1
|
Hong ZH, Zhu L, Gao LL, Zhu Z, Su T, Krall L, Wu XN, Bock R, Wu GZ. Chloroplast precursor protein preClpD overaccumulation triggers multilevel reprogramming of gene expression and a heat shock-like response. Nat Commun 2025; 16:3777. [PMID: 40263324 PMCID: PMC12015282 DOI: 10.1038/s41467-025-59043-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 04/07/2025] [Indexed: 04/24/2025] Open
Abstract
Thousands of nucleus-encoded chloroplast proteins are synthesized as precursors on cytosolic ribosomes and posttranslationally imported into chloroplasts. Cytosolic accumulation of unfolded chloroplast precursor proteins (e.g., under stress conditions) is hazardous to the cell. The global cellular responses and regulatory pathways involved in triggering appropriate responses are largely unknown. Here, by inducible and constitutive overexpression of ClpD-GFP to result in precursor protein overaccumulation, we present a comprehensive picture of multilevel reprogramming of gene expression in response to chloroplast precursor overaccumulation stress (cPOS), reveal a critical role of translational activation in the expression of cytosolic chaperones (heat-shock proteins, HSPs), and demonstrate that chloroplast-derived reactive oxygen species act as retrograde signal for the transcriptional activation of small HSPs. Furthermore, we reveal an important role of the chaperone ClpB1/HOT1 in maintaining cellular proteostasis upon cPOS. Together, our observations uncover a cytosolic heat shock-like response to cPOS and provide insights into the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Zheng-Hui Hong
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Liyu Zhu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Lin-Lin Gao
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhe Zhu
- School of Life Sciences, Yunnan University, Kunming, Yunnan Province, China
| | - Tong Su
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Leonard Krall
- School of Life Sciences, Yunnan University, Kunming, Yunnan Province, China
| | - Xu-Na Wu
- School of Life Sciences, Yunnan University, Kunming, Yunnan Province, China
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Guo-Zhang Wu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
2
|
Zhang H, Sun B, Latif MZ, Liu Y, Lv L, Wu T, Li Y, Yin Z, Lu C, Zhao H, Kong L, Ding X. Control of H 2S synthesis by the monomer-oligomer transition of OsCBSX3 for modulating rice growth-immunity balance. MOLECULAR PLANT 2025; 18:350-365. [PMID: 39815620 DOI: 10.1016/j.molp.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/27/2024] [Accepted: 01/10/2025] [Indexed: 01/18/2025]
Abstract
Hydrogen sulfide (H2S) is recognized as an important gaseous signaling molecule, similar to nitric oxide and carbon monoxide. However, less is known about the biosynthetic mechanism of H2S in plants and its role in plant-pathogen interactions. Here, we show that H2S induces the bursts of reactive oxygen species and upregulates the expression of defense-related genes in rice. However, excessive H2S concentrations inhibit rice growth. We found that the cystathionine β-synthase OsCBSX3 regulates rice growth and resistance to bacteria pathogens, Xanthomonas oryzae pv. oryzicola (Xoc) and X. oryzae pv. oryzae (Xoo), by modulating H2S biosynthesis. OsCBSX3 exists in both oligomeric and monomeric forms in rice. Compared with wild-type OsCBSX3, an oligomerization-disrupted mutant exhibits the reduced capacity for H2S synthesis, diminished resistance to X. oryzae, and inability to localize to the chloroplast. Upon pathogen infection, rice triggers PsbO-dependent oligomerization of OsCBSX3, leading to increased H2S production and enhanced defense responses. However, excessive concentrations of H2S reduce the oligomerized form of OsCBSX3, facilitating its dissociation from PsbO, an important subunit of photosystem II, and its binding to OsTrxZ, a member of the thioredoxin family. We further demonstrated that OsTrxZ can directly convert OsCBSX3 into monomers, thereby mitigating the excessive H2S synthesis and its negative effects on rice growth and development. Overexpression of PsbO enhances rice resistance to both Xoc and Xoo, whereas overexpression of OsTrxZ exerts the opposite effect. Taken together, these findings suggest that PsbO and OsTrxZ antagonistically modulate the interconversion between oligomeric and monomeric forms of OsCBSX3, thereby balancing rice resistance and developmental processes.
Collapse
Affiliation(s)
- Haimiao Zhang
- State Key Laboratory of Wheat Improvement, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Baolong Sun
- State Key Laboratory of Wheat Improvement, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Muhammad Zunair Latif
- State Key Laboratory of Wheat Improvement, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Yang Liu
- State Key Laboratory of Wheat Improvement, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Lei Lv
- State Key Laboratory of Wheat Improvement, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Tao Wu
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Yang Li
- State Key Laboratory of Wheat Improvement, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Ziyi Yin
- State Key Laboratory of Wheat Improvement, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Chongchong Lu
- State Key Laboratory of Wheat Improvement, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Haipeng Zhao
- State Key Laboratory of Wheat Improvement, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Lingguang Kong
- State Key Laboratory of Wheat Improvement, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Xinhua Ding
- State Key Laboratory of Wheat Improvement, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
3
|
Wang SJ, Zhai S, Xu XT, Lu YT, Yuan TT. Hydrogen peroxide participates in leaf senescence by inhibiting CHLI1 activity. PLANT CELL REPORTS 2024; 43:258. [PMID: 39384635 DOI: 10.1007/s00299-024-03350-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/01/2024] [Indexed: 10/11/2024]
Abstract
KEY MESSAGE Hydrogen peroxide promoted leaf senescence by sulfenylating the magnesium chelating protease I subunit (CHLI1) in the chlorophyll synthesis pathway, and inhibited its activity to reduce chlorophyll synthesis. Leaf senescence is the final and crucial stage of plant growth and development, during which chlorophyll experiences varying degrees of destruction. It is well-known that the higher ROS accumulation is a key factor for leaf senescence, but whether and how ROS regulates chlorophyll synthesis in the process are unknown. Here, we report that H2O2 inhibits chlorophyll synthesis during leaf senescence via the I subunit of magnesium-chelatase (CHLI1). During leaf senescence, the decrease of chlorophyll content is accompanied by the increase of H2O2 accumulation, as well as the inhibition of catalase (CAT) genes expression. The mutant cat2-1, with increased H2O2 shows an accelerated senescence phenotype and decreased CHLI1 activity compared with the wild type. H2O2 inhibits CHLI1 activity by sulfenylating CHLI1 during leaf senescence. Consistent with this, the chli1 knockout mutant displays the same premature leaf senescence symptom as cat2-1, while overexpression of CHLI1 in cat2-1 can partially restore its early senescence phenotype. Taken together, these results illustrate that CAT2-mediated H2O2 accumulation during leaf senescence represses chlorophyll synthesis through sulfenylating CHLI1, and thus inhibits its activity, providing a new insight into the pivotal role of chlorophyll synthesis as a participant in orchestrating the leaf senescence.
Collapse
Affiliation(s)
- Shi-Jia Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Shuang Zhai
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xin-Tong Xu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Ying-Tang Lu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Ting-Ting Yuan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
4
|
Ulfig A, Jakob U. Cellular oxidants and the proteostasis network: balance between activation and destruction. Trends Biochem Sci 2024; 49:761-774. [PMID: 39168791 PMCID: PMC11731897 DOI: 10.1016/j.tibs.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/27/2024] [Accepted: 07/09/2024] [Indexed: 08/23/2024]
Abstract
Loss of protein homeostasis (proteostasis) is a common hallmark of aging and age-associated diseases. Considered as the guardian of proteostasis, the proteostasis network (PN) acts to preserve the functionality of proteins during their lifetime. However, its activity declines with age, leading to disease manifestation. While reactive oxygen species (ROS) were traditionally considered culprits in this process, recent research challenges this view. While harmful at high concentrations, moderate ROS levels protect the cell against age-mediated onset of proteotoxicity by activating molecular chaperones, stress response pathways, and autophagy. This review explores the nuanced roles of ROS in proteostasis and discusses the most recent findings regarding the redox regulation of the PN and its potential in extending healthspan and delaying age-related pathologies.
Collapse
Affiliation(s)
- Agnes Ulfig
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Ursula Jakob
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA; Biological Chemistry Department, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
5
|
Duong HN, Ansaf H, Cornish P, Mendoza-Cozatl D, Schenck C, Angelovici R. Rapid and Robust Polysome Isolation and Fraction RNA Extraction for Studying the Seed Translatome. Curr Protoc 2024; 4:e70007. [PMID: 39240231 DOI: 10.1002/cpz1.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Translation of mRNA into functional proteins is a fundamental process underlying many aspects of plant growth and development. Yet, the role of translational regulation in plants across diverse tissue types, including seeds, is not well known due to the lack of methods targeting these processes. Studying the seed translatome could unveil seed-specific regulatory mechanisms, offering valuable insights for breeding efforts to enhance seed traits. Polysome profiling is a widely used technique for studying mRNAs being translated. However, the traditional method is time-consuming and has a low polysome recovery rate; therefore, it requires substantial starting material. This is particularly challenging for species or mutants with limited seed quantities. Additionally, seed polysome fractions often yield low quality RNA due to the abundance of various compounds that interfere with conventional RNA extraction protocols. Here we present a robust polysome extraction method incorporating a size-exclusion step for polysome concentration streamlined with a rapid RNA extraction method optimized for seeds. This protocol works across multiple plant species and offers increased speed and robustness, requiring less than half the amount of seed tissue and time compared to conventional methods while ensuring high polysome recovery and yield of high-quality RNA for downstream experiments. These features make this protocol an ideal tool for studying seed translation efficiency and hold broad applicability across various plant species and tissues. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Robust polysome extraction for seeds Basic Protocol 2: Rapid fraction total RNA extraction.
Collapse
Affiliation(s)
- Ha Ngoc Duong
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S Bond Life Sciences Center, University of Missouri, Columbia, Missouri
- Department of Biochemistry, Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri
| | - Huda Ansaf
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S Bond Life Sciences Center, University of Missouri, Columbia, Missouri
| | - Peter Cornish
- Department of Biochemistry, Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri
| | - David Mendoza-Cozatl
- Division of Plant Science and Technology, Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri
| | - Craig Schenck
- Department of Biochemistry, Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri
| | - Ruthie Angelovici
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S Bond Life Sciences Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
6
|
Wu HYL, Jen J, Hsu PY. What, where, and how: Regulation of translation and the translational landscape in plants. THE PLANT CELL 2024; 36:1540-1564. [PMID: 37437121 PMCID: PMC11062462 DOI: 10.1093/plcell/koad197] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/14/2023]
Abstract
Translation is a crucial step in gene expression and plays a vital role in regulating various aspects of plant development and environmental responses. It is a dynamic and complex program that involves interactions between mRNAs, transfer RNAs, and the ribosome machinery through both cis- and trans-regulation while integrating internal and external signals. Translational control can act in a global (transcriptome-wide) or mRNA-specific manner. Recent advances in genome-wide techniques, particularly ribosome profiling and proteomics, have led to numerous exciting discoveries in both global and mRNA-specific translation. In this review, we aim to provide a "primer" that introduces readers to this fascinating yet complex cellular process and provide a big picture of how essential components connect within the network. We begin with an overview of mRNA translation, followed by a discussion of the experimental approaches and recent findings in the field, focusing on unannotated translation events and translational control through cis-regulatory elements on mRNAs and trans-acting factors, as well as signaling networks through 3 conserved translational regulators TOR, SnRK1, and GCN2. Finally, we briefly touch on the spatial regulation of mRNAs in translational control. Here, we focus on cytosolic mRNAs; translation in organelles and viruses is not covered in this review.
Collapse
Affiliation(s)
- Hsin-Yen Larry Wu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Joey Jen
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Polly Yingshan Hsu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
7
|
Chang HH, Huang LC, Browning KS, Huq E, Cheng MC. The phosphorylation of carboxyl-terminal eIF2α by SPA kinases contributes to enhanced translation efficiency during photomorphogenesis. Nat Commun 2024; 15:3467. [PMID: 38658612 PMCID: PMC11043401 DOI: 10.1038/s41467-024-47848-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 04/11/2024] [Indexed: 04/26/2024] Open
Abstract
Light triggers an enhancement of global translation during photomorphogenesis in Arabidopsis, but little is known about the underlying mechanisms. The phosphorylation of the α-subunit of eukaryotic initiation factor 2 (eIF2α) at a conserved serine residue in the N-terminus has been shown as an important mechanism for the regulation of protein synthesis in mammalian and yeast cells. However, whether the phosphorylation of this residue in plant eIF2α plays a role in regulation of translation remains elusive. Here, we show that the quadruple mutant of SUPPRESSOR OF PHYA-105 family members (SPA1-SPA4) display repressed translation efficiency after light illumination. Moreover, SPA1 directly phosphorylates the eIF2α C-terminus under light conditions. The C-term-phosphorylated eIF2α promotes translation efficiency and photomorphogenesis, whereas the C-term-unphosphorylated eIF2α results in a decreased translation efficiency. We also demonstrate that the phosphorylated eIF2α enhances ternary complex assembly by promoting its affinity to eIF2β and eIF2γ. This study reveals a unique mechanism by which light promotes translation via SPA1-mediated phosphorylation of the C-terminus of eIF2α in plants.
Collapse
Affiliation(s)
- Hui-Hsien Chang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Lin-Chen Huang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Karen S Browning
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
| | - Enamul Huq
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
| | - Mei-Chun Cheng
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
8
|
Wegener M, Persicke M, Dietz KJ. Reprogramming the translatome during daily light transitions as affected by cytosolic glyceraldehyde-3-phosphate dehydrogenases GAPC1/C2. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2494-2509. [PMID: 38156667 DOI: 10.1093/jxb/erad509] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Dark-light and light-dark transitions during the day are switching points of leaf metabolism that strongly affect the regulatory state of the cells, and this change is hypothesized to affect the translatome. The cytosolic glyceraldehyde-3-phosphate dehydrogenases GAPC1 and GAPC2 function in glycolysis, and carbohydrate and energy metabolism, but GAPC1/C2 also shows moonlighting functions in gene expression and post-transcriptional regulation. In this study we examined the rapid reprogramming of the translatome that occurs within 10 min at the end of the night and the end of the day in wild-type (WT) Arabidopsis and a gapc1/c2 double-knockdown mutant. Metabolite profiling compared to the WT showed that gapc1/c2 knockdown led to increases in a set of metabolites at the start of day, particularly intermediates of the citric acid cycle and linked pathways. Differences in metabolite changes were also detected at the end of the day. Only small sets of transcripts changed in the total RNA pool; however, RNA-sequencing revealed major alterations in polysome-associated transcripts at the light-transition points. The most pronounced difference between the WT and gapc1/c2 was seen in the reorganization of the translatome at the start of the night. Our results are in line with the proposed hypothesis that GAPC1/C2 play a role in the control of the translatome during light/dark transitions.
Collapse
Affiliation(s)
- Melanie Wegener
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Universitätsstr.25, D-33615, Bielefeld, Germany
| | - Marcus Persicke
- Center for Biotechnology-CeBiTec, Bielefeld University, Universitätsstr. 27, D-33615 Bielefeld, Germany
| | - Karl-Josef Dietz
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Universitätsstr.25, D-33615, Bielefeld, Germany
- Center for Biotechnology-CeBiTec, Bielefeld University, Universitätsstr. 27, D-33615 Bielefeld, Germany
| |
Collapse
|
9
|
Yuan S, Zhou G, Xu G. Translation machinery: the basis of translational control. J Genet Genomics 2024; 51:367-378. [PMID: 37536497 DOI: 10.1016/j.jgg.2023.07.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/23/2023] [Accepted: 07/23/2023] [Indexed: 08/05/2023]
Abstract
Messenger RNA (mRNA) translation consists of initiation, elongation, termination, and ribosome recycling, carried out by the translation machinery, primarily including tRNAs, ribosomes, and translation factors (TrFs). Translational regulators transduce signals of growth and development, as well as biotic and abiotic stresses, to the translation machinery, where global or selective translational control occurs to modulate mRNA translation efficiency (TrE). As the basis of translational control, the translation machinery directly determines the quality and quantity of newly synthesized peptides and, ultimately, the cellular adaption. Thus, regulating the availability of diverse machinery components is reviewed as the central strategy of translational control. We provide classical signaling pathways (e.g., integrated stress responses) and cellular behaviors (e.g., liquid-liquid phase separation) to exemplify this strategy within different physiological contexts, particularly during host-microbe interactions. With new technologies developed, further understanding this strategy will speed up translational medicine and translational agriculture.
Collapse
Affiliation(s)
- Shu Yuan
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Guilong Zhou
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Guoyong Xu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China.
| |
Collapse
|
10
|
Dziubek D, Poeker L, Siemitkowska B, Graf A, Marino G, Alseekh S, Arrivault S, Fernie AR, Armbruster U, Geigenberger P. NTRC and thioredoxins m1/m2 underpin the light acclimation of plants on proteome and metabolome levels. PLANT PHYSIOLOGY 2024; 194:982-1005. [PMID: 37804523 PMCID: PMC10828201 DOI: 10.1093/plphys/kiad535] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/09/2023]
Abstract
During photosynthesis, plants must manage strong fluctuations in light availability on different time scales, leading to long-term acclimation and short-term responses. However, little is known about the regulation and coordination of these processes and the modulators involved. In this study, we used proteomics, metabolomics, and reverse genetics to investigate how different light environmental factors, such as intensity or variability, affect long-term and short-term acclimation responses of Arabidopsis (Arabidopsis thaliana) and the importance of the chloroplast redox network in their regulation. In the wild type, high light, but not fluctuating light, led to large quantitative changes in the proteome and metabolome, accompanied by increased photosynthetic dynamics and plant growth. This finding supports light intensity as a stronger driver for acclimation than variability. Deficiencies in NADPH-thioredoxin reductase C (NTRC) or thioredoxins m1/m2, but not thioredoxin f1, almost completely suppressed the re-engineering of the proteome and metabolome, with both the induction of proteins involved in stress and redox responses and the repression of those involved in cytosolic and plastid protein synthesis and translation being strongly attenuated. Moreover, the correlations of protein or metabolite levels with light intensity were severely disturbed, suggesting a general defect in the light-dependent acclimation response, resulting in impaired photosynthetic dynamics. These results indicate a previously unknown role of NTRC and thioredoxins m1/m2 in modulating light acclimation at proteome and metabolome levels to control dynamic light responses. NTRC, but not thioredoxins m1/m2 or f1, also improves short-term photosynthetic responses by balancing the Calvin-Benson cycle in fluctuating light.
Collapse
Affiliation(s)
- Dejan Dziubek
- Fakultät für Biologie, Ludwig-Maximilians-Universität München, Grosshaderner Str. 2-4, 82152 Martinsried, Germany
| | - Louis Poeker
- Fakultät für Biologie, Ludwig-Maximilians-Universität München, Grosshaderner Str. 2-4, 82152 Martinsried, Germany
| | - Beata Siemitkowska
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Alexander Graf
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Giada Marino
- Fakultät für Biologie, Ludwig-Maximilians-Universität München, Grosshaderner Str. 2-4, 82152 Martinsried, Germany
| | - Saleh Alseekh
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Departments of Metabolomics and Crop Quantitative Genetics, Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgari
| | - Stéphanie Arrivault
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Departments of Metabolomics and Crop Quantitative Genetics, Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgari
| | - Ute Armbruster
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Institute of Molecular Photosynthesis, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
- CEPLAS—Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Peter Geigenberger
- Fakultät für Biologie, Ludwig-Maximilians-Universität München, Grosshaderner Str. 2-4, 82152 Martinsried, Germany
| |
Collapse
|
11
|
Dasgupta A, Urquidi Camacho RA, Enganti R, Cho SK, Tucker LL, Torreverde JS, Abraham PE, von Arnim AG. A phosphorylation-deficient ribosomal protein eS6 is largely functional in Arabidopsis thaliana, rescuing mutant defects from global translation and gene expression to photosynthesis and growth. PLANT DIRECT 2024; 8:e566. [PMID: 38250458 PMCID: PMC10799217 DOI: 10.1002/pld3.566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/04/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024]
Abstract
The eukaryote-specific ribosomal protein of the small subunit eS6 is phosphorylated through the target of rapamycin (TOR) kinase pathway. Although this phosphorylation event responds dynamically to environmental conditions and has been studied for over 50 years, its biochemical and physiological significance remains controversial and poorly understood. Here, we report data from Arabidopsis thaliana, which indicate that plants expressing only a phospho-deficient isoform of eS6 grow essentially normally under laboratory conditions. The eS6z (RPS6A) paralog of eS6 functionally rescued a double mutant in both rps6a and rps6b genes when expressed at approximately twice the wild-type dosage. A mutant isoform of eS6z lacking the major six phosphorylatable serine and threonine residues in its carboxyl-terminal tail also rescued the lethality, rosette growth, and polyribosome loading of the double mutant. This isoform also complemented many mutant phenotypes of rps6 that were newly characterized here, including photosynthetic efficiency, and most of the gene expression defects that were measured by transcriptomics and proteomics. However, compared with plants rescued with a phospho-enabled version of eS6z, the phospho-deficient seedlings retained a mild pointed-leaf phenotype, root growth was reduced, and certain cell cycle-related mRNAs and ribosome biogenesis proteins were misexpressed. The residual defects of the phospho-deficient seedlings could be understood as an incomplete rescue of the rps6 mutant defects. There was little or no evidence for gain-of-function defects. As previously published, the phospho-deficient eS6z also rescued the rps6a and rps6b single mutants; however, phosphorylation of the eS6y (RPS6B) paralog remained lower than predicted, further underscoring that plants can tolerate phospho-deficiency of eS6 well. Our data also yield new insights into how plants cope with mutations in essential, duplicated ribosomal protein isoforms.
Collapse
Affiliation(s)
- Anwesha Dasgupta
- Department of Biochemistry & Cellular and Molecular BiologyThe University of TennesseeKnoxvilleTennesseeUSA
| | | | - Ramya Enganti
- Department of Biochemistry & Cellular and Molecular BiologyThe University of TennesseeKnoxvilleTennesseeUSA
| | - Sung Ki Cho
- Department of Biochemistry & Cellular and Molecular BiologyThe University of TennesseeKnoxvilleTennesseeUSA
| | - Lindsey L. Tucker
- Department of Biochemistry & Cellular and Molecular BiologyThe University of TennesseeKnoxvilleTennesseeUSA
| | - John S. Torreverde
- Department of Biochemistry & Cellular and Molecular BiologyThe University of TennesseeKnoxvilleTennesseeUSA
| | - Paul E. Abraham
- Graduate School of Genome Science and TechnologyThe University of TennesseeKnoxvilleTennesseeUSA
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTennesseeUSA
| | - Albrecht G. von Arnim
- Department of Biochemistry & Cellular and Molecular BiologyThe University of TennesseeKnoxvilleTennesseeUSA
- Graduate School of Genome Science and TechnologyThe University of TennesseeKnoxvilleTennesseeUSA
| |
Collapse
|
12
|
Yang M, Teng Y, Yue T, Wang Z, Feng G, Ruan J, Yan S, Zheng Y, Zhang L, Chen Q, Meng F. The Overexpression of Peanut ( Arachis hypogaea L.) AhALDH2B6 in Soybean Enhances Cold Resistance. PLANTS (BASEL, SWITZERLAND) 2023; 12:2928. [PMID: 37631140 PMCID: PMC10459444 DOI: 10.3390/plants12162928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023]
Abstract
Soybeans are the main source of oils and protein for humans and animals; however, cold stress jeopardizes their growth and limits the soybean planting area. Aldehyde dehydrogenases (ALDH) are conserved enzymes that catalyze aldehyde oxidation for detoxification in response to stress. Additionally, transgenic breeding is an efficient method for producing stress-resistant germplasms. In this study, the peanut ALDH gene AhALDH2B6 was heterologously expressed in soybean, and its function was tested. We performed RNA-seq using transgenic and wild-type soybeans with and without cold treatment to investigate the potential mechanism. Transgenic soybeans developed stronger cold tolerance, with longer roots and taller stems than P3 soybeans. Biochemically, the transgenic soybeans exhibited a decrease in malondialdehyde activity and an increase in peroxidase and catalase content, both of which are indicative of stress alleviation. They also possessed higher levels of ALDH enzyme activity. Two phenylpropanoid-related pathways were specifically enriched in up-regulated differentially expressed genes (DEGs), including the phenylpropanoid metabolic process and phenylpropanoid biosynthetic process. Our findings suggest that AhALDH2B6 specifically up-regulates genes involved in oxidoreductase-related functions such as peroxidase, oxidoreductase, monooxygenase, and antioxidant activity, which is partially consistent with our biochemical data. These findings established the function of AhALDH2B6, especially its role in cold stress processes, and provided a foundation for molecular plant breeding, especially plant-stress-resistance breeding.
Collapse
Affiliation(s)
- Mingyu Yang
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (M.Y.); (Y.T.); (T.Y.); (Z.W.); (G.F.); (J.R.); (S.Y.)
- Northeast Institute of Geography, Agroecology Chinese Academy of Sciences, Harbin 150081, China
| | - Yuhan Teng
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (M.Y.); (Y.T.); (T.Y.); (Z.W.); (G.F.); (J.R.); (S.Y.)
- Northeast Institute of Geography, Agroecology Chinese Academy of Sciences, Harbin 150081, China
| | - Tong Yue
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (M.Y.); (Y.T.); (T.Y.); (Z.W.); (G.F.); (J.R.); (S.Y.)
- Northeast Institute of Geography, Agroecology Chinese Academy of Sciences, Harbin 150081, China
| | - Ziye Wang
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (M.Y.); (Y.T.); (T.Y.); (Z.W.); (G.F.); (J.R.); (S.Y.)
| | - Guanghui Feng
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (M.Y.); (Y.T.); (T.Y.); (Z.W.); (G.F.); (J.R.); (S.Y.)
| | - Jingwen Ruan
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (M.Y.); (Y.T.); (T.Y.); (Z.W.); (G.F.); (J.R.); (S.Y.)
| | - Shi Yan
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (M.Y.); (Y.T.); (T.Y.); (Z.W.); (G.F.); (J.R.); (S.Y.)
| | - Yuhong Zheng
- Jilin Academy of Agricultural Sciences, Changchun 130033, China;
| | - Ling Zhang
- Jilin Academy of Agricultural Sciences, Changchun 130033, China;
| | - Qingshan Chen
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (M.Y.); (Y.T.); (T.Y.); (Z.W.); (G.F.); (J.R.); (S.Y.)
| | - Fanli Meng
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (M.Y.); (Y.T.); (T.Y.); (Z.W.); (G.F.); (J.R.); (S.Y.)
- Northeast Institute of Geography, Agroecology Chinese Academy of Sciences, Harbin 150081, China
| |
Collapse
|
13
|
Wang H, Li N, Li H, Zhang S, Zhang X, Yan X, Wang Z, Yang Y, Zhang S. Overexpression of NtGCN2 improves drought tolerance in tobacco by regulating proline accumulation, ROS scavenging ability, and stomatal closure. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 198:107665. [PMID: 37018865 DOI: 10.1016/j.plaphy.2023.107665] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/18/2023] [Accepted: 03/23/2023] [Indexed: 05/07/2023]
Abstract
Drought stress is a severe threat to plants. Genes that respond to drought stress are essential for plant growth and development. General control nonderepressible 2 (GCN2) encodes a protein kinase that responds to various biotic and abiotic stresses. However, the mechanism of GCN2 in plant drought tolerance remains unclear. In the present study, the promoters of NtGCN2 from Nicotiana tabacum K326, which contained a drought-responsive Cis-acting element MYB that can be activated by drought stress, were cloned. Furthermore, the drought tolerance function of NtGCN2 was investigated using NtGCN2-overexpressed transgenic tobacco plants. NtGCN2-overexpressed transgenic plants were more tolerant to drought stress than wild-type (WT) plants. The transgenic tobacco plants exhibited higher proline and abscisic acid (ABA) contents, antioxidant enzyme activities, leaf relative water content, and expression levels of genes encoding key antioxidant enzymes and proline synthase, but lower levels of malondialdehyde and reactive oxygen species, and reduced stomatal apertures, stomatal densities, and stomatal opening rates compared to WT plants under drought stress. These results indicated that overexpression of NtGCN2 conferred drought tolerance in transgenic tobacco plants. RNA-seq analysis showed that overexpression of NtGCN2 responded to drought stress by regulating the expression of genes related to proline synthesis and catabolism, abscisic acid synthesis and catabolism, antioxidant enzymes, and ion channels in guard cells. These results showed that NtGCN2 might regulate drought tolerance by regulating proline accumulation, reactive oxygen species (ROS) scavenging, and stomatal closure in tobacco and may have the potential for application in the genetic modification of crop drought tolerance.
Collapse
Affiliation(s)
- Hao Wang
- National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Ning Li
- National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Hang Li
- National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Songjie Zhang
- National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Xiaoquan Zhang
- National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Xiaoxiao Yan
- National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Zhaojun Wang
- National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Yongxia Yang
- National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Songtao Zhang
- National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, Henan, China.
| |
Collapse
|
14
|
Bascom C. From the archives: oxylipins, trojan horses, and light-dependent mRNA stabilization. THE PLANT CELL 2023; 35:955-957. [PMID: 36529484 PMCID: PMC10015155 DOI: 10.1093/plcell/koac365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Affiliation(s)
- Carlisle Bascom
- The Plant Cell, American Society of Plant Biologists, USA
- Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
15
|
Zhou Y, Niu R, Tang Z, Mou R, Wang Z, Zhu S, Yang H, Ding P, Xu G. Plant HEM1 specifies a condensation domain to control immune gene translation. NATURE PLANTS 2023; 9:289-301. [PMID: 36797349 DOI: 10.1038/s41477-023-01355-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Translational reprogramming is a fundamental layer of immune regulation, but how such a global regulatory mechanism operates remains largely unknown. Here we perform a genetic screen and identify Arabidopsis HEM1 as a global translational regulator of plant immunity. The loss of HEM1 causes exaggerated cell death to restrict bacterial growth during effector-triggered immunity (ETI). By improving ribosome footprinting, we reveal that the hem1 mutant increases the translation efficiency of pro-death immune genes. We show that HEM1 contains a plant-specific low-complexity domain (LCD) absent from animal homologues. This LCD endows HEM1 with the capability of phase separation in vitro and in vivo. During ETI, HEM1 interacts and condensates with the translation machinery; this activity is promoted by the LCD. CRISPR removal of this LCD causes more ETI cell death. Our results suggest that HEM1 condensation constitutes a brake mechanism of immune activation by controlling the tissue health and disease resistance trade-off during ETI.
Collapse
Affiliation(s)
- Yulu Zhou
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, China
| | - Ruixia Niu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, China
| | - Zhijuan Tang
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, China
| | - Rui Mou
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, China
| | - Zhao Wang
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, China
| | - Sitao Zhu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, China
| | - Hongchun Yang
- School of Life Sciences, Wuhan University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Pingtao Ding
- Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
| | - Guoyong Xu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, China.
- Hubei Hongshan Laboratory, Wuhan, China.
| |
Collapse
|
16
|
Hiragori Y, Takahashi H, Karino T, Kaido A, Hayashi N, Sasaki S, Nakao K, Motomura T, Yamashita Y, Naito S, Onouchi H. Genome-wide identification of Arabidopsis non-AUG-initiated upstream ORFs with evolutionarily conserved regulatory sequences that control protein expression levels. PLANT MOLECULAR BIOLOGY 2023; 111:37-55. [PMID: 36044152 DOI: 10.1007/s11103-022-01309-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
This study identified four novel regulatory non-AUG-initiated upstream ORFs (uORFs) with evolutionarily conserved sequences in Arabidopsis and elucidated the mechanism by which a non-AUG-initiated uORF promotes main ORF translation. Upstream open reading frames (uORFs) are short ORFs found in the 5'-untranslated regions (5'-UTRs) of eukaryotic transcripts and can influence the translation of protein-coding main ORFs (mORFs). Recent genome-wide ribosome profiling studies have revealed that hundreds or thousands of uORFs initiate translation at non-AUG start codons. However, the physiological significance of these non-AUG uORFs has so far been demonstrated for only a few of them. In this study, to identify physiologically important regulatory non-AUG uORFs in Arabidopsis, we took an approach that combined bioinformatics and experimental analysis. Since physiologically important non-AUG uORFs are likely to be conserved across species, we first searched the Arabidopsis genome for non-AUG-initiated uORFs with evolutionarily conserved sequences. Then, we examined the effects of the conserved non-AUG uORFs on the expression of the downstream mORFs using transient expression assays. As a result, three inhibitory and one promotive non-AUG uORFs were identified. Among the inhibitory non-AUG uORFs, two exerted repressive effects on mORF expression in an amino acid sequence-dependent manner. These two non-AUG uORFs are likely to encode regulatory peptides that cause ribosome stalling, thereby enhancing their repressive effects. In contrast, one of the identified regulatory non-AUG uORFs promoted mORF expression by alleviating the inhibitory effect of a downstream AUG-initiated uORF. These findings provide insights into the mechanisms that enable non-AUG uORFs to play regulatory roles despite their low translation initiation efficiencies.
Collapse
Affiliation(s)
- Yuta Hiragori
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Hiro Takahashi
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
- Graduate School of Horticulture, Chiba University, Matsudo, 271-8510, Japan
| | - Taihei Karino
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Atsushi Kaido
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Noriya Hayashi
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Shun Sasaki
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Kodai Nakao
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Taichiro Motomura
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Yui Yamashita
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Satoshi Naito
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Hitoshi Onouchi
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan.
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan.
| |
Collapse
|
17
|
Lokdarshi A, von Arnim AG, Akuoko TK. Modulation of GCN2 activity under excess light stress by osmoprotectants and amino acids. PLANT SIGNALING & BEHAVIOR 2022; 17:2115747. [PMID: 36093942 PMCID: PMC9481134 DOI: 10.1080/15592324.2022.2115747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
The protein kinase GCN2 (General Control Nonderepressible2) and its phosphorylation target, the eukaryotic translation initiation factor (eIF)2α represent the core module of the plant's integrated stress response, a signaling pathway widely conserved in eukaryotes that can rapidly regulate translation in response to stressful conditions. Recent findings indicate that the Arabidopsis thaliana GCN2 protein operates under the command of reactive oxygen species (ROS) emanating from the chloroplast under a variety of abiotic stresses such as excess light. To get deeper insights into the mechanism of GCN2 activation under excess light, we assessed the role of amino acids in view of the classic function of GCN2 as a sensor of amino acid status. Additionally, given that osmoprotectants can counteract ROS-related stresses, we tested their ability to mitigate GCN2 activity. Our results demonstrate that certain amino acids and osmoprotectants attenuate eIF2α-phosphorylation under excess light stress to some degree. Future investigations into the biochemical mechanisms of these natural compounds on GCN2 signaling activity will provide better insights into the GCN2-eIF2α regulation.
Collapse
Affiliation(s)
- Ansul Lokdarshi
- Department of Biology, Valdosta State University, Valdosta, GA, USA
| | - Albrecht G von Arnim
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA
- UT-ORNL Graduate School of Genome Science and Technology, the University of Tennessee, Knoxville, TN, USA
| | - Teressa K Akuoko
- Department of Biology, Valdosta State University, Valdosta, GA, USA
| |
Collapse
|
18
|
Lee HY, Hwang OJ, Back K. Phytomelatonin as a signaling molecule for protein quality control via chaperone, autophagy, and ubiquitin-proteasome systems in plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5863-5873. [PMID: 35246975 DOI: 10.1093/jxb/erac002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Physiological effects mediated by melatonin are attributable to its potent antioxidant activity as well as its role as a signaling molecule in inducing a vast array of melatonin-mediated genes. Here, we propose melatonin as a signaling molecule essential for protein quality control (PQC) in plants. PQC occurs by the coordinated activities of three systems: the chaperone network, autophagy, and the ubiquitin-proteasome system. With regard to the melatonin-mediated chaperone pathway, melatonin increases thermotolerance by induction of heat shock proteins and confers endoplasmic reticulum stress tolerance by increasing endoplasmic reticulum chaperone proteins. In chloroplasts, melatonin-induced chaperones, including Clps and CpHSP70s, play key roles in the PQC of chloroplast-localized proteins, such as Lhcb1, Lhcb4, and RBCL, during growth. Melatonin regulates PQC by autophagy processes, in which melatonin induces many autophagy (ATG) genes and autophagosome formation under stress conditions. Finally, melatonin-mediated plant stress tolerance is associated with up-regulation of stress-induced transcription factors, which are regulated by the ubiquitin-proteasome system. In this review, we propose that melatonin plays a pivotal role in PQC and consequently functions as a pleiotropic molecule under non-stress and adverse conditions in plants.
Collapse
Affiliation(s)
- Hyoung Yool Lee
- Department of Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, South Korea
| | - Ok Jin Hwang
- Department of Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, South Korea
| | - Kyoungwhan Back
- Department of Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, South Korea
| |
Collapse
|
19
|
Shi W, Wang L, Yao L, Hao W, Han C, Fan M, Wang W, Bai MY. Spatially patterned hydrogen peroxide orchestrates stomatal development in Arabidopsis. Nat Commun 2022; 13:5040. [PMID: 36028510 PMCID: PMC9418256 DOI: 10.1038/s41467-022-32770-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 08/16/2022] [Indexed: 11/14/2022] Open
Abstract
Stomatal pores allow gas exchange between plant and atmosphere. Stomatal development is regulated by multiple intrinsic developmental and environmental signals. Here, we show that spatially patterned hydrogen peroxide (H2O2) plays an essential role in stomatal development. H2O2 is remarkably enriched in meristemoids, which is established by spatial expression patterns of H2O2-scavenging enzyme CAT2 and APX1. SPEECHLESS (SPCH), a master regulator of stomatal development, directly binds to the promoters of CAT2 and APX1 to repress their expression in meristemoid cells. Mutations in CAT2 or APX1 result in an increased stomatal index. Ectopic expression of CAT2 driven by SPCH promoter significantly inhibits the stomatal development. Furthermore, H2O2 activates the energy sensor SnRK1 by inducing the nuclear localization of the catalytic α-subunit KIN10, which stabilizes SPCH to promote stomatal development. Overall, these results demonstrate that the spatial pattern of H2O2 in epidermal leaves is critical for the optimal stomatal development in Arabidopsis. Stomatal development is regulated by multiple intrinsic developmental and environmental signals. Here, the authors show that spatially patterned hydrogen peroxide activates the energy sensor SnRK1 to stabilize the SPCH transcription factor and optimize stomatal development in Arabidopsis.
Collapse
Affiliation(s)
- Wen Shi
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Lingyan Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Lianmei Yao
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Wei Hao
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Chao Han
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Min Fan
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Wenfei Wang
- College of Horticulture, College of Life Sciences, Hai xia Institute of Science and Technology, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Ming-Yi Bai
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
20
|
Engineering micro oxygen factories to slow tumour progression via hyperoxic microenvironments. Nat Commun 2022; 13:4495. [PMID: 35918337 PMCID: PMC9345862 DOI: 10.1038/s41467-022-32066-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/18/2022] [Indexed: 12/11/2022] Open
Abstract
While hypoxia promotes carcinogenesis, tumour aggressiveness, metastasis, and resistance to oncological treatments, the impacts of hyperoxia on tumours are rarely explored because providing a long-lasting oxygen supply in vivo is a major challenge. Herein, we construct micro oxygen factories, namely, photosynthesis microcapsules (PMCs), by encapsulation of acquired cyanobacteria and upconversion nanoparticles in alginate microcapsules. This system enables a long-lasting oxygen supply through the conversion of external radiation into red-wavelength emissions for photosynthesis in cyanobacteria. PMC treatment suppresses the NF-kB pathway, HIF-1α production and cancer cell proliferation. Hyperoxic microenvironment created by an in vivo PMC implant inhibits hepatocarcinoma growth and metastasis and has synergistic effects together with anti-PD-1 in breast cancer. The engineering oxygen factories offer potential for tumour biology studies in hyperoxic microenvironments and inspire the exploration of oncological treatments.
Collapse
|
21
|
Lokdarshi A, von Arnim AG. Review: Emerging roles of the signaling network of the protein kinase GCN2 in the plant stress response. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 320:111280. [PMID: 35643606 PMCID: PMC9197246 DOI: 10.1016/j.plantsci.2022.111280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/07/2022] [Accepted: 03/30/2022] [Indexed: 06/15/2023]
Abstract
The pan-eukaryotic protein kinase GCN2 (General Control Nonderepressible2) regulates the translation of mRNAs in response to external and metabolic conditions. Although GCN2 and its substrate, translation initiation factor 2 (eIF2) α, and several partner proteins are substantially conserved in plants, this kinase has assumed novel functions in plants, including in innate immunity and retrograde signaling between the chloroplast and cytosol. How exactly some of the biochemical paradigms of the GCN2 system have diverged in the green plant lineage is only partially resolved. Specifically, conflicting data underscore and cast doubt on whether GCN2 regulates amino acid biosynthesis; also whether phosphorylation of eIF2α can in fact repress global translation or activate mRNA specific translation via upstream open reading frames; and whether GCN2 is controlled in vivo by the level of uncharged tRNA. This review examines the status of research on the eIF2α kinase, GCN2, its function in the response to xenobiotics, pathogens, and abiotic stress conditions, and its rather tenuous role in the translational control of mRNAs.
Collapse
Affiliation(s)
- Ansul Lokdarshi
- Department of Biology, Valdosta State University, Valdosta, GA 31698, USA.
| | - Albrecht G von Arnim
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN 37996-1939, USA; UT-ORNL Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, TN 37996-1939, USA.
| |
Collapse
|
22
|
Cho HY, Chou MY, Ho HY, Chen WC, Shih MC. Ethylene modulates translation dynamics in Arabidopsis under submergence via GCN2 and EIN2. SCIENCE ADVANCES 2022; 8:eabm7863. [PMID: 35658031 PMCID: PMC9166634 DOI: 10.1126/sciadv.abm7863] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 04/15/2022] [Indexed: 05/23/2023]
Abstract
General translational repression is a key process that reduces energy consumption under hypoxia. Here, we show that plant stress-activated general control nonderepressible 2 (GCN2) was activated to regulate the reduction in polysome loading during submergence in Arabidopsis. GCN2 signaling was activated by ethylene under submergence. GCN2 activity was reduced in etr1-1, but not in ein2-5 or eil1ein3, under submergence, suggesting that GCN2 activity is regulated by a noncanonical ethylene signaling pathway. Polysome loading was not reduced in ein2-5 under submergence, implying that ethylene modulates translation via both EIN2 and GCN2. Transcriptomic analysis demonstrated that EIN2 and GCN2 regulate not only general translational repression but also translational enhancement of specific mRNAs under submergence. Together, these results demonstrate that during submergence, entrapped ethylene triggers GCN2 and EIN2 to regulate translation dynamics and ensure the translation of stress response proteins.
Collapse
|
23
|
Qureshi MK, Gawroński P, Munir S, Jindal S, Kerchev P. Hydrogen peroxide-induced stress acclimation in plants. Cell Mol Life Sci 2022; 79:129. [PMID: 35141765 PMCID: PMC11073338 DOI: 10.1007/s00018-022-04156-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/06/2023]
Abstract
Among all reactive oxygen species (ROS), hydrogen peroxide (H2O2) takes a central role in regulating plant development and responses to the environment. The diverse role of H2O2 is achieved through its compartmentalized synthesis, temporal control exerted by the antioxidant machinery, and ability to oxidize specific residues of target proteins. Here, we examine the role of H2O2 in stress acclimation beyond the well-studied transcriptional reprogramming, modulation of plant hormonal networks and long-distance signalling waves by highlighting its global impact on the transcriptional regulation and translational machinery.
Collapse
Affiliation(s)
- Muhammad Kamran Qureshi
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Bosan road, Multan, 60800, Pakistan
| | - Piotr Gawroński
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw, University of Life Sciences, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Sana Munir
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Bosan road, Multan, 60800, Pakistan
| | - Sunita Jindal
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 3, 613 00, Brno, Czech Republic
| | - Pavel Kerchev
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 3, 613 00, Brno, Czech Republic.
| |
Collapse
|
24
|
Liu H, Gong X, Deng H, Tan J, Sun Y, Wang F, Wu W, Zhou Z, Xu R, He H, Lo C. The Rice Aspartyl-tRNA Synthetase YLC3 Regulates Amino Acid Homeostasis and Chloroplast Development Under Low Temperature. FRONTIERS IN PLANT SCIENCE 2022; 13:847364. [PMID: 36340382 PMCID: PMC9635353 DOI: 10.3389/fpls.2022.847364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 01/31/2022] [Indexed: 05/17/2023]
Abstract
Aminoacyl tRNA synthetases primarily function to attach specific amino acids to the corresponding tRNAs during protein translation. However, their roles in regulating plant growth and development still remain elusive. Here we reported a rice thermo-sensitive mutant yellow leaf chlorosis3 (ylc3) with reduced chlorophyll content, altered thylakoid structure, and substantially elevated levels of free aspartate, asparagine and glutamine in leaves under low temperature condition. Map-based cloning identified that YLC3 encodes an aspartyl-tRNA synthetase which is localized in cytosol and mitochondria. In addition, quantitative proteomics analysis revealed that both nuclear and chloroplast-encoded thylakoid proteins were significantly down-regulated in the mutant. On the other hand, proteins involved in amino acid metabolism and the process of protein synthesis were up-regulated in ylc3, particularly for key enzymes that convert aspartate to asparagine. Moreover, uncharged tRNA-Asp accumulation and phosphorylation of the translation initiation factor eIF2α was detected in the mutant, suggesting that YLC3 regulates the homeostasis of amino acid metabolism and chloroplast thylakoid development through modulation of processes during protein synthesis.
Collapse
Affiliation(s)
- Hongjia Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- *Correspondence: Hongjia Liu,
| | - Xue Gong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hui Deng
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jinjuan Tan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yanqing Sun
- Institute of Crop Science and Institute of Bioinformatics, Zhejiang University, Hangzhou, China
| | - Fang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wenjuan Wu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Zhongjing Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Rumeng Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Haiyan He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Clive Lo
- School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
25
|
Inhibition of Arabidopsis stomatal development by plastoquinone oxidation. Curr Biol 2021; 31:5622-5632.e7. [PMID: 34727522 DOI: 10.1016/j.cub.2021.10.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 07/26/2021] [Accepted: 10/08/2021] [Indexed: 11/20/2022]
Abstract
Stomata are the pores in the epidermal surface of plant leaves that regulate the exchange of water and CO2 with the environment thus controlling leaf gas exchange.1 In the model dicot plant Arabidopsis thaliana, the transcription factors SPEECHLESS (SPCH) and MUTE sequentially control formative divisions in the stomatal lineage by forming heterodimers with ICE1.2 SPCH regulates entry into the stomatal lineage and its stability or activity is regulated by a mitogen-activated protein kinase (MAPK) signaling cascade, mediated by its interaction with ICE1.3-6 This MAPK pathway is regulated by extracellular epidermal patterning factor (EPFs) peptides, which bind a transmembrane receptor complex to inhibit (EPF1 and EPF2) or promote (STOMAGEN/EPFL9) stomatal development.7-9 MUTE controls the transition to guard mother cell identity and is regulated by the HD-ZIP transcription factor HDG2, which is expressed exclusively in stomatal lineage cells.10,11 Light signals acting through phytochrome and cryptochrome photoreceptors positively regulate stomatal development in response to increased irradiance.12,13 Here we report that stomatal development is also regulated by the redox state of the photosynthetic electron transport chain (PETC). Oxidation of the plastoquinone (PQ) pool inhibits stomatal development by negatively regulating SPCH and MUTE expression. This mechanism is dependent on MPK6 and forms part of the response to lowering irradiance, which is distinct to the photoreceptor dependent response to increasing irradiance. Our results show that environmental signals can act through the PETC, demonstrating that photosynthetic signals regulate the development of the pores through which CO2 enters the leaf.
Collapse
|
26
|
Castellano MM, Merchante C. Peculiarities of the regulation of translation initiation in plants. CURRENT OPINION IN PLANT BIOLOGY 2021; 63:102073. [PMID: 34186463 DOI: 10.1016/j.pbi.2021.102073] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/21/2021] [Accepted: 05/27/2021] [Indexed: 06/13/2023]
Abstract
Protein synthesis is a fundamental process for life and, as such, plays a crucial role in the adaptation to energy, developmentaland environmental conditions. For these reasons, and despite the general conservation of the eukaryotic translational machinery, it is not surprising that organisms with different lifestyles have evolved distinct mechanisms of regulation to adapt translation initiation to their intrinsic growth and development. Plants have clear peculiarities compared with other eukaryotes that have also extended to translation control. This review describes the plant-specific mechanisms for regulation of translation initiation, with a focus on those that modulate the eIF4F complexes, central translational regulatory hubs in all eukaryotes, and highlights the latest discoveries on the signaling pathways that regulate their constituents and activity.
Collapse
Affiliation(s)
- M Mar Castellano
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), Campus Montegancedo UPM, Pozuelo de Alarcón, Madrid, 28223, Spain.
| | - Catharina Merchante
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Campus de Teatinos, Universidad de Málaga, Málaga, 29071, Spain.
| |
Collapse
|
27
|
Gao L, Chen J, Li J, Cui AQ, Zhang WW, Li XL, Wang J, Zhang XY, Zhao Y, Chen YH, Zhang C, Wang H, Xu DX. Microcystin-LR inhibits testosterone synthesis via reactive oxygen species-mediated GCN2/eIF2α pathway in mouse testes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 781:146730. [PMID: 33798882 DOI: 10.1016/j.scitotenv.2021.146730] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/21/2021] [Accepted: 03/21/2021] [Indexed: 06/12/2023]
Abstract
Previous studies demonstrated that microcystin-leucine-arginine (MC-LR) disrupted testosterone (T) synthesis, but the underlying mechanisms are not entirely elucidated. This study aims to explore the role of reactive oxygen species (ROS)-mediated GCN2/eIF2α activation on MC-LR-induced disruption of testicular T synthesis. Male mice were intraperitoneally injected with MC-LR (0 or 20 μg/kg) daily for 5 weeks. Serum T was decreased in MC-LR-exposed mice (0.626 ± 0.122 vs 24.565 ± 8.486 ng/ml, P < 0.01), so did testicular T (0.667 ± 0.15 vs 8.317 ± 1.387 ng/mg protein, P < 0.01). Steroidogenic proteins including StAR, CYP11A1 and CYP17A1 were downregulated in MC-LR-exposed mouse testes and TM3 cells. Mechanistically, p-GCN2 and p-eIF2α were elevated in MC-LR-exposed TM3 cells. GCN2iB attenuated MC-LR-induced GCN2 and eIF2α phosphorylation in TM3 cells. Moreover, GCN2iB attenuated MC-LR-induced downregulation of steroidogenic proteins in TM3 cells. Further analysis found that cellular ROS were elevated and HO-1 was upregulated in MC-LR-exposed TM3 cells. PBN rescued MC-LR-induced activation of GCN2/eIF2α signaling in TM3 cells. Additionally, pretreatment with PBN attenuated MC-LR induced downregulation of steroidogenic proteins and synthases in TM3 cells. These results suggest that ROS-mediated GCN2/eIF2α activation contributes partially to MC-LR-caused downregulation of steroidogenic proteins and synthases. The present study provides a new clue for understanding the mechanism of MC-LR-induced endocrine disruption.
Collapse
Affiliation(s)
- Lan Gao
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China.
| | - Jing Chen
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Jian Li
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - An-Qi Cui
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Wei-Wei Zhang
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Xiu-Liang Li
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Jing Wang
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Xiao-Yi Zhang
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Ye Zhao
- Department of Nuclear Medicine, Anhui Medical University, Hefei 230032, China
| | - Yuan-Hua Chen
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Cheng Zhang
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Hua Wang
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China.
| | - De-Xiang Xu
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
28
|
Zhang Y, Xia G, Zhu Q. Conserved and Unique Roles of Chaperone-Dependent E3 Ubiquitin Ligase CHIP in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:699756. [PMID: 34305988 PMCID: PMC8299108 DOI: 10.3389/fpls.2021.699756] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/17/2021] [Indexed: 05/09/2023]
Abstract
Protein quality control (PQC) is essential for maintaining cellular homeostasis by reducing protein misfolding and aggregation. Major PQC mechanisms include protein refolding assisted by molecular chaperones and the degradation of misfolded and aggregated proteins using the proteasome and autophagy. A C-terminus of heat shock protein (Hsp) 70-interacting protein [carboxy-terminal Hsp70-interacting protein (CHIP)] is a chaperone-dependent and U-box-containing E3 ligase. CHIP is a key molecule in PQC by recognizing misfolded proteins through its interacting chaperones and targeting their degradation. CHIP also ubiquitinates native proteins and plays a regulatory role in other cellular processes, including signaling, development, DNA repair, immunity, and aging in metazoans. As a highly conserved ubiquitin ligase, plant CHIP plays an important role in response to a broad spectrum of biotic and abiotic stresses. CHIP protects chloroplasts by coordinating chloroplast PQC both outside and inside the important photosynthetic organelle of plant cells. CHIP also modulates the activity of protein phosphatase 2A (PP2A), a crucial component in a network of plant signaling, including abscisic acid (ABA) signaling. In this review, we discuss the structure, cofactors, activities, and biological function of CHIP with an emphasis on both its conserved and unique roles in PQC, stress responses, and signaling in plants.
Collapse
Affiliation(s)
| | | | - Qianggen Zhu
- Department of Landscape and Horticulture, Ecology College, Lishui University, Lishui, China
| |
Collapse
|
29
|
Yang F, Xiao K, Pan H, Liu J. Chloroplast: The Emerging Battlefield in Plant-Microbe Interactions. FRONTIERS IN PLANT SCIENCE 2021; 12:637853. [PMID: 33747017 PMCID: PMC7966814 DOI: 10.3389/fpls.2021.637853] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/28/2021] [Indexed: 05/08/2023]
Abstract
Higher plants and some algae convert the absorbed light into chemical energy through one of the most important organelles, chloroplast, for photosynthesis and store it in the form of organic compounds to supply their life activities. However, more and more studies have shown that the role of chloroplasts is more than a factory for photosynthesis. In the process of light conversion to chemical energy, any damage to the components of chloroplast may affect the photosynthesis efficiency and promote the production of by-products, reactive oxygen species, that are mainly produced in the chloroplasts. Substantial evidence show that chloroplasts are also involved in the battle of plants and microbes. Chloroplasts are important in integrating a variety of external environmental stimuli and regulate plant immune responses by transmitting signals to the nucleus and other cell compartments through retrograde signaling pathways. Besides, chloroplasts can also regulate the biosynthesis and signal transduction of phytohormones, including salicylic acid and jasmonic acid, to affect the interaction between the plants and microbes. Since chloroplasts play such an important role in plant immunity, correspondingly, chloroplasts have become the target of pathogens. Different microbial pathogens target the chloroplast and affect its functions to promote their colonization in the host plants.
Collapse
Affiliation(s)
| | | | | | - Jinliang Liu
- College of Plant Sciences, Jilin University, Changchun, China
| |
Collapse
|
30
|
Melatonin protects against environmental stress-induced fetal growth restriction via suppressing ROS-mediated GCN2/ATF4/BNIP3-dependent mitophagy in placental trophoblasts. Redox Biol 2021; 40:101854. [PMID: 33454563 PMCID: PMC7811044 DOI: 10.1016/j.redox.2021.101854] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/07/2020] [Accepted: 01/01/2021] [Indexed: 12/15/2022] Open
Abstract
Gestational exposure to environmental stress induces fetal growth restriction (FGR), and thereby increasing the risk of infant death and chronic noncommunicable diseases in adults. However, the mechanism by which environmental stress induces FGR remains unclear. Based on case-control study, we found that the reduced level of melatonin (MT), a major secretory product from the pineal gland, was observed in placentae of FGR. This work was to investigate the protective effect of MT on environmental stress-caused FGR and its mechanisms. We used cadmium (Cd) as an environmental stressor to stimulate pregnant mice and thereby establishing a FGR model. The data showed that maternal Cd exposure lowered the P4 concentration in maternal sera, placentae and amniotic fluid, and caused FGR. Correspondingly, the expression of CYP11A1, a critical P4 synthase, was markedly downregulated in Cd-treated placentae. Simultaneously, Cd triggered BNIP3-dependent mitophagy in placental trophoblasts, as determined by the degradation of mitochondrial proteins, including HSP60 and COX IV, and the accumulation of puncta representing co-localization of TOM20 with LC3B or BNIP3 with LC3B. Based on our case-control study, we also found that activated BNIP3-dependent mitophagy and P4 synthesis inhibition occurred in SGA placentae. Most importantly, BNIP3 siRNA reversed Cd-induced P4 synthesis suppression in human placental trophoblasts. It is noteworthy that MT alleviated Cd-caused P4 synthesis suppression and FGR via antagonizing BNIP3-dependent mitophagy in placental trophoblasts. Further results confirmed that MT attenuated Cd-triggered BNIP3-dependent mitophagy via blocking GCN2/ATF4 signaling. Amusingly, Cd triggered oxidative stress and then activating GCN2/ATF4 signaling in placental trophoblasts. As expected, MT obviously suppressed Cd-caused reactive oxygen species (ROS) release. In the present study, we propose a neoteric mechanism by which MT protects against environmental stress-impaired P4 synthesis and fetal growth via suppressing ROS-mediated GCN2/ATF4/BNIP3-dependent mitophagy in placental trophoblasts. As above, MT is a potential therapeutic agent antagonizing environmental stress-induced developmental toxicity. Melatonin protects against Cd-induced fetal growth restriction. Melatonin attenuates Cd-induced placental P4 synthesis inhibition by mitophagy. Melatonin suppresses Cd-triggered placental mitophagy via blocking GCN2/ATF4. Melatonin blocks Cd-activated placental GCN2/ATF4 signaling via repressing ROS. Activated mitophagy and reduced P4 synthesis occur in SGA placentae.
Collapse
|
31
|
Sun JL, Li JY, Wang MJ, Song ZT, Liu JX. Protein Quality Control in Plant Organelles: Current Progress and Future Perspectives. MOLECULAR PLANT 2021; 14:95-114. [PMID: 33137518 DOI: 10.1016/j.molp.2020.10.011] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/09/2020] [Accepted: 10/28/2020] [Indexed: 05/20/2023]
Abstract
The endoplasmic reticulum, chloroplasts, and mitochondria are major plant organelles for protein synthesis, photosynthesis, metabolism, and energy production. Protein homeostasis in these organelles, maintained by a balance between protein synthesis and degradation, is essential for cell functions during plant growth, development, and stress resistance. Nucleus-encoded chloroplast- and mitochondrion-targeted proteins and ER-resident proteins are imported from the cytosol and undergo modification and maturation within their respective organelles. Protein folding is an error-prone process that is influenced by both developmental signals and environmental cues; a number of mechanisms have evolved to ensure efficient import and proper folding and maturation of proteins in plant organelles. Misfolded or damaged proteins with nonnative conformations are subject to degradation via complementary or competing pathways: intraorganelle proteases, the organelle-associated ubiquitin-proteasome system, and the selective autophagy of partial or entire organelles. When proteins in nonnative conformations accumulate, the organelle-specific unfolded protein response operates to restore protein homeostasis by reducing protein folding demand, increasing protein folding capacity, and enhancing components involved in proteasome-associated protein degradation and autophagy. This review summarizes recent progress on the understanding of protein quality control in the ER, chloroplasts, and mitochondria in plants, with a focus on common mechanisms shared by these organelles during protein homeostasis.
Collapse
Affiliation(s)
- Jing-Liang Sun
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310027, China
| | - Jin-Yu Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310027, China
| | - Mei-Jing Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310027, China
| | - Ze-Ting Song
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310027, China
| | - Jian-Xiang Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
32
|
Cui X, Gao K, Wang L, Lv M, Li Z, Zheng D, Wu W, Yao W, Ding L, Li X, Zhu JK, Zhang H. General Control Non-derepressible 1 (AtGCN1) Is Important for Flowering Time, Plant Growth, Seed Development, and the Transcription/Translation of Specific Genes in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:630311. [PMID: 33868334 PMCID: PMC8045761 DOI: 10.3389/fpls.2021.630311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/01/2021] [Indexed: 05/12/2023]
Abstract
We have previously demonstrated that General Control Non-derepressible 1 (AtGCN1) is essential for translation inhibition under cold stress through interacting with GCN2 to phosphorylate eukaryotic translation initiation factor 2 (eIF2). Here, we report that the flower time of the atgcn1 mutant is later than that of the wild type (WT), and some siliques of atgcn1 cannot develop and produce seeds. Total and polysomal RNA of atgcn1-1 and wild type (WT) after cold treatments were sequenced. The sequencing results show that the mutation of atgcn1 selectively alters the expression of genes at both transcriptional and translational levels. The classification of AtGCN1 target genes reveals that AtGCN1 regulated gens are involved in flower development, seed dormancy and seed development, response to osmotic stress, amino acid biosynthesis, photosynthesis, cell wall organization, protein transport and localization, lipid biosynthesis, transcription, macroautophagy, proteolysis and cell death. Further analysis of AtGCN1 regulated genes at translational levels shows that the Kozak sequence and uORFs (upstream open reading frame) of transcripts affect translation selection. These results show that AtGCN1 is required for the expression of selective genes in Arabidopsis.
Collapse
Affiliation(s)
- Xiaona Cui
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Kaili Gao
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Linjuan Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Mengyang Lv
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Ziwen Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Donghua Zheng
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Wenwu Wu
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, China
| | - Wen Yao
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Liying Ding
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Xiao Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, China
- Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States
| | - Hairong Zhang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
- *Correspondence: Hairong Zhang,
| |
Collapse
|
33
|
Urquidi-Camacho RA, Lokdarshi A, von Arnim AG. Translational gene regulation in plants: A green new deal. WILEY INTERDISCIPLINARY REVIEWS. RNA 2020; 11:e1597. [PMID: 32367681 PMCID: PMC9258721 DOI: 10.1002/wrna.1597] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 01/09/2023]
Abstract
The molecular machinery for protein synthesis is profoundly similar between plants and other eukaryotes. Mechanisms of translational gene regulation are embedded into the broader network of RNA-level processes including RNA quality control and RNA turnover. However, over eons of their separate history, plants acquired new components, dropped others, and generally evolved an alternate way of making the parts list of protein synthesis work. Research over the past 5 years has unveiled how plants utilize translational control to defend themselves against viruses, regulate translation in response to metabolites, and reversibly adjust translation to a wide variety of environmental parameters. Moreover, during seed and pollen development plants make use of RNA granules and other translational controls to underpin developmental transitions between quiescent and metabolically active stages. The economics of resource allocation over the daily light-dark cycle also include controls over cellular protein synthesis. Important new insights into translational control on cytosolic ribosomes continue to emerge from studies of translational control mechanisms in viruses. Finally, sketches of coherent signaling pathways that connect external stimuli with a translational response are emerging, anchored in part around TOR and GCN2 kinase signaling networks. These again reveal some mechanisms that are familiar and others that are different from other eukaryotes, motivating deeper studies on translational control in plants. This article is categorized under: Translation > Translation Regulation RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Ricardo A. Urquidi-Camacho
- UT-ORNL Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, TN 37996
| | - Ansul Lokdarshi
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996
| | - Albrecht G von Arnim
- Department of Biochemistry & Cellular and Molecular Biology and UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996
| |
Collapse
|
34
|
Berrocal-Lobo M, Toribio R, Castellano MM. eIF2α Phosphorylation by GCN2 Is Induced in the Presence of Chitin and Plays an Important Role in Plant Defense against B. cinerea Infection. Int J Mol Sci 2020; 21:ijms21197335. [PMID: 33020405 PMCID: PMC7582497 DOI: 10.3390/ijms21197335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/23/2020] [Accepted: 10/01/2020] [Indexed: 01/04/2023] Open
Abstract
Translation plays an important role in plant adaptation to different abiotic and biotic stresses; however, the mechanisms involved in translational regulation during each specific response and their effect in translation are poorly understood in plants. In this work, we show that GCN2 promotes eIF2α phosphorylation upon contact with Botrytis cinerea spores, and that this phosphorylation is required for the proper establishment of plant defense against the fungus. In fact, independent gcn2 mutants display an enhanced susceptibility to B. cinerea infection, which is highlighted by an increased cell death and reduced expression of ethylene- and jasmonic-related genes in the gcn2 mutants. eIF2α phosphorylation is not only triggered in the presence of the fungus, but interestingly, is also achieved in the sole presence of the microbe-associated molecular pattern (MAMP) chitin. Moreover, analysis of de novo protein synthesis by 35SMet-35SCys incorporation indicates that chitin treatment promotes a global inhibition of translation. Taken together, these results suggest that eIF2α phosphorylation by GCN2 is promoted in the presence of chitin and plays an important role in plant defense against B. cinerea infection.
Collapse
Affiliation(s)
- Marta Berrocal-Lobo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, 28223 Pozuelo de Alarcón, Madrid, Spain;
- Departamento de Sistemas y Recursos Naturales, E.T.S.I. Montes, Forestal y del Medio Natural, Ciudad Universitaria s/n, 28040 Madrid, Spain
- Correspondence: (M.B.-L.); (M.M.C.); Tel.: +34-910-679-181 (M.M.C.)
| | - René Toribio
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, 28223 Pozuelo de Alarcón, Madrid, Spain;
| | - M. Mar Castellano
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, 28223 Pozuelo de Alarcón, Madrid, Spain;
- Correspondence: (M.B.-L.); (M.M.C.); Tel.: +34-910-679-181 (M.M.C.)
| |
Collapse
|
35
|
Garcia-Molina A, Kleine T, Schneider K, Mühlhaus T, Lehmann M, Leister D. Translational Components Contribute to Acclimation Responses to High Light, Heat, and Cold in Arabidopsis. iScience 2020; 23:101331. [PMID: 32679545 PMCID: PMC7364123 DOI: 10.1016/j.isci.2020.101331] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/26/2020] [Accepted: 06/28/2020] [Indexed: 12/27/2022] Open
Abstract
Plant metabolism is broadly reprogrammed during acclimation to abiotic changes. Most previous studies have focused on transitions from standard to single stressful conditions. Here, we systematically analyze acclimation processes to levels of light, heat, and cold stress that subtly alter physiological parameters and assess their reversibility during de-acclimation. Metabolome and transcriptome changes were monitored at 11 different time points. Unlike transcriptome changes, most alterations in metabolite levels did not readily return to baseline values, except in the case of cold acclimation. Similar regulatory networks operate during (de-)acclimation to high light and cold, whereas heat and high-light responses exhibit similar dynamics, as determined by surprisal and conditional network analyses. In all acclimation models tested here, super-hubs in conditional transcriptome networks are enriched for components involved in translation, particularly ribosomes. Hence, we suggest that the ribosome serves as a common central hub for the control of three different (de-)acclimation responses.
Collapse
Affiliation(s)
- Antoni Garcia-Molina
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhadernerstraße 2-4, 82152 Planegg-Martinsried, Germany
| | - Tatjana Kleine
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhadernerstraße 2-4, 82152 Planegg-Martinsried, Germany
| | - Kevin Schneider
- Computational Systems Biology, TU Kaiserslautern, Paul-Ehrlich-Straße 23, 67663 Kaiserslautern, Germany
| | - Timo Mühlhaus
- Computational Systems Biology, TU Kaiserslautern, Paul-Ehrlich-Straße 23, 67663 Kaiserslautern, Germany
| | - Martin Lehmann
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhadernerstraße 2-4, 82152 Planegg-Martinsried, Germany
| | - Dario Leister
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhadernerstraße 2-4, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
36
|
Sun Y, Liu Z, Guo J, Zhu Z, Zhou Y, Guo C, Hu Y, Li J, Shangguan Y, Li T, Hu Y, Wu R, Li W, Rochaix JD, Miao Y, Sun X. WRKY33-PIF4 loop is required for the regulation of H 2O 2 homeostasis. Biochem Biophys Res Commun 2020; 527:922-928. [PMID: 32423827 DOI: 10.1016/j.bbrc.2020.05.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 01/04/2023]
Abstract
The reactive oxygen species (ROS) are continuously produced and are essential for mediating the growth and development of plants. However too much accumulation of ROS can result in the oxidative damage to cells, especially under the adverse environmental conditions. Plants have evolved sophisticated strategies to regulate the homeostasis of H2O2. In this study, we generated transgenic Arabidopsis plants in the Ws ecotype (Ws) background in which WRKY33 is co-suppressed (csWRKY33/Ws). Compared with Ws, csWRKY33/Ws plants accumulate more H2O2. RNA-seq analysis indicated that in csWRKY33/Ws plants, expression of oxidative stress related genes such as ascorbate peroxidase 2 (APX2) is affected. Over-expression of APX2 can rescue the phenotype of csWRKY33/Ws, suggesting that the changes in the growth of csWRKY33/Ws is duo to the higher accumulation of H2O2. Analysis of the CHIP-seq data suggested that WRKY33 can directly regulate the expression of PIF4, vice versa. qPCR analysis also confirmed that the mutual regulation between WRKY33 and PIF4. Similar to that of csWRKY33/Ws, and the accumulation of H2O2 in pif4 also increased. Taken together, our results reveal a WRKY33-PIF4 regulatory loop that appears to play an important role in regulating the growth and development of seedlings by mediating H2O2 homeostasis.
Collapse
Affiliation(s)
- Yijing Sun
- College of Life Sciences, Shanghai Normal University, Guilin Road 100, Shanghai, 200234, China
| | - Zhixin Liu
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Jinggong Guo
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Zhinan Zhu
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Yaping Zhou
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Chenxi Guo
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Yunhe Hu
- College of Life Sciences, Shanghai Normal University, Guilin Road 100, Shanghai, 200234, China
| | - Jiaoai Li
- College of Life Sciences, Shanghai Normal University, Guilin Road 100, Shanghai, 200234, China
| | - Yan Shangguan
- College of Life Sciences, Shanghai Normal University, Guilin Road 100, Shanghai, 200234, China
| | - Tao Li
- College of Life Sciences, Shanghai Normal University, Guilin Road 100, Shanghai, 200234, China
| | - Yongjian Hu
- College of Life Sciences, Shanghai Normal University, Guilin Road 100, Shanghai, 200234, China
| | - Rui Wu
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Weiqiang Li
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Jean-David Rochaix
- Department of Molecular Biology and Plant Biology, University of Geneva, Geneva, 1211, Switzerland
| | - Yuchen Miao
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Xuwu Sun
- College of Life Sciences, Shanghai Normal University, Guilin Road 100, Shanghai, 200234, China; State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China.
| |
Collapse
|
37
|
Lokdarshi A, Morgan PW, Franks M, Emert Z, Emanuel C, von Arnim AG. Light-Dependent Activation of the GCN2 Kinase Under Cold and Salt Stress Is Mediated by the Photosynthetic Status of the Chloroplast. FRONTIERS IN PLANT SCIENCE 2020; 11:431. [PMID: 32411155 PMCID: PMC7201089 DOI: 10.3389/fpls.2020.00431] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/24/2020] [Indexed: 05/12/2023]
Abstract
Regulation of cytosolic mRNA translation is a key node for rapid adaptation to environmental stress conditions. In yeast and animals, phosphorylation of the α-subunit of eukaryotic translation initiation factor eIF2 is the most thoroughly characterized event for regulating global translation under stress. In plants, the GCN2 kinase (General Control Nonderepressible-2) is the only known kinase for eIF2α. GCN2 is activated under a variety of stresses including reactive oxygen species (ROS). Here, we provide new evidence that the GCN2 kinase in Arabidopsis is also activated rapidly and in a light-dependent manner by cold and salt treatments. These treatments alone did not repress global mRNA ribosome loading in a major way. The activation of GCN2 was accompanied by a more oxidative environment and was attenuated by inhibitors of photosynthetic electron transport, suggesting that it is gated by the redox poise or the reactive oxygen status of the chloroplast. In keeping with these results, gcn2 mutant seedlings were more sensitive than wild type to both cold and salt in a root elongation assay. These data suggest that cold and salt stress may both affect the status of the cytosolic translation apparatus via the conserved GCN2-eIF2α module. The potential role of the GCN2 kinase pathway in the global repression of translation under abiotic stress is discussed.
Collapse
Affiliation(s)
- Ansul Lokdarshi
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Philip W. Morgan
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Michelle Franks
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Zoe Emert
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Catherine Emanuel
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Albrecht G. von Arnim
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Knoxville, TN, United States
- Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| |
Collapse
|