1
|
Xiao J, Liu W, Wu B, Zhang Y, Li S, Li E. Root hair: An important guest-meeting avenue for rhizobia in legume-Rhizobium symbiosis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 356:112518. [PMID: 40274194 DOI: 10.1016/j.plantsci.2025.112518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 04/14/2025] [Accepted: 04/18/2025] [Indexed: 04/26/2025]
Abstract
Root hairs anchor the plant in the soil, facilitating nutrient assimilation, water absorption, and interaction of plants with their environment. In legumes, they play a key role in the early infection of rhizobia. This review aimed to summarize the recent progress about the nodulation factor receptors on the root hair surface. It also discussed the importance of downstream signaling pathways of nodulation factor receptors and highlighted Rho of plants signaling pathway that controls infection thread polar growth and nodulation.
Collapse
Affiliation(s)
- Jingwen Xiao
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Wenxu Liu
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Bicong Wu
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Yuling Zhang
- School of Foreign Languages, Qingdao Agricultural University, Qingdao 266109, China
| | - Sha Li
- QAU-RAU Joint Institute for Advanced Agricultural Technology Institute, Qingdao Agricultural University, Qingdao 266109, China
| | - En Li
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
2
|
Zhang G, Ott T. Cellular morphodynamics and signaling around the transcellular passage cleft during rhizobial infections of legume roots. Curr Opin Cell Biol 2024; 91:102436. [PMID: 39366145 DOI: 10.1016/j.ceb.2024.102436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/09/2024] [Accepted: 09/06/2024] [Indexed: 10/06/2024]
Abstract
Legume roots allow intracellular infections of rhizobia to establish the mutualistic root nodule symbiosis. During this colonization event, specialized and membrane-defined infection threads provide the host-controlled path for the bacteria through the multilayered root tissue to reach a newly developing organ, the root nodule. On this way, bacteria have to propagate transcellularly and thus overcome cell wall barriers. This process not only requires continuous molecular surveillance of the invading microbe but also structural adaptations of the extracellular matrix components in a spatially confined manner leading to the formation of a novel compartment that we term the "transcellular passage cleft" (TPC). Here, we review the molecular mechanisms and signaling events around the TPC and propose a step-wise model for TPC formation.
Collapse
Affiliation(s)
- Guofeng Zhang
- Cell Biology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Thomas Ott
- Cell Biology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; CIBSS - Centre of Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
3
|
de Carvalho-Niebel F, Fournier J, Becker A, Marín Arancibia M. Cellular insights into legume root infection by rhizobia. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102597. [PMID: 39067084 DOI: 10.1016/j.pbi.2024.102597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 07/30/2024]
Abstract
Legume plants establish an endosymbiosis with nitrogen-fixing rhizobia bacteria, which are taken up from the environment anew by each host generation. This requires a dedicated genetic program on the host side to control microbe invasion, involving coordinated reprogramming of host cells to create infection structures that facilitate inward movement of the symbiont. Infection initiates in the epidermis, with different legumes utilizing distinct strategies for crossing this cell layer, either between cells (intercellular infection) or transcellularly (infection thread infection). Recent discoveries on the plant side using fluorescent-based imaging approaches have illuminated the spatiotemporal dynamics of infection, underscoring the importance of investigating this process at the dynamic single-cell level. Extending fluorescence-based live-dynamic approaches to the bacterial partner opens the exciting prospect of learning how individual rhizobia reprogram from rhizospheric to a host-confined state during early root infection.
Collapse
Affiliation(s)
| | - Joëlle Fournier
- LIPME, INRAE, CNRS, Université de Toulouse, 31326, Castanet-Tolosan, France
| | - Anke Becker
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, D-35032, Marburg, Germany; Department of Biology, Philipps-Universität Marburg, D-35032, Marburg, Germany
| | | |
Collapse
|
4
|
Sun J, Liu H, Wang W, Fan C, Yuan G, Zhou R, Lu J, Liu J, Wang C. RcOST1L phosphorylates RcPIF4 for proteasomal degradation to promote flowering in rose. THE NEW PHYTOLOGIST 2024; 243:1387-1405. [PMID: 38849320 DOI: 10.1111/nph.19885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/14/2024] [Indexed: 06/09/2024]
Abstract
Flowering is a vital agronomic trait that determines the economic value of most ornamental plants. The flowering time of rose (Rosa spp.) is photoperiod insensitive and is thought to be tightly controlled by light intensity, although the detailed molecular mechanism remains unclear. Here, we showed that rose plants flower later under low-light (LL) intensity than under high-light (HL) intensity, which is mainly related to the stability of PHYTOCHROME-INTERACTING FACTORs (RcPIFs) mediated by OPEN STOMATA 1-Like (RcOST1L) under different light intensity regimes. We determined that HL conditions trigger the rapid phosphorylation of RcPIFs before their degradation. A yeast two-hybrid screen identified the kinase RcOST1L as interacting with RcPIF4. Moreover, RcOST1L positively regulated rose flowering and directly phosphorylated RcPIF4 on serine 198 to promote its degradation under HL conditions. Additionally, phytochrome B (RcphyB) enhanced RcOST1L-mediated phosphorylation of RcPIF4 via interacting with the active phyB-binding motif. RcphyB was activated upon HL and recruited RcOST1L to facilitate its nuclear accumulation, in turn leading to decreased stability of RcPIF4 and flowering acceleration. Our findings illustrate how RcPIF abundance safeguards proper rose flowering under different light intensities, thus uncovering the essential role of RcOST1L in the RcphyB-RcPIF4 module in flowering.
Collapse
Affiliation(s)
- Jingjing Sun
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hongchi Liu
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weinan Wang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chunguo Fan
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guozhen Yuan
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Rui Zhou
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jun Lu
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinyi Liu
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Changquan Wang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
5
|
Gao JP, Liang W, Liu CW, Xie F, Murray JD. Unraveling the rhizobial infection thread. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2235-2245. [PMID: 38262702 DOI: 10.1093/jxb/erae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/23/2024] [Indexed: 01/25/2024]
Abstract
Most legumes can form an endosymbiotic association with soil bacteria called rhizobia, which colonize specialized root structures called nodules where they fix nitrogen. To colonize nodule cells, rhizobia must first traverse the epidermis and outer cortical cell layers of the root. In most legumes, this involves formation of the infection thread, an intracellular structure that becomes colonized by rhizobia, guiding their passage through the outer cell layers of the root and into the newly formed nodule cells. In this brief review, we recount the early research milestones relating to the rhizobial infection thread and highlight two relatively recent advances in the symbiotic infection mechanism, the eukaryotically conserved 'MYB-AUR1-MAP' mitotic module, which links cytokinesis mechanisms to intracellular infection, and the discovery of the 'infectosome' complex, which guides infection thread growth. We also discuss the potential intertwining of the two modules and the hypothesis that cytokinesis served as a foundation for intracellular infection of symbiotic microbes.
Collapse
Affiliation(s)
- Jin-Peng Gao
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wenjie Liang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Cheng-Wu Liu
- School of Life Sciences, Division of Life Sciences and Medicine, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, Hefei 230026, China
| | - Fang Xie
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jeremy D Murray
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- John Innes Centre, CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
6
|
García-Soto I, Andersen SU, Monroy-Morales E, Robledo-Gamboa M, Guadarrama J, Aviles-Baltazar NY, Serrano M, Stougaard J, Montiel J. A collection of novel Lotus japonicus LORE1 mutants perturbed in the nodulation program induced by the Agrobacterium pusense strain IRBG74. FRONTIERS IN PLANT SCIENCE 2024; 14:1326766. [PMID: 38250449 PMCID: PMC10796720 DOI: 10.3389/fpls.2023.1326766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024]
Abstract
The Lotus japonicus population carrying new Lotus retrotransposon 1 (LORE1) insertions represents a valuable biological resource for genetic research. New insertions were generated by activation of the endogenous retroelement LORE1a in the germline of the G329-3 plant line and arranged in a 2-D system for reverse genetics. LORE1 mutants identified in this collection contributes substantially to characterize candidate genes involved in symbiotic association of L. japonicus with its cognate symbiont, the nitrogen-fixing bacteria Mesorhizobium loti that infects root nodules intracellularly. In this study we aimed to identify novel players in the poorly explored intercellular infection induced by Agrobacterium pusense IRBG74 sp. For this purpose, a forward screen of > 200,000 LORE1 seedlings, obtained from bulk propagation of G329-3 plants, inoculated with IRBG74 was performed. Plants with perturbed nodulation were scored and the offspring were further tested on plates to confirm the symbiotic phenotype. A total of 110 Lotus mutants with impaired nodulation after inoculation with IRBG74 were obtained. A comparative analysis of nodulation kinetics in a subset of 20 mutants showed that most of the lines were predominantly affected in nodulation by IRBG74. Interestingly, additional defects in the main root growth were observed in some mutant lines. Sequencing of LORE1 flanking regions in 47 mutants revealed that 92 Lotus genes were disrupted by novel LORE1 insertions in these lines. In the IM-S34 mutant, one of the insertions was located in the 5´UTR of the LotjaGi5g1v0179800 gene, which encodes the AUTOPHAGY9 protein. Additional mutant alleles, named atg9-2 and atg9-3, were obtained in the reverse genetic collection. Nodule formation was significantly reduced in these mutant alleles after M. loti and IRBG74 inoculation, confirming the effectiveness of the mutant screening. This study describes an effective forward genetic approach to obtain novel mutants in Lotus with a phenotype of interest and to identify the causative gene(s).
Collapse
Affiliation(s)
- Ivette García-Soto
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | - Stig U. Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Elizabeth Monroy-Morales
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | - Mariana Robledo-Gamboa
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | - Jesús Guadarrama
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | | | - Mario Serrano
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | - Jens Stougaard
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Jesús Montiel
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| |
Collapse
|
7
|
García-Soto I, Formey D, Mora-Toledo A, Cárdenas L, Aragón W, Tromas A, Duque-Ortiz A, Jiménez-Bremont JF, Serrano M. AtRAC7/ROP9 Small GTPase Regulates A. thaliana Immune Systems in Response to B. cinerea Infection. Int J Mol Sci 2024; 25:591. [PMID: 38203762 PMCID: PMC10779071 DOI: 10.3390/ijms25010591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/17/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Botrytis cinerea is a necrotrophic fungus that can cause gray mold in over 1400 plant species. Once it is detected by Arabidopsis thaliana, several defense responses are activated against this fungus. The proper activation of these defenses determines plant susceptibility or resistance. It has been proposed that the RAC/ROP small GTPases might serve as a molecular link in this process. In this study, we investigate the potential role of the Arabidopsis RAC7 gene during infection with B. cinerea. For that, we evaluated A. thaliana RAC7-OX lines, characterized by the overexpression of the RAC7 gene. Our results reveal that these RAC7-OX lines displayed increased susceptibility to B. cinerea infection, with enhanced fungal colonization and earlier lesion development. Additionally, they exhibited heightened sensitivity to bacterial infections caused by Pseudomonas syringae and Pectobacterium brasiliense. By characterizing plant canonical defense mechanisms and performing transcriptomic profiling, we determined that RAC7-OX lines impaired the plant transcriptomic response before and during B. cinerea infection. Global pathway analysis of differentially expressed genes suggested that RAC7 influences pathogen perception, cell wall homeostasis, signal transduction, and biosynthesis and response to hormones and antimicrobial compounds through actin filament modulation. Herein, we pointed out, for first time, the negative role of RAC7 small GTPase during A. thaliana-B. cinerea interaction.
Collapse
Affiliation(s)
- Ivette García-Soto
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Morelos, Mexico; (D.F.); (A.M.-T.)
- Programa de Doctorado en Ciencias Bioquímicas, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Morelos, Mexico
| | - Damien Formey
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Morelos, Mexico; (D.F.); (A.M.-T.)
| | - Angélica Mora-Toledo
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Morelos, Mexico; (D.F.); (A.M.-T.)
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Coyoacan 04510, Ciudad de México, Mexico
| | - Luis Cárdenas
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Morelos, Mexico;
| | - Wendy Aragón
- Instituto de Biociencias, Universidad Autónoma de Chiapas, Blvd. Príncipe Akishino s/n, Tapachula 30798, Chiapas, Mexico;
| | - Alexandre Tromas
- La Cité College, Bureau de la Recherche et de l’Innovation, Ottawa, ON K1K 4R3, Canada;
| | - Arianna Duque-Ortiz
- Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí 78216, San Luis Potosí, Mexico; (A.D.-O.); (J.F.J.-B.)
| | - Juan Francisco Jiménez-Bremont
- Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí 78216, San Luis Potosí, Mexico; (A.D.-O.); (J.F.J.-B.)
| | - Mario Serrano
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Morelos, Mexico; (D.F.); (A.M.-T.)
| |
Collapse
|
8
|
Hlaváčková K, Šamaj J, Ovečka M. Cytoskeleton as a roadmap navigating rhizobia to establish symbiotic root nodulation in legumes. Biotechnol Adv 2023; 69:108263. [PMID: 37775072 DOI: 10.1016/j.biotechadv.2023.108263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/28/2023] [Accepted: 09/24/2023] [Indexed: 10/01/2023]
Abstract
Legumes enter into symbiotic associations with soil nitrogen-fixing rhizobia, culminating in the creation of new organs, root nodules. This complex process relies on chemical and physical interaction between legumes and rhizobia, including early signalling events informing the host legume plant of a potentially beneficial microbe and triggering the nodulation program. The great significance of this plant-microbe interaction rests upon conversion of atmospheric dinitrogen not accessible to plants into a biologically active form of ammonia available to plants. The plant cytoskeleton consists in a highly dynamic network and undergoes rapid remodelling upon sensing various developmental and environmental cues, including response to attachment, internalization, and accommodation of rhizobia in plant root and nodule cells. This dynamic nature is governed by cytoskeleton-associated proteins that modulate cytoskeletal behaviour depending on signal perception and transduction. Precisely localized cytoskeletal rearrangements are therefore essential for the uptake of rhizobia, their targeted delivery, and establishing beneficial root nodule symbiosis. This review summarizes current knowledge about rhizobia-dependent rearrangements and functions of the cytoskeleton in legume roots and nodules. General patterns and nodule type-, nodule stage-, and species-specific aspects of actin filaments and microtubules remodelling are discussed. Moreover, emerging evidence is provided about fine-tuning the root nodulation process through cytoskeleton-associated proteins. We also consider future perspectives on dynamic localization studies of the cytoskeleton during early symbiosis utilizing state of the art molecular and advanced microscopy approaches. Based on acquired detailed knowledge of the mutualistic interactions with microbes, these approaches could contribute to broader biotechnological crop improvement.
Collapse
Affiliation(s)
- Kateřina Hlaváčková
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic.
| | - Jozef Šamaj
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic.
| | - Miroslav Ovečka
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic.
| |
Collapse
|
9
|
Montiel J, García-Soto I, James EK, Reid D, Cárdenas L, Napsucialy-Mendivil S, Ferguson S, Dubrovsky JG, Stougaard J. Aromatic amino acid biosynthesis impacts root hair development and symbiotic associations in Lotus japonicus. PLANT PHYSIOLOGY 2023; 193:1508-1526. [PMID: 37427869 PMCID: PMC10517252 DOI: 10.1093/plphys/kiad398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023]
Abstract
Legume roots can be symbiotically colonized by arbuscular mycorrhizal (AM) fungi and nitrogen-fixing bacteria. In Lotus japonicus, the latter occurs intracellularly by the cognate rhizobial partner Mesorhizobium loti or intercellularly with the Agrobacterium pusense strain IRBG74. Although these symbiotic programs show distinctive cellular and transcriptome signatures, some molecular components are shared. In this study, we demonstrate that 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase 1 (DAHPS1), the first enzyme in the biosynthetic pathway of aromatic amino acids (AAAs), plays a critical role in root hair development and for AM and rhizobial symbioses in Lotus. Two homozygous DAHPS1 mutants (dahps1-1 and dahps1-2) showed drastic alterations in root hair morphology, associated with alterations in cell wall dynamics and a progressive disruption of the actin cytoskeleton. The altered root hair structure was prevented by pharmacological and genetic complementation. dahps1-1 and dahps1-2 showed significant reductions in rhizobial infection (intracellular and intercellular) and nodule organogenesis and a delay in AM colonization. RNAseq analysis of dahps1-2 roots suggested that these phenotypes are associated with downregulation of several cell wall-related genes, and with an attenuated signaling response. Interestingly, the dahps1 mutants showed no detectable pleiotropic effects, suggesting a more selective recruitment of this gene in certain biological processes. This work provides robust evidence linking AAA metabolism to root hair development and successful symbiotic associations.
Collapse
Affiliation(s)
- Jesús Montiel
- Departamento de Genómica Funcional de Eucariotas. Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus DK-8000, Denmark
| | - Ivette García-Soto
- Departamento de Genómica Funcional de Eucariotas. Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico
| | - Euan K James
- Ecological Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Dugald Reid
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus DK-8000, Denmark
- Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Luis Cárdenas
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico
| | - Selene Napsucialy-Mendivil
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico
| | - Shaun Ferguson
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus DK-8000, Denmark
| | - Joseph G Dubrovsky
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico
| | - Jens Stougaard
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus DK-8000, Denmark
| |
Collapse
|
10
|
Liu Z, Kong X, Long Y, Liu S, Zhang H, Jia J, Cui W, Zhang Z, Song X, Qiu L, Zhai J, Yan Z. Integrated single-nucleus and spatial transcriptomics captures transitional states in soybean nodule maturation. NATURE PLANTS 2023; 9:515-524. [PMID: 37055554 DOI: 10.1038/s41477-023-01387-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 03/03/2023] [Indexed: 06/19/2023]
Abstract
Legumes form symbiosis with rhizobium leading to the development of nitrogen-fixing nodules. By integrating single-nucleus and spatial transcriptomics, we established a cell atlas of soybean nodules and roots. In central infected zones of nodules, we found that uninfected cells specialize into functionally distinct subgroups during nodule development, and revealed a transitional subtype of infected cells with enriched nodulation-related genes. Overall, our results provide a single-cell perspective for understanding rhizobium-legume symbiosis.
Collapse
Affiliation(s)
- Zhijian Liu
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Xiangying Kong
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanping Long
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Sirui Liu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng, China
| | - Hong Zhang
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Jinbu Jia
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Wenhui Cui
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
| | - Zunmian Zhang
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng, China
| | - Xianwei Song
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Lijuan Qiu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jixian Zhai
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
| | - Zhe Yan
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China.
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China.
| |
Collapse
|
11
|
Lace B, Su C, Invernot Perez D, Rodriguez-Franco M, Vernié T, Batzenschlager M, Egli S, Liu CW, Ott T. RPG acts as a central determinant for infectosome formation and cellular polarization during intracellular rhizobial infections. eLife 2023; 12:80741. [PMID: 36856086 PMCID: PMC9991063 DOI: 10.7554/elife.80741] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Host-controlled intracellular accommodation of nitrogen-fixing bacteria is essential for the establishment of a functional Root Nodule Symbiosis (RNS). In many host plants, this occurs via transcellular tubular structures (infection threads - ITs) that extend across cell layers via polar tip-growth. Comparative phylogenomic studies have identified RPG (RHIZOBIUM-DIRECTED POLAR GROWTH) among the critical genetic determinants for bacterial infection. In Medicago truncatula, RPG is required for effective IT progression within root hairs but the cellular and molecular function of the encoded protein remains elusive. Here, we show that RPG resides in the protein complex formed by the core endosymbiotic components VAPYRIN (VPY) and LUMPY INFECTION (LIN) required for IT polar growth, co-localizes with both VPY and LIN in IT tip- and perinuclear-associated puncta of M. truncatula root hairs undergoing infection and is necessary for VPY recruitment into these structures. Fluorescence Lifetime Imaging Microscopy (FLIM) of phosphoinositide species during bacterial infection revealed that functional RPG is required to sustain strong membrane polarization at the advancing tip of the IT. In addition, loss of RPG functionality alters the cytoskeleton-mediated connectivity between the IT tip and the nucleus and affects the polar secretion of the cell wall modifying enzyme NODULE PECTATE LYASE (NPL). Our results integrate RPG into a core host machinery required to support symbiont accommodation, suggesting that its occurrence in plant host genomes is essential to co-opt a multimeric protein module committed to endosymbiosis to sustain IT-mediated bacterial infection.
Collapse
Affiliation(s)
- Beatrice Lace
- University of Freiburg, Faculty of BiologyFreiburgGermany
| | - Chao Su
- University of Freiburg, Faculty of BiologyFreiburgGermany
| | | | | | - Tatiana Vernié
- LRSV, Université de Toulouse, CNRS, UPS, INP ToulouseCastanet-TolosanFrance
| | | | - Sabrina Egli
- University of Freiburg, Faculty of BiologyFreiburgGermany
| | - Cheng-Wu Liu
- School of Life Sciences, Division of Life Sciences and Medicine, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of ChinaHefeiChina
| | - Thomas Ott
- University of Freiburg, Faculty of BiologyFreiburgGermany
- CIBSS – Centre of Integrative Biological Signalling Studies, University of FreiburgFreiburgGermany
| |
Collapse
|
12
|
Li X, Liu M, Cai M, Chiasson D, Groth M, Heckmann AB, Wang TL, Parniske M, Downie JA, Xie F. RPG interacts with E3-ligase CERBERUS to mediate rhizobial infection in Lotus japonicus. PLoS Genet 2023; 19:e1010621. [PMID: 36735729 PMCID: PMC9931111 DOI: 10.1371/journal.pgen.1010621] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 02/15/2023] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
Symbiotic interactions between rhizobia and legumes result in the formation of root nodules, which fix nitrogen that can be used for plant growth. Rhizobia usually invade legume roots through a plant-made tunnel-like structure called an infection thread (IT). RPG (Rhizobium-directed polar growth) encodes a coiled-coil protein that has been identified in Medicago truncatula as required for root nodule infection, but the function of RPG remains poorly understood. In this study, we identified and characterized RPG in Lotus japonicus and determined that it is required for IT formation. RPG was induced by Mesorhizobium loti or purified Nodulation factor and displayed an infection-specific expression pattern. Nodule inception (NIN) bound to the RPG promoter and induced its expression. We showed that RPG displayed punctate subcellular localization in L. japonicus root protoplasts and in root hairs infected by M. loti. The N-terminal predicted C2 lipid-binding domain of RPG was not required for this subcellular localization or for function. CERBERUS, a U-box E3 ligase which is also required for rhizobial infection, was found to be localized similarly in puncta. RPG co-localized and directly interacted with CERBERUS in the early endosome (TGN/EE) compartment and near the nuclei in root hairs after rhizobial inoculation. Our study sheds light on an RPG-CERBERUS protein complex that is involved in an exocytotic pathway mediating IT elongation.
Collapse
Affiliation(s)
- Xiaolin Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Miaoxia Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Min Cai
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - David Chiasson
- Faculty of Biology, University of Munich, Großhaderner Straße 2–4, Planegg-Martinsried, Germany
| | - Martin Groth
- Faculty of Biology, University of Munich, Großhaderner Straße 2–4, Planegg-Martinsried, Germany
| | - Anne B. Heckmann
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Trevor L. Wang
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Martin Parniske
- Faculty of Biology, University of Munich, Großhaderner Straße 2–4, Planegg-Martinsried, Germany
| | - J. Allan Downie
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Fang Xie
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
13
|
Li E, Zhang YL, Qin Z, Xu M, Qiao Q, Li S, Li SW, Zhang Y. Signaling network controlling ROP-mediated tip growth in Arabidopsis and beyond. PLANT COMMUNICATIONS 2023; 4:100451. [PMID: 36114666 PMCID: PMC9860187 DOI: 10.1016/j.xplc.2022.100451] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/24/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Cell polarity operates across a broad range of spatial and temporal scales and is essential for specific biological functions of polarized cells. Tip growth is a special type of polarization in which a single and unique polarization site is established and maintained, as for the growth of root hairs and pollen tubes in plants. Extensive studies in past decades have demonstrated that the spatiotemporal localization and activity of Rho of Plants (ROPs), the only class of Rho GTPases in plants, are critical for tip growth. ROPs are switched on or off by different factors to initiate dynamic intracellular activities, leading to tip growth. Recent studies have also uncovered several feedback modules for ROP signaling. In this review, we summarize recent progress on ROP signaling in tip growth, focusing on molecular mechanisms that underlie the dynamic distribution and activity of ROPs in Arabidopsis. We also highlight feedback modules that control ROP-mediated tip growth and provide a perspective for building a complex ROP signaling network. Finally, we provide an evolutionary perspective for ROP-mediated tip growth in Physcomitrella patens and during plant-rhizobia interaction.
Collapse
Affiliation(s)
- En Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Yu-Ling Zhang
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zheng Qin
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Meng Xu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Qian Qiao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Sha Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Shan-Wei Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yan Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| |
Collapse
|
14
|
Luo Y, Liu W, Sun J, Zhang ZR, Yang WC. Quantitative proteomics reveals key pathways in the symbiotic interface and the likely extracellular property of soybean symbiosome. J Genet Genomics 2023; 50:7-19. [PMID: 35470091 DOI: 10.1016/j.jgg.2022.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 02/06/2023]
Abstract
An effective symbiosis between legumes and rhizobia relies largely on diverse proteins at the plant-rhizobium interface for material transportation and signal transduction during symbiotic nitrogen fixation. Here, we report a comprehensive proteome atlas of the soybean symbiosome membrane (SM), peribacteroid space (PBS), and root microsomal fraction (RMF) using state-of-the-art label-free quantitative proteomic technology. In total, 1759 soybean proteins with diverse functions are detected in the SM, and 1476 soybean proteins and 369 rhizobial proteins are detected in the PBS. The diversity of SM proteins detected suggests multiple origins of the SM. Quantitative comparative analysis highlights amino acid metabolism and nutrient uptake in the SM, indicative of the key pathways in nitrogen assimilation. The detection of soybean secretory proteins in the PBS and receptor-like kinases in the SM provides evidence for the likely extracellular property of the symbiosome and the potential signaling communication between both symbionts at the symbiotic interface. Our proteomic data provide clues for how some of the sophisticated regulation between soybean and rhizobium at the symbiotic interface is achieved, and suggest approaches for symbiosis engineering.
Collapse
Affiliation(s)
- Yu Luo
- The State Key Laboratory for Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Wei Liu
- The State Key Laboratory for Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Juan Sun
- The State Key Laboratory for Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng-Rong Zhang
- The State Key Laboratory for Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Cai Yang
- The State Key Laboratory for Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
15
|
Wang J, Ma C, Ma S, Zheng H, Feng H, Wang Y, Wang J, Liu C, Xin D, Chen Q, Yang M. GmARP is Related to the Type III Effector NopAA to Promote Nodulation in Soybean (Glycine max). Front Genet 2022; 13:889795. [PMID: 35692823 PMCID: PMC9184740 DOI: 10.3389/fgene.2022.889795] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/05/2022] [Indexed: 11/23/2022] Open
Abstract
Type III effectors secreted by rhizobia regulate nodulation in the host plant and are important modulators of symbiosis between rhizobia and soybean (Glycine max), although the underlying mechanisms are poorly understood. Here, we studied the type III effector NopAA in Sinorhizobium fredii HH103, confirming its secretion into the extracellular environment under the action of genistein. The enzyme activity of NopAA was investigated in vitro, using xyloglucan and β-glucan as substrates. NopAA functions were investigated by the generation of a NopAA mutant and the effects of NopAA deficiency on symbiosis were analyzed. Soybean genes associated with NopAA were identified in a recombinant inbred line (RIL) population and their functions were verified. NopAA was confirmed to be a type III effector with glycosyl hydrolase activity, and its mutant did not promote nodulation. Quantitative trait locus (QTL) analysis identified 10 QTLs with one, Glyma.19g074200 (GmARP), found to be associated with NopAA and to positively regulate the establishment of symbiosis. All these results support the hypothesis that type III effectors interact with host proteins to regulate the establishment of symbiosis and suggest the possibility of manipulating the symbiotic soybean–rhizobia interaction to promote efficient nitrogen fixation.
Collapse
Affiliation(s)
- Jinhui Wang
- College of Agriculture, Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Chao Ma
- College of Agriculture, Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Shengnan Ma
- College of Agriculture, Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Haiyang Zheng
- College of Agriculture, Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Haojie Feng
- College of Agriculture, Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Yue Wang
- College of Agriculture, Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Jiangxu Wang
- Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Chunyan Liu
- College of Agriculture, Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Dawei Xin
- College of Agriculture, Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
- *Correspondence: Dawei Xin, ; Qingshan Chen, ; Mingliang Yang,
| | - Qingshan Chen
- College of Agriculture, Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
- *Correspondence: Dawei Xin, ; Qingshan Chen, ; Mingliang Yang,
| | - Mingliang Yang
- College of Agriculture, Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
- *Correspondence: Dawei Xin, ; Qingshan Chen, ; Mingliang Yang,
| |
Collapse
|
16
|
Wang D, Dong W, Murray J, Wang E. Innovation and appropriation in mycorrhizal and rhizobial Symbioses. THE PLANT CELL 2022; 34:1573-1599. [PMID: 35157080 PMCID: PMC9048890 DOI: 10.1093/plcell/koac039] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/21/2022] [Indexed: 05/20/2023]
Abstract
Most land plants benefit from endosymbiotic interactions with mycorrhizal fungi, including legumes and some nonlegumes that also interact with endosymbiotic nitrogen (N)-fixing bacteria to form nodules. In addition to these helpful interactions, plants are continuously exposed to would-be pathogenic microbes: discriminating between friends and foes is a major determinant of plant survival. Recent breakthroughs have revealed how some key signals from pathogens and symbionts are distinguished. Once this checkpoint has been passed and a compatible symbiont is recognized, the plant coordinates the sequential development of two types of specialized structures in the host. The first serves to mediate infection, and the second, which appears later, serves as sophisticated intracellular nutrient exchange interfaces. The overlap in both the signaling pathways and downstream infection components of these symbioses reflects their evolutionary relatedness and the common requirements of these two interactions. However, the different outputs of the symbioses, phosphate uptake versus N fixation, require fundamentally different components and physical environments and necessitated the recruitment of different master regulators, NODULE INCEPTION-LIKE PROTEINS, and PHOSPHATE STARVATION RESPONSES, for nodulation and mycorrhization, respectively.
Collapse
Affiliation(s)
- Dapeng Wang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wentao Dong
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | | | - Ertao Wang
- Authors for correspondence: (E.W) and (J.M.)
| |
Collapse
|
17
|
Mallery EL, Yanagisawa M, Zhang C, Lee Y, Robles LM, Alonso JM, Szymanski DB. Tandem C2 domains mediate dynamic organelle targeting of a DOCK family guanine nucleotide exchange factor. J Cell Sci 2022; 135:275003. [PMID: 35194638 DOI: 10.1242/jcs.259825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/11/2022] [Indexed: 11/20/2022] Open
Abstract
Multicellular organisms use DOCK family guanine nucleotide exchange factors to activate Rac/Rho-of-Plants small GTPases and coordinate cell shape change. In developing tissues, DOCK signals integrate cell-cell interactions with cytoskeleton remodeling, and the GEFs cluster reversibly at specific organelle surfaces to orchestrate cytoskeletal reorganization. The domain organizations among DOCK orthologs are diverse, and the mechanisms of localization control are poorly understood. Here we use combinations of transgene complementation and live cell imaging assays to uncover an evolutionarily conserved and essential localization determinant in the DOCK-GEF named SPIKE1. The SPIKE1-DHR3 domain is sufficient for organelle association in vivo, and displays a complicated lipid binding selectivity for both phospholipid head groups and fatty acid chain saturation. SPIKE1-DHR3 is predicted to adopt a C2-domain structure and functions as part of tandem C2 array that enables reversible clustering at the cell apex. This work provides mechanistic insight into how DOCK GEFs sense compositional and biophysical membrane properties at the interface of two organelle systems.
Collapse
Affiliation(s)
- Eileen L Mallery
- Departments of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Makoto Yanagisawa
- Departments of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Chunhua Zhang
- Departments of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA.,Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Youngwoo Lee
- Departments of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA.,Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Linda M Robles
- Department of Plant & Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Jose M Alonso
- Department of Plant & Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Daniel B Szymanski
- Departments of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA.,Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA.,Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
18
|
Wang M, Feng H, Xu P, Xie Q, Gao J, Wang Y, Zhang X, Yang J, Murray JD, Sun F, Wang C, Wang E, Yu N. Phosphorylation of MtRopGEF2 by LYK3 mediates MtROP activity to regulate rhizobial infection in Medicago truncatula. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1787-1800. [PMID: 34236765 DOI: 10.1111/jipb.13148] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 07/05/2021] [Indexed: 05/28/2023]
Abstract
The formation of nitrogen-fixing no dules on legume roots requires the coordination of infection by rhizobia at the root epidermis with the initiation of cell divisions in the root cortex. During infection, rhizobia attach to the tip of elongating root hairs which then curl to entrap the rhizobia. However, the mechanism of root hair deformation and curling in response to symbiotic signals is still elusive. Here, we found that small GTPases (MtRac1/MtROP9 and its homologs) are required for root hair development and rhizobial infection in Medicago truncatula. Our results show that the Nod factor receptor LYK3 phosphorylates the guanine nucleotide exchange factor MtRopGEF2 at S73 which is critical for the polar growth of root hairs. In turn, phosphorylated MtRopGEF2 can activate MtRac1. Activated MtRac1 was found to localize at the tips of root hairs and to strongly interact with LYK3 and NFP. Taken together, our results support the hypothesis that MtRac1, LYK3, and NFP form a polarly localized receptor complex that regulates root hair deformation during rhizobial infection.
Collapse
Affiliation(s)
- Mingxing Wang
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai, 200234, China
- National key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, the Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Huan Feng
- National key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, the Chinese Academy of Sciences, Shanghai, 200032, China
- College of Forestry, Northwest A&F University, Yangling, 712100, China
| | - Peng Xu
- National key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, the Chinese Academy of Sciences, Shanghai, 200032, China
- College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Qiujin Xie
- National key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, the Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Jinpeng Gao
- National key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, the Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Yanzhang Wang
- National key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, the Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xiaowei Zhang
- National key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, the Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jun Yang
- National key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, the Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jeremy D Murray
- National key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, the Chinese Academy of Sciences, Shanghai, 200032, China
| | - Fengli Sun
- College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Chunyan Wang
- College of Forestry, Northwest A&F University, Yangling, 712100, China
| | - Ertao Wang
- National key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, the Chinese Academy of Sciences, Shanghai, 200032, China
| | - Nan Yu
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai, 200234, China
| |
Collapse
|
19
|
Gao H, Wang T, Zhang Y, Li L, Wang C, Guo S, Zhang T, Wang C. GTPase ROP6 negatively modulates phosphate deficiency through inhibition of PHT1;1 and PHT1;4 in Arabidopsis thaliana. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1775-1786. [PMID: 34288396 DOI: 10.1111/jipb.13153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
Phosphorus, an essential macroelement for plant growth and development, is a major limiting factor for sustainable crop yield. The Rho of plant (ROP) GTPase is involved in regulating multiple signal transduction processes in plants, but potentially including the phosphate deficiency signaling pathway remains unknown. Here, we identified that the rop6 mutant exhibited a dramatic tolerant phenotype under Pi-deficient conditions, with higher phosphate accumulation and lower anthocyanin content. In contrast, the rop6 mutant was more sensitive to arsenate (As(V)) toxicity, the analog of Pi. Immunoblot analysis displayed that the ROP6 protein was rapidly degraded through ubiquitin/26S proteasome pathway under Pi-deficient conditions. In addition, pull-down assay using GST-RIC1 demonstrated that the ROP6 activity was decreased obviously under Pi-deficient conditions. Strikingly, protein-protein interaction and two-voltage clamping assays demonstrated that ROP6 physically interacted with and inhibited the key phosphate uptake transporters PHT1;1 and PHT1;4 in vitro and in vivo. Moreover, genetic analysis showed that ROP6 functioned upstream of PHT1;1 and PHT1;4. Thus, we conclude that GTPase ROP6 modulates the uptake of phosphate by inhibiting the activities of PHT1;1 and PHT1;4 in Arabidopsis.
Collapse
Affiliation(s)
- Huiling Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Tian Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Yanting Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Lili Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Chuanqing Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Shiyuan Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Tianqi Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Cun Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
20
|
Gao JP, Xu P, Wang M, Zhang X, Yang J, Zhou Y, Murray JD, Song CP, Wang E. Nod factor receptor complex phosphorylates GmGEF2 to stimulate ROP signaling during nodulation. Curr Biol 2021; 31:3538-3550.e5. [PMID: 34216556 DOI: 10.1016/j.cub.2021.06.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 02/09/2021] [Accepted: 06/03/2021] [Indexed: 11/20/2022]
Abstract
The establishment of the symbiotic interaction between rhizobia and legumes involves the Nod factor signaling pathway. Nod factor recognition occurs through two plant receptors, NFR1 and NFR5. However, the signal transduction mechanisms downstream of NFR1-NFR5-mediated Nod factor perception remain largely unknown. Here, we report that a small guanosine triphosphatase (GTPase), GmROP9, and a guanine nucleotide exchange factor, GmGEF2, are involved in the soybean-rhizobium symbiosis. We show that GmNFR1α phosphorylates GmGEF2a at its N-terminal S86, which stimulates guanosine diphosphate (GDP)-to-GTP exchange to activate GmROP9 and that the active form of GmROP9 can associate with both GmNFR1α and GmNFR5α. We further show that a scaffold protein, GmRACK1, interacts with active GmROP9 and contributes to root nodule symbiosis. Collectively, our results highlight the symbiotic role of GmROP9-GmRACK1 and support the hypothesis that rhizobial signals promote the formation of a protein complex comprising GmNFR1, GmNFR5, GmROP9, and GmRACK1 for symbiotic signal transduction in soybean.
Collapse
Affiliation(s)
- Jin-Peng Gao
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475001, China; CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Peng Xu
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Mingxing Wang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xiaowei Zhang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jun Yang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yun Zhou
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Jeremy D Murray
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Chun-Peng Song
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
21
|
Krönauer C, Radutoiu S. Understanding Nod factor signalling paves the way for targeted engineering in legumes and non-legumes. CURRENT OPINION IN PLANT BIOLOGY 2021; 62:102026. [PMID: 33684882 DOI: 10.1016/j.pbi.2021.102026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/31/2021] [Accepted: 02/05/2021] [Indexed: 05/06/2023]
Abstract
Legumes evolved LysM receptors for recognition of rhizobial Nod factors and initiation of signalling pathways for nodule organogenesis and infection. Intracellularly hosted bacteria are supplied with carbon resources in exchange for fixed nitrogen. Nod factor recognition is crucial for initial signalling, but is reiterated in growing roots initiating novel symbiotic events, and in developing primordia until symbiosis is well-established. Understanding how this signalling coordinates the entire process from cellular to plant level is key for de novo engineering in non-legumes and for improved efficiency in legumes. Here we discuss how recent studies bring new insights into molecular determinants of specificity and sensitivity in Nod factor signalling in legumes, and present some of the unknowns and challenges for engineering.
Collapse
Affiliation(s)
- Christina Krönauer
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds vej 10, 8000C, Aarhus, Denmark
| | - Simona Radutoiu
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds vej 10, 8000C, Aarhus, Denmark.
| |
Collapse
|
22
|
Liu D, Luo Y, Zheng X, Wang X, Chou M, Wei G. TRAPPC13 Is a Novel Target of Mesorhizobium amorphae Type III Secretion System Effector NopP. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:511-523. [PMID: 33630651 DOI: 10.1094/mpmi-12-20-0354-fi] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Similar to pathogenic bacteria, rhizobia can inject effector proteins into host cells directly to promote infection via the type III secretion system (T3SS). Nodulation outer protein P (NopP), a specific T3SS effector of rhizobia, plays different roles in the establishment of multiple rhizobia-legume symbiotic systems. Mesorhizobium amorphae CCNWGS0123 (GS0123), which infects Robinia pseudoacacia specifically, secretes several T3SS effectors, including NopP. Here, we demonstrate that NopP is secreted through T3SS-I of GS0123 during the early stages of infection, and its deficiency decreases nodule nitrogenase activity of R. pseudoacacia nodules. A trafficking protein particle complex subunit 13-like protein (TRAPPC13) has been identified as a NopP target protein in R. pseudoacacia roots by screening a yeast two-hybrid library. The physical interaction between NopP and TRAPPC13 is verified by bimolecular fluorescence complementation and coimmunoprecipitation assays. In addition, subcellular localization analysis reveals that both NopP and its target, TRAPPC13, are colocalized on the plasma membrane. Compared with GS0123-inoculated R. pseudoacacia roots, some genes associated with cell wall remodeling and plant innate immunity down-regulated in ΔnopP-inoculated roots at 36 h postinoculation. The results suggest that NopP in M. amorphae CCNWGS0123 acts in multiple processes in R. pseudoacacia during the early stages of infection, and TRAPPC13 could participate in the process as a NopP target.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Dongying Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yantao Luo
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaofeng Zheng
- Shaanxi Hydrogeology Engineering Geology and Environmental Geology Survey Center, Shaanxi Institute of Geological Survey, Xi'an, Shaanxi 710054, China
| | - Xinye Wang
- Moutai Institute, Renhuai, Guizhou 564500, China
| | - Minxia Chou
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
23
|
Structure and Development of the Legume-Rhizobial Symbiotic Interface in Infection Threads. Cells 2021; 10:cells10051050. [PMID: 33946779 PMCID: PMC8146911 DOI: 10.3390/cells10051050] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023] Open
Abstract
The intracellular infection thread initiated in a root hair cell is a unique structure associated with Rhizobium-legume symbiosis. It is characterized by inverted tip growth of the plant cell wall, resulting in a tunnel that allows invasion of host cells by bacteria during the formation of the nitrogen-fixing root nodule. Regulation of the plant-microbial interface is essential for infection thread growth. This involves targeted deposition of the cell wall and extracellular matrix and tight control of cell wall remodeling. This review describes the potential role of different actors such as transcription factors, receptors, and enzymes in the rearrangement of the plant-microbial interface and control of polar infection thread growth. It also focuses on the composition of the main polymers of the infection thread wall and matrix and the participation of reactive oxygen species (ROS) in the development of the infection thread. Mutant analysis has helped to gain insight into the development of host defense reactions. The available data raise many new questions about the structure, function, and development of infection threads.
Collapse
|
24
|
García-Soto I, Boussageon R, Cruz-Farfán YM, Castro-Chilpa JD, Hernández-Cerezo LX, Bustos-Zagal V, Leija-Salas A, Hernández G, Torres M, Formey D, Courty PE, Wipf D, Serrano M, Tromas A. The Lotus japonicus ROP3 Is Involved in the Establishment of the Nitrogen-Fixing Symbiosis but Not of the Arbuscular Mycorrhizal Symbiosis. FRONTIERS IN PLANT SCIENCE 2021; 12:696450. [PMID: 34868100 PMCID: PMC8636059 DOI: 10.3389/fpls.2021.696450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 10/25/2021] [Indexed: 05/17/2023]
Abstract
Legumes form root mutualistic symbioses with some soil microbes promoting their growth, rhizobia, and arbuscular mycorrhizal fungi (AMF). A conserved set of plant proteins rules the transduction of symbiotic signals from rhizobia and AMF in a so-called common symbiotic signaling pathway (CSSP). Despite considerable efforts and advances over the past 20 years, there are still key elements to be discovered about the establishment of these root symbioses. Rhizobia and AMF root colonization are possible after a deep cell reorganization. In the interaction between the model legume Lotus japonicus and Mesorhizobium loti, this reorganization has been shown to be dependent on a SCAR/Wave-like signaling module, including Rho-GTPase (ROP in plants). Here, we studied the potential role of ROP3 in the nitrogen-fixing symbiosis (NFS) as well as in the arbuscular mycorrhizal symbiosis (AMS). We performed a detailed phenotypic study on the effects of the loss of a single ROP on the establishment of both root symbioses. Moreover, we evaluated the expression of key genes related to CSSP and to the rhizobial-specific pathway. Under our experimental conditions, rop3 mutant showed less nodule formation at 7- and 21-days post inoculation as well as less microcolonies and a higher frequency of epidermal infection threads. However, AMF root colonization was not affected. These results suggest a role of ROP3 as a positive regulator of infection thread formation and nodulation in L. japonicus. In addition, CSSP gene expression was neither affected in NFS nor in AMS condition in rop3 mutant. whereas the expression level of some genes belonging to the rhizobial-specific pathway, like RACK1, decreased in the NFS. In conclusion, ROP3 appears to be involved in the NFS, but is neither required for intra-radical growth of AMF nor arbuscule formation.
Collapse
Affiliation(s)
- Ivette García-Soto
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
- Programa de Doctorado en Ciencias Bioquímicas, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
- *Correspondence: Ivette García-Soto,
| | - Raphael Boussageon
- Agroécologie, AgroSup Dijon, CNRS, Université de Bourgogne, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | | | | | | | - Victor Bustos-Zagal
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Alfonso Leija-Salas
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Georgina Hernández
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Martha Torres
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Damien Formey
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Pierre-Emmanuel Courty
- Agroécologie, AgroSup Dijon, CNRS, Université de Bourgogne, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Daniel Wipf
- Agroécologie, AgroSup Dijon, CNRS, Université de Bourgogne, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Mario Serrano
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
- Mario Serrano,
| | - Alexandre Tromas
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
- La Cité College, Bureau de la Recherche et de l’Innovation, Ottawa, ON, Canada
- Alexandre Tromas,
| |
Collapse
|