SCIENCE 2020; 11:568730. [PMID: 33193497 PMCID: PMC7661387 DOI: 10.3389/fpls.2020.568730] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/30/2020] [Indexed: 05/14/2023]
Abstract
Leaves are the major organ for photosynthesis in most land plants, and leaf structure is optimized for the maximum capture of sunlight and gas exchange. Three polarity axes, the adaxial-abaxial axis, the proximal-distal axis, and the medial-lateral axis are established during leaf development to give rise to a flattened lamina with a large area for photosynthesis and blades that are extended on petioles for maximum sunlight. Adaxial cells are elongated, tightly packed cells with many chloroplasts, and their fate is specified by HD-ZIP III and related factors. Abaxial cells are rounder and loosely packed cells and their fate is established and maintained by YABBY family and KANADI family proteins. The activities of adaxial and abaxial regulators are coordinated by ASYMMETRIC LEAVES2 and auxin. Establishment of the proximodistal axis involves the BTB/POZ domain proteins BLADE-ON-PETIOLE1 and 2, whereas homeobox genes PRESSED FLOWER and WUSCHEL-RELATED HOMEOBOX1 mediate leaf development along the mediolateral axis. This review summarizes recent advances in leaf polarity establishment with a focus on the regulatory networks involved.
Collapse
Affiliation(s)
| | - Mingli Xu
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
31
|
Strable J. Cytokinin Signaling Patterns Maize Leaves, Otherwise Things Get Hairy and Frayed. THE PLANT CELL 2020; 32:1348-1349. [PMID: 32205455 PMCID: PMC7203926 DOI: 10.1105/tpc.20.00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Affiliation(s)
- Josh Strable
- Plant Biology SectionSchool of Integrative Plant ScienceCornell University
| |
Collapse
|