1
|
Yang M, Kong X, Zhou C, Kuang R, Wu X, Liu C, He H, Xu Z, Wei Y. Genomic insights into the domestication and genetic basis of yield in papaya. HORTICULTURE RESEARCH 2025; 12:uhaf045. [PMID: 40236729 PMCID: PMC11997427 DOI: 10.1093/hr/uhaf045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/25/2025] [Indexed: 04/17/2025]
Abstract
Papaya (Carica papaya L.) is an important tropical and subtropical fruit crop, and understanding its genome is essential for breeding. In this study, we assembled a high-quality genome of 344.17 Mb for the newly cultivated papaya 'Zihui', which contains 22 250 protein-coding genes. By integrating 201 resequenced papaya genomes, we identified four distinct papaya groups and a 34 Mb genomic region with strong domestication selection signals. Within these regions, two key genes associated with papaya yield were discovered: Cp_zihui06549, encoding a leucine-rich receptor-like protein kinase, and Cp_zihui06768, encoding the accumulation of photosystem one 1 (APO1) protein. Heterologous expression of Cp_zihui06549 in tomato confirmed that the total number of fruits in transgenic lines more than doubled compared to wild-type plants, resulting in a significant yield increase. Furthermore, we constructed a pan-genome of papaya and obtained a 77.41 Mb nonreference sequence containing 1543 genes. Within this pan-genome, 2483 variable genes, we detected, including four genes annotated as the 'terpene synthase activity' Gene Ontology term, which were lost in cultivars during domestication. Finally, gene retention analyses were performed using gene presence and absence variation data and differentially expressed genes across various tissues and organs. This study provides valuable insights into the genes and loci associated with phenotypes and domestication processes, laying a solid foundation for future papaya breeding efforts.
Collapse
Affiliation(s)
- Min Yang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences; Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, No. 80, Dafeng 2nd Street, Tianhe District, Guangzhou 510640, China
| | - Xiangdong Kong
- JiguangGene Biotechnology Co., Ltd., No. 9, Huida Road, Pukou District, Nanjing 210031, China
| | - Chenping Zhou
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences; Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, No. 80, Dafeng 2nd Street, Tianhe District, Guangzhou 510640, China
| | - Ruibin Kuang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences; Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, No. 80, Dafeng 2nd Street, Tianhe District, Guangzhou 510640, China
| | - Xiaming Wu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences; Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, No. 80, Dafeng 2nd Street, Tianhe District, Guangzhou 510640, China
| | - Chuanhe Liu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences; Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, No. 80, Dafeng 2nd Street, Tianhe District, Guangzhou 510640, China
| | - Han He
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences; Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, No. 80, Dafeng 2nd Street, Tianhe District, Guangzhou 510640, China
| | - Ze Xu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences; Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, No. 80, Dafeng 2nd Street, Tianhe District, Guangzhou 510640, China
| | - Yuerong Wei
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences; Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, No. 80, Dafeng 2nd Street, Tianhe District, Guangzhou 510640, China
| |
Collapse
|
2
|
Herrmann A, Sepuru KM, Bai P, Endo H, Nakagawa A, Kusano S, Ziadi A, Kato H, Sato A, Liu J, Shan L, Kimura S, Itami K, Uchida N, Hagihara S, Torii KU. Chemical genetics reveals cross-regulation of plant developmental signaling by the immune peptide-receptor pathway. SCIENCE ADVANCES 2025; 11:eads3718. [PMID: 39908379 PMCID: PMC11797554 DOI: 10.1126/sciadv.ads3718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 01/08/2025] [Indexed: 02/07/2025]
Abstract
Cells sense and integrate multiple signals to coordinate a response. A receptor-kinase signaling pathway for plant stomatal development shares components with the immunity pathway. The mechanism ensuring their signal specificities remains unclear. Using chemical genetics, here, we report the identification of a small molecule, kC9, that triggers excessive stomatal differentiation by inhibiting the canonical ERECTA pathway. kC9 binds to and inhibits the downstream mitogen-activated protein kinase MPK6, perturbing its substrate interaction. Notably, activation of immune signaling by a bacterial flagellin peptide nullified kC9's effects on stomatal development. This cross-regulation depends on the immune receptor FLS2 (FLAGELLIN SENSING 2) and occurs even in the absence of kC9 if the ERECTA family receptor population becomes suboptimal. Proliferating stomatal lineage cells are vulnerable to this immune signal penetration. Our findings suggest that the signal specificity between development and immunity can be ensured by mitogen-activated protein kinase homeostasis, reflecting the availability of upstream receptors, thereby providing an unanticipated view on signal specificity.
Collapse
Affiliation(s)
- Arvid Herrmann
- Howard Hughes Medical Institute, University of Texas at Austin, Austin, TX 78712, USA
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Krishna Mohan Sepuru
- Howard Hughes Medical Institute, University of Texas at Austin, Austin, TX 78712, USA
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Pengfei Bai
- Howard Hughes Medical Institute, University of Texas at Austin, Austin, TX 78712, USA
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Hitoshi Endo
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Ayami Nakagawa
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Shuhei Kusano
- RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Asraa Ziadi
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Hiroe Kato
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Ayato Sato
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Jun Liu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Libo Shan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Seisuke Kimura
- Faculty of Life Sciences and Center for Plant Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto 603-8555, Japan
| | - Kenichiro Itami
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Aichi 464-8601, Japan
- RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Naoyuki Uchida
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Shinya Hagihara
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Aichi 464-8601, Japan
- RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Keiko U. Torii
- Howard Hughes Medical Institute, University of Texas at Austin, Austin, TX 78712, USA
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
3
|
Huang WRH, Joosten MHAJ. Immune signaling: receptor-like proteins make the difference. TRENDS IN PLANT SCIENCE 2025; 30:54-68. [PMID: 38594153 DOI: 10.1016/j.tplants.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 04/11/2024]
Abstract
To resist biotic attacks, plants have evolved a sophisticated, receptor-based immune system. Cell-surface immune receptors, which are either receptor-like kinases (RLKs) or receptor-like proteins (RLPs), form the front line of the plant defense machinery. RLPs lack a cytoplasmic kinase domain for downstream immune signaling, and leucine-rich repeat (LRR)-containing RLPs constitutively associate with the RLK SOBIR1. The RLP/SOBIR1 complex was proposed to be the bimolecular equivalent of genuine RLKs. However, it appears that the molecular mechanisms by which RLP/SOBIR1 complexes and RLKs mount immunity show some striking differences. Here, we summarize the differences between RLP/SOBIR1 and RLK signaling, focusing on the way these receptors recruit the BAK1 co-receptor and elaborating on the negative crosstalk taking place between the two signaling networks.
Collapse
Affiliation(s)
- Wen R H Huang
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Matthieu H A J Joosten
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands.
| |
Collapse
|
4
|
Obergfell E, Hohmann U, Moretti A, Chen H, Hothorn M. Mechanistic Insights into the Function of 14-3-3 Proteins as Negative Regulators of Brassinosteroid Signaling in Arabidopsis. PLANT & CELL PHYSIOLOGY 2024; 65:1674-1688. [PMID: 38783418 PMCID: PMC11558545 DOI: 10.1093/pcp/pcae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/24/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
Brassinosteroids (BRs) are vital plant steroid hormones sensed at the cell surface by a membrane signaling complex comprising the receptor kinase BRI1 and a SERK family co-receptor kinase. Activation of this complex lead to dissociation of the inhibitor protein BKI1 from the receptor and to differential phosphorylation of BZR1/BES1 transcription factors by the glycogen synthase kinase 3 protein BIN2. Many phosphoproteins of the BR signaling pathway, including BRI1, SERKs, BKI1 and BZR1/BES1 can associate with 14-3-3 proteins. In this study, we use quantitative ligand binding assays to define the minimal 14-3-3 binding sites in the N-terminal lobe of the BRI1 kinase domain, in BKI1, and in BZR1 from Arabidopsis thaliana. All three motifs require to be phosphorylated to specifically bind 14-3-3s with mid- to low-micromolar affinity. BR signaling components display minimal isoform preference within the 14-3-3 non-ε subgroup. 14-3-3λ and 14-3-3 ω isoform complex crystal structures reveal that BKI1 and BZR1 bind as canonical type II 14-3-3 linear motifs. Disruption of key amino acids in the phosphopeptide binding site through mutation impairs the interaction of 14-3-3λ with all three linear motifs. Notably, quadruple loss-of-function mutants from the non-ε group exhibit gain-of-function BR signaling phenotypes, suggesting a role for 14-3-3 proteins as overall negative regulators of the BR pathway. Collectively, our work provides further mechanistic and genetic evidence for the regulatory role of 14-3-3 proteins at various stages of the BR signaling cascade.
Collapse
Affiliation(s)
- Elsa Obergfell
- Structural Plant Biology Laboratory, Department of Plant Sciences, University of Geneva, 30 Quai E. Ansermet, Geneva 1211, Switzerland
| | - Ulrich Hohmann
- Structural Plant Biology Laboratory, Department of Plant Sciences, University of Geneva, 30 Quai E. Ansermet, Geneva 1211, Switzerland
| | - Andrea Moretti
- Structural Plant Biology Laboratory, Department of Plant Sciences, University of Geneva, 30 Quai E. Ansermet, Geneva 1211, Switzerland
| | - Houming Chen
- Structural Plant Biology Laboratory, Department of Plant Sciences, University of Geneva, 30 Quai E. Ansermet, Geneva 1211, Switzerland
| | - Michael Hothorn
- Structural Plant Biology Laboratory, Department of Plant Sciences, University of Geneva, 30 Quai E. Ansermet, Geneva 1211, Switzerland
| |
Collapse
|
5
|
Xi L, Wu X, Wang J, Zhang Z, He M, Zeeshan Z, Stefan T, Schulze WX. Receptor Kinase Signaling of BRI1 and SIRK1 Is Tightly Balanced by Their Interactomes as Revealed From Domain-Swap Chimaera in AE-MS Approaches. Mol Cell Proteomics 2024; 23:100857. [PMID: 39414233 PMCID: PMC11585773 DOI: 10.1016/j.mcpro.2024.100857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/16/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024] Open
Abstract
At the plasma membrane, in response to biotic and abiotic cues, specific ligands initiate the formation of receptor kinase heterodimers, which regulate the activities of plasma membrane proteins and initiate signaling cascades to the nucleus. In this study, we utilized affinity enrichment mass spectrometry to investigate the stimulus-dependent interactomes of LRR receptor kinases in response to their respective ligands, with an emphasis on exploring structural influences and potential cross-talk events at the plasma membrane. BRI1 and SIRK1 were chosen as receptor kinases with distinct coreceptor preference. By using interactome characteristic of domain-swap chimera following a gradient boosting learning algorithm trained on SIRK1 and BRI1 interactomes, we attribute contributions of extracellular domain, transmembrane domain, juxtamembrane domain, and kinase domain of respective ligand-binding receptors to their interaction with their coreceptors and substrates. Our results revealed juxtamembrane domain as major structural element defining the specific substrate recruitment for BRI1 and extracellular domain for SIRK1. Furthermore, the learning algorithm enabled us to predict the phenotypic outcomes of chimeric receptors based on different domain combinations, which was verified by dedicated experiments. As a result, our work reveals a tightly controlled balance of signaling cascade activation dependent on ligand-binding receptors domains and the internal ligand status of the plant. Moreover, our study shows the robust utility of machine learning classification as a quantitative metric for studying dynamic interactomes, dissecting the contribution of specific domains and predicting their phenotypic outcome.
Collapse
Affiliation(s)
- Lin Xi
- Department of Plant Systems Biology, University of Hohenheim, Stuttgart, Germany
| | - Xuna Wu
- Department of Plant Systems Biology, University of Hohenheim, Stuttgart, Germany; State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Science, School of Life Sciences, Yunnan University, Kunming, China
| | - Jiahui Wang
- Department of Plant Systems Biology, University of Hohenheim, Stuttgart, Germany
| | - Zhaoxia Zhang
- Department of Plant Systems Biology, University of Hohenheim, Stuttgart, Germany
| | - Mingjie He
- Department of Plant Systems Biology, University of Hohenheim, Stuttgart, Germany
| | - Zeeshan Zeeshan
- Department of Plant Systems Biology, University of Hohenheim, Stuttgart, Germany
| | - Thorsten Stefan
- Department of Plant Systems Biology, University of Hohenheim, Stuttgart, Germany
| | - Waltraud X Schulze
- Department of Plant Systems Biology, University of Hohenheim, Stuttgart, Germany.
| |
Collapse
|
6
|
Blanco-Touriñán N, Rana S, Nolan TM, Li K, Vukašinović N, Hsu CW, Russinova E, Hardtke CS. The brassinosteroid receptor gene BRI1 safeguards cell-autonomous brassinosteroid signaling across tissues. SCIENCE ADVANCES 2024; 10:eadq3352. [PMID: 39321293 PMCID: PMC11423886 DOI: 10.1126/sciadv.adq3352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/21/2024] [Indexed: 09/27/2024]
Abstract
Brassinosteroid signaling is essential for plant growth as exemplified by the dwarf phenotype of loss-of-function mutants in BRASSINOSTEROID INSENSITIVE 1 (BRI1), a ubiquitously expressed Arabidopsis brassinosteroid receptor gene. Complementation of brassinosteroid-blind receptor mutants by BRI1 expression with various tissue-specific promoters implied that local brassinosteroid signaling may instruct growth non-cell autonomously. Here, we performed such rescues with a panel of receptor variants and promoters, in combination with tissue-specific transgene knockouts. Our experiments demonstrate that brassinosteroid receptor expression in several tissues is necessary but not sufficient for rescue. Moreover, complementation with tissue-specific promoters requires the genuine BRI1 gene body sequence, which confers ubiquitous expression of trace receptor amounts that are sufficient to promote brassinosteroid-dependent root growth. Our data, therefore, argue for a largely cell-autonomous action of brassinosteroid receptors.
Collapse
Affiliation(s)
- Noel Blanco-Touriñán
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Surbhi Rana
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Trevor M. Nolan
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
| | - Kunkun Li
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Nemanja Vukašinović
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Che-Wei Hsu
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
| | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Christian S. Hardtke
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
7
|
Herrmann A, Sepuru KM, Endo H, Nakagawa A, Kusano S, Bai P, Ziadi A, Kato H, Sato A, Liu J, Shan L, Kimura S, Itami K, Uchida N, Hagihara S, Torii KU. Chemical genetics reveals cross-activation of plant developmental signaling by the immune peptide-receptor pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.29.605519. [PMID: 39131359 PMCID: PMC11312451 DOI: 10.1101/2024.07.29.605519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Cells sense and integrate multiple signals to coordinate development and defence. A receptor-kinase signaling pathway for plant stomatal development shares components with the immunity pathway. The mechanism ensuring their signal specificities remains unclear. Using chemical genetics, here we report the identification of a small molecule, kC9, that triggers excessive stomatal differentiation by inhibiting the canonical ERECTA receptor-kinase pathway. kC9 binds to and inhibits the downstream MAP kinase MPK6, perturbing its substrate interaction. Strikingly, activation of immune signaling by a bacterial flagellin peptide nullified kC9's effects on stomatal development. This cross-activation of stomatal development by immune signaling depends on the immune receptor FLS2 and occurs even in the absence of kC9 if the ERECTA-family receptor population becomes suboptimal. Furthermore, proliferating stomatal-lineage cells are vulnerable to the immune signal penetration. Our findings suggest that the signal specificity between development and immunity can be ensured by MAP Kinase homeostasis reflecting the availability of upstream receptors, thereby providing a novel view on signal specificity.
Collapse
Affiliation(s)
- Arvid Herrmann
- Howard Hughes Medical Institute, The University of Texas at Austin, Austin, TX 78712 USA
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712 USA
| | - Krishna Mohan Sepuru
- Howard Hughes Medical Institute, The University of Texas at Austin, Austin, TX 78712 USA
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712 USA
| | - Hitoshi Endo
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Ayami Nakagawa
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Shuhei Kusano
- RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Pengfei Bai
- Howard Hughes Medical Institute, The University of Texas at Austin, Austin, TX 78712 USA
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712 USA
| | - Asraa Ziadi
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Hiroe Kato
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Ayato Sato
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Jun Liu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Libo Shan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Seisuke Kimura
- Faculty of Life Sciences and Center for Plant Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto 603–8555, Japan
| | - Kenichiro Itami
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Naoyuki Uchida
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Shinya Hagihara
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Aichi 464-8601, Japan
- RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Keiko U. Torii
- Howard Hughes Medical Institute, The University of Texas at Austin, Austin, TX 78712 USA
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712 USA
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
8
|
Lu S, Xiao F. Small Peptides: Orchestrators of Plant Growth and Developmental Processes. Int J Mol Sci 2024; 25:7627. [PMID: 39062870 PMCID: PMC11276966 DOI: 10.3390/ijms25147627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
Small peptides (SPs), ranging from 5 to 100 amino acids, play integral roles in plants due to their diverse functions. Despite their low abundance and small molecular weight, SPs intricately regulate critical aspects of plant life, including cell division, growth, differentiation, flowering, fruiting, maturation, and stress responses. As vital mediators of intercellular signaling, SPs have garnered significant attention in plant biology research. This comprehensive review delves into SPs' structure, classification, and identification, providing a detailed understanding of their significance. Additionally, we summarize recent findings on the biological functions and signaling pathways of prominent SPs that regulate plant growth and development. This review also offers a perspective on future research directions in peptide signaling pathways.
Collapse
Affiliation(s)
| | - Fei Xiao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China;
| |
Collapse
|
9
|
Huang WRH, Braam C, Kretschmer C, Villanueva SL, Liu H, Ferik F, van der Burgh AM, Boeren S, Wu J, Zhang L, Nürnberger T, Wang Y, Seidl MF, Evangelisti E, Stuttmann J, Joosten MHAJ. Receptor-like cytoplasmic kinases of different subfamilies differentially regulate SOBIR1/BAK1-mediated immune responses in Nicotiana benthamiana. Nat Commun 2024; 15:4339. [PMID: 38773116 PMCID: PMC11109355 DOI: 10.1038/s41467-024-48313-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/26/2024] [Indexed: 05/23/2024] Open
Abstract
Cell-surface receptors form the front line of plant immunity. The leucine-rich repeat (LRR)-receptor-like kinases SOBIR1 and BAK1 are required for the functionality of the tomato LRR-receptor-like protein Cf-4, which detects the secreted effector Avr4 of the pathogenic fungus Fulvia fulva. Here, we show that the kinase domains of SOBIR1 and BAK1 directly phosphorylate each other and that residues Thr522 and Tyr469 of the kinase domain of Nicotiana benthamiana SOBIR1 are required for its kinase activity and for interacting with signalling partners, respectively. By knocking out multiple genes belonging to different receptor-like cytoplasmic kinase (RLCK)-VII subfamilies in N. benthamiana:Cf-4, we show that members of RLCK-VII-6, -7, and -8 differentially regulate the Avr4/Cf-4-triggered biphasic burst of reactive oxygen species. In addition, members of RLCK-VII-7 play an essential role in resistance against the oomycete pathogen Phytophthora palmivora. Our study provides molecular evidence for the specific roles of RLCKs downstream of SOBIR1/BAK1-containing immune complexes.
Collapse
Affiliation(s)
- Wen R H Huang
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom.
| | - Ciska Braam
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Carola Kretschmer
- Institute for Biology, Department of Plant Genetics, Martin Luther University Halle-Wittenberg, 06120, Halle, Germany
| | - Sergio Landeo Villanueva
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Huan Liu
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Filiz Ferik
- Institute for Biology, Department of Plant Genetics, Martin Luther University Halle-Wittenberg, 06120, Halle, Germany
| | - Aranka M van der Burgh
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
- Teaching and Learning Centre, Wageningen University & Research, Droevendaalsesteeg 4, 6708 PB, Wageningen, The Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University and Research, Wageningen, the Netherlands
| | - Jinbin Wu
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lisha Zhang
- Department of Plant Biochemistry, Centre for Plant Molecular Biology (ZMBP), Eberhard Karls University Tübingen, Auf der Morgenstelle 32, D-72076, Tübingen, Germany
| | - Thorsten Nürnberger
- Department of Plant Biochemistry, Centre for Plant Molecular Biology (ZMBP), Eberhard Karls University Tübingen, Auf der Morgenstelle 32, D-72076, Tübingen, Germany
| | - Yulu Wang
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Michael F Seidl
- Theoretical Biology & Bioinformatics, Department of Biology, Utrecht University, 3584 CH, Utrecht, the Netherlands
| | - Edouard Evangelisti
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
- Université Côte d'Azur, INRAE UMR 1355, CNRS UMR 7254, Institut Sophia Agrobiotech (ISA), 06903, Sophia Antipolis, France
| | - Johannes Stuttmann
- Institute for Biology, Department of Plant Genetics, Martin Luther University Halle-Wittenberg, 06120, Halle, Germany
- Aix Marseille University, CEA, CNRS, BIAM, UMR7265, LEMiRE (Microbial Ecology of the Rhizosphere), 13115, Saint‑Paul lez Durance, France
| | - Matthieu H A J Joosten
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| |
Collapse
|
10
|
Sachdeva S, Singh R, Maurya A, Singh VK, Singh UM, Kumar A, Singh GP. New insights into QTNs and potential candidate genes governing rice yield via a multi-model genome-wide association study. BMC PLANT BIOLOGY 2024; 24:124. [PMID: 38373874 PMCID: PMC10877931 DOI: 10.1186/s12870-024-04810-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/08/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND Rice (Oryza sativa L.) is one of the globally important staple food crops, and yield-related traits are prerequisites for improved breeding efficiency in rice. Here, we used six different genome-wide association study (GWAS) models for 198 accessions, with 553,229 single nucleotide markers (SNPs) to identify the quantitative trait nucleotides (QTNs) and candidate genes (CGs) governing rice yield. RESULTS Amongst the 73 different QTNs in total, 24 were co-localized with already reported QTLs or loci in previous mapping studies. We obtained fifteen significant QTNs, pathway analysis revealed 10 potential candidates within 100kb of these QTNs that are predicted to govern plant height, days to flowering, and plot yield in rice. Based on their superior allelic information in 20 elite and 6 inferior genotypes, we found a higher percentage of superior alleles in the elite genotypes in comparison to inferior genotypes. Further, we implemented expression analysis and enrichment analysis enabling the identification of 73 candidate genes and 25 homologues of Arabidopsis, 19 of which might regulate rice yield traits. Of these candidate genes, 40 CGs were found to be enriched in 60 GO terms of the studied traits for instance, positive regulator metabolic process (GO:0010929), intracellular part (GO:0031090), and nucleic acid binding (GO:0090079). Haplotype and phenotypic variation analysis confirmed that LOC_OS09G15770, LOC_OS02G36710 and LOC_OS02G17520 are key candidates associated with rice yield. CONCLUSIONS Overall, we foresee that the QTNs, putative candidates elucidated in the study could summarize the polygenic regulatory networks controlling rice yield and be useful for breeding high-yielding varieties.
Collapse
Grants
- BT/PR32853/AGIII/103/1159/2019 Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR32853/AGIII/103/1159/2019 Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR32853/AGIII/103/1159/2019 Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR32853/AGIII/103/1159/2019 Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR32853/AGIII/103/1159/2019 Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR32853/AGIII/103/1159/2019 Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR32853/AGIII/103/1159/2019 Department of Biotechnology, Ministry of Science and Technology, India
Collapse
Affiliation(s)
- Supriya Sachdeva
- Division of Genomic Resources, ICAR-NBPGR, Pusa, New Delhi, India
| | - Rakesh Singh
- Division of Genomic Resources, ICAR-NBPGR, Pusa, New Delhi, India.
| | - Avantika Maurya
- Division of Genomic Resources, ICAR-NBPGR, Pusa, New Delhi, India
| | - Vikas K Singh
- International Rice Research Institute (IRRI), South Asia Hub, ICRISAT, Hyderabad, India
| | - Uma Maheshwar Singh
- International Rice Research Institute (IRRI), South Asia Regional Centre (ISARC), Varanasi, India
| | - Arvind Kumar
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Telangana, India
| | | |
Collapse
|
11
|
Jeon BW, Kang NY, Park WY, Oh E, Kim J. Control of lateral root formation by rapamycin-induced dimerization of engineered RGI/BAK1 and by BIR3 chimera. PHYSIOLOGIA PLANTARUM 2024; 176:e14155. [PMID: 38342490 DOI: 10.1111/ppl.14155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/18/2023] [Indexed: 02/13/2024]
Abstract
Leucine-rich repeat receptor kinases (LRR-RKs) play a pivotal role in diverse aspects of growth, development, and immunity in plants by sensing extracellular signals. Typically, LRR-RKs are activated through the ligand-induced interaction with a SOMATIC EMBRYOGENESIS RECEPTOR KINASE (SERK) coreceptor, triggering downstream signaling. ROOT MERISTEM GROWTH FACTOR1 (RGF1) INSENSITIVEs (RGIs) LRR-RLK receptors promote primary root meristem activity while inhibiting lateral root (LR) development in response to RGF peptide. In this study, we employed rapamycin-induced dimerization (RiD) and BAK1-INTERACTING RECEPTOR-LIKE KINASE3 (BIR3) chimera approaches to explore the gain-of-function of RGI1, RGI4, and RGI5. Rapamycin induced the association of cytosolic kinase domains (CKDs) of RGI1 and the BAK1 coreceptor, activating both mitogen-activated protein kinase 3 (MPK3) and MPK6. Rapamycin significantly inhibited LR formation in RiD-RGI1/RGI4/RGI5-BAK1 plants. Using transgenic Arabidopsis expressing RGI1CKD fused to the BIR3-LRR chimera under estradiol control, we observed a substantial reduction in LR density upon β-estradiol treatment. Additionally, we identified a decrease in root gravitropism in BIR3 chimera plants. In contrast, RiD-RGI/BAK1 plants did not exhibit defects in root gravitropism, implying the importance of combinatorial interactions between RGIs and SERK coreceptors in the inhibition of root gravitropism. Constitutive activation of RGIs with BAK1 in RiD-RGI/BAK1 plants by rapamycin treatment resulted in the inhibition of primary root growth, resembling the inhibitory effects observed with high concentrations of phytohormones on primary root elongation. Our findings highlight that the interactions between CKDs of RGIs and BAK1, constitutively induced by rapamycin or BIR3 chimera, efficiently control LR development.
Collapse
Affiliation(s)
- Byeong Wook Jeon
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, Korea
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, Korea
| | - Na Young Kang
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, Korea
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, Korea
| | - Won-Yong Park
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Eunkyoo Oh
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Jungmook Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, Korea
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, Korea
- Kumho Life Science Laboratory, Chonnam National University, Gwangju, Korea
| |
Collapse
|
12
|
Nguyen QTC, Kim J. PSY-PSYR peptide-receptor pairs control the trade-off between plant growth and stress response. PLANT SIGNALING & BEHAVIOR 2023; 18:2260638. [PMID: 37737147 PMCID: PMC10519359 DOI: 10.1080/15592324.2023.2260638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/06/2023] [Indexed: 09/23/2023]
Abstract
Leucine-rich repeat-receptor kinases (LRR-RKs) perceive various endogenous peptide hormones that control plant growth and development. However, the majority of corresponding ligands and their direct ligand-binding receptors have not been identified yet. A recent study demonstrated that three LRR-RK PLANT PEPTIDE CONTAINING SULFATED TYROSINE RECEPTORS (PSYRs) act as ligand-receptors of the PSY family peptides that mediate the trade-off between the optimal plant growth and stress tolerance responses. The genetic, biochemical, and transcriptome analyses suggested that PSYR1, PSYR2, and PSYR3 function as negative regulators of plant growth in the absence of PSY peptides and induce stress tolerance responses, whereas the PSY family peptides repress PSYR signaling, allowing plant growth. This trade-off mechanism between plant growth and stress responses mediated by the PSY-PSYR signaling module allows plants to survive under ever changing environmental stresses.
Collapse
Affiliation(s)
- Quy Thi Cam Nguyen
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, Korea
| | - Jungmook Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, Korea
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, Korea
| |
Collapse
|
13
|
Man J, Harrington TA, Lally K, Bartlett ME. Asymmetric Evolution of Protein Domains in the Leucine-Rich Repeat Receptor-Like Kinase Family of Plant Signaling Proteins. Mol Biol Evol 2023; 40:msad220. [PMID: 37787619 PMCID: PMC10588794 DOI: 10.1093/molbev/msad220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/29/2023] [Accepted: 09/26/2023] [Indexed: 10/04/2023] Open
Abstract
The coding sequences of developmental genes are expected to be deeply conserved, with cis-regulatory change driving the modulation of gene function. In contrast, proteins with roles in defense are expected to evolve rapidly, in molecular arms races with pathogens. However, some gene families include both developmental and defense genes. In these families, does the tempo and mode of evolution differ between genes with divergent functions, despite shared ancestry and structure? The leucine-rich repeat receptor-like kinase (LRR-RLKs) protein family includes members with roles in plant development and defense, thus providing an ideal system for answering this question. LRR-RLKs are receptors that traverse plasma membranes. LRR domains bind extracellular ligands; RLK domains initiate intracellular signaling cascades in response to ligand binding. In LRR-RLKs with roles in defense, LRR domains evolve faster than RLK domains. To determine whether this asymmetry extends to LRR-RLKs that function primarily in development, we assessed evolutionary rates and tested for selection acting on 11 subfamilies of LRR-RLKs, using deeply sampled protein trees. To assess functional evolution, we performed heterologous complementation assays in Arabidopsis thaliana (Arabidopsis). We found that the LRR domains of all tested LRR-RLK proteins evolved faster than their cognate RLK domains. All tested subfamilies of LRR-RLKs had strikingly similar patterns of molecular evolution, despite divergent functions. Heterologous transformation experiments revealed that multiple mechanisms likely contribute to the evolution of LRR-RLK function, including escape from adaptive conflict. Our results indicate specific and distinct evolutionary pressures acting on LRR versus RLK domains, despite diverse organismal roles for LRR-RLK proteins.
Collapse
Affiliation(s)
- Jarrett Man
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01002, USA
| | - T A Harrington
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01002, USA
| | - Kyra Lally
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01002, USA
| | - Madelaine E Bartlett
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01002, USA
| |
Collapse
|
14
|
Chen L, Torii KU. Signaling in plant development and immunity through the lens of the stomata. Curr Biol 2023; 33:R733-R742. [PMID: 37433278 DOI: 10.1016/j.cub.2023.05.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
The proper development and function of stomata - turgor-driven valves for efficient gas-exchange and water control - impact plant survival and productivity. It has become apparent that various receptor kinases regulate stomatal development and immunity. Although stomatal development and immunity occur over different cellular time scales, their signaling components and regulatory modules are strikingly similar, and often shared. In this review, we survey the current knowledge of stomatal development and immunity signaling components, and provide a synthesis and perspectives on the key concepts to further understand the conservation and specificity of these two signaling pathways.
Collapse
Affiliation(s)
- Liangliang Chen
- Howard Hughes Medical Institute and Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Keiko U Torii
- Howard Hughes Medical Institute and Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
15
|
A receptor-like kinase controls the amplitude of secondary cell wall synthesis in rice. Curr Biol 2023; 33:498-506.e6. [PMID: 36638797 DOI: 10.1016/j.cub.2022.12.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/06/2022] [Accepted: 12/13/2022] [Indexed: 01/14/2023]
Abstract
Cell wall expansion is a key element in determining plant morphology and growth, and cell wall integrity changes are relayed to the cell to fine-tune growth responses. Here, we show that variations in the ectodomain of a cell wall-associated receptor-like kinase, WAK10, in temperate Oryza japonica accessions differentially amplify fluctuations in cell wall integrity to control rice stem height. Mutation in the WAK10 gene exhibited increased cell wall thickening in stem sclerenchyma and reduced cell expansion in the stem. Two WAK10 ectodomain variants bound pectic oligosaccharides with different affinities. The pectic oligosaccharide binding regulated WAK10 phosphorylation activity, the amplitude of secondary wall deposition, and ultimately, stem height. Rice population analyses revealed active enrichment of the short-stem WAK10 ectodomain alleles in japonica subspecies during domestication. Our study outlines not only a mechanism for how variations in ligand affinities of a receptor kinase control cell wall biosynthesis and plant growth, but it also provides breeding targets for new semi-dwarf rice cultivars.
Collapse
|
16
|
Zhu Q, Feng Y, Xue J, Chen P, Zhang A, Yu Y. Advances in Receptor-like Protein Kinases in Balancing Plant Growth and Stress Responses. PLANTS (BASEL, SWITZERLAND) 2023; 12:427. [PMID: 36771514 PMCID: PMC9919196 DOI: 10.3390/plants12030427] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
Accompanying the process of growth and development, plants are exposed to ever-changing environments, which consequently trigger abiotic or biotic stress responses. The large protein family known as receptor-like protein kinases (RLKs) is involved in the regulation of plant growth and development, as well as in the response to various stresses. Understanding the biological function and molecular mechanism of RLKs is helpful for crop breeding. Research on the role and mechanism of RLKs has recently received considerable attention regarding the balance between plant growth and environmental adaptability. In this paper, we systematically review the classification of RLKs, the regulatory roles of RLKs in plant development (meristem activity, leaf morphology and reproduction) and in stress responses (disease resistance and environmental adaptation). This review focuses on recent findings revealing that RLKs simultaneously regulate plant growth and stress adaptation, which may pave the way for the better understanding of their function in crop improvement. Although the exact crosstalk between growth constraint and plant adaptation remains elusive, a profound study on the adaptive mechanisms for decoupling the developmental processes would be a promising direction for the future research.
Collapse
Affiliation(s)
| | | | | | | | | | - Yang Yu
- Guangdong Key Laboratory of Crop Germplasm Resources Preservation and Utilization, Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Affairs, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|
17
|
Schulze S, Yu L, Hua C, Zhang L, Kolb D, Weber H, Ehinger A, Saile SC, Stahl M, Franz-Wachtel M, Li L, El Kasmi F, Nürnberger T, Cevik V, Kemmerling B. The Arabidopsis TIR-NBS-LRR protein CSA1 guards BAK1-BIR3 homeostasis and mediates convergence of pattern- and effector-induced immune responses. Cell Host Microbe 2022; 30:1717-1731.e6. [PMID: 36446350 DOI: 10.1016/j.chom.2022.11.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/14/2022] [Accepted: 11/02/2022] [Indexed: 11/30/2022]
Abstract
Arabidopsis BAK1/SERK3, a co-receptor of leucine-rich repeat pattern recognition receptors (PRRs), mediates pattern-triggered immunity (PTI). Genetic inactivation of BAK1 or BAK1-interacting receptor-like kinases (BIRs) causes cell death, but the direct mechanisms leading to such deregulation remains unclear. Here, we found that the TIR-NBS-LRR protein CONSTITUTIVE SHADE AVOIDANCE 1 (CSA1) physically interacts with BIR3, but not with BAK1. CSA1 mediates cell death in bak1-4 and bak1-4 bir3-2 mutants via components of effector-triggered immunity-(ETI) pathways. Effector HopB1-mediated perturbation of BAK1 also results in CSA1-dependent cell death. Likewise, microbial pattern pg23-induced cell death, but not PTI responses, requires CSA1. Thus, we show that CSA1 guards BIR3 BAK1 homeostasis and integrates pattern- and effector-mediated cell death pathways downstream of BAK1. De-repression of CSA1 in the absence of intact BAK1 and BIR3 triggers ETI cell death. This suggests that PTI and ETI pathways are activated downstream of BAK1 for efficient plant immunity.
Collapse
Affiliation(s)
- Sarina Schulze
- ZMBP Center for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Liping Yu
- ZMBP Center for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Chenlei Hua
- ZMBP Center for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Lisha Zhang
- ZMBP Center for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Dagmar Kolb
- ZMBP Center for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Hannah Weber
- ZMBP Center for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Alexandra Ehinger
- ZMBP Center for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Svenja C Saile
- ZMBP Center for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Mark Stahl
- ZMBP Center for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Mirita Franz-Wachtel
- Interfaculty Institute for Cell Biology, Department of Quantitative Proteomics, University of Tübingen, 72076 Tübingen, Germany
| | - Lei Li
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Farid El Kasmi
- ZMBP Center for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Thorsten Nürnberger
- ZMBP Center for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany; Department of Biochemistry, University of Johannesburg, Johannesburg 2001, South Africa
| | - Volkan Cevik
- The Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath BA2 7AY, UK
| | - Birgit Kemmerling
- ZMBP Center for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
18
|
Zheng B, Bai Q, Li C, Wang L, Wei Q, Ali K, Li W, Huang S, Xu H, Li G, Ren H, Wu G. Pan-brassinosteroid signaling revealed by functional analysis of NILR1 in land plants. THE NEW PHYTOLOGIST 2022; 235:1455-1469. [PMID: 35570834 DOI: 10.1111/nph.18228] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Brassinosteroid (BR) signaling has been identified from the ligand BRs sensed by the receptor Brassinosteroid Insensitive 1 (BRI1) to the final activation of Brassinozole Resistant 1/bri1 EMS-Suppressor 1 through a series of transduction events. Extensive studies have been conducted to characterize the role of BR signaling in various biological processes. Our previous study has shown that Excess Microsporocytes 1 (EMS1) and BRI1 control different aspects of plant growth and development via conserved intracellular signaling. Here, we reveal that another receptor, NILR1, can complement the bri1 mutant in the absence of BRs, indicating a pathway that resembles BR signaling activated by NILR1. Genetic analysis confirms the intracellular domains of NILR1, BRI1 and EMS1 have a common signal output. Furthermore, we demonstrate that NILR1 and BRI1 share the coreceptor BRI1 Associated Kinase 1 and substrate BSKs. Notably, the NILR1-mediated downstream pathway is conserved across land plants. In summary, we provide evidence for the signaling cascade of NILR1, suggesting pan-brassinosteroid signaling initiated by a group of distant receptor-ligand pairs in land plants.
Collapse
Affiliation(s)
- Bowen Zheng
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Qunwei Bai
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Chenxi Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Lihaitian Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Qiang Wei
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Khawar Ali
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Wenjuan Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Shengdi Huang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Hongxing Xu
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Guishuang Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Hongyan Ren
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Guang Wu
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
19
|
Rhodes J, Roman AO, Bjornson M, Brandt B, Derbyshire P, Wyler M, Schmid MW, Menke FLH, Santiago J, Zipfel C. Perception of a conserved family of plant signalling peptides by the receptor kinase HSL3. eLife 2022; 11:74687. [PMID: 35617122 PMCID: PMC9191895 DOI: 10.7554/elife.74687] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
Plant genomes encode hundreds of secreted peptides; however, relatively few have been characterised. We report here an uncharacterised, stress-induced family of plant signalling peptides, which we call CTNIPs. Based on the role of the common co-receptor BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED KINASE 1 (BAK1) in CTNIP-induced responses, we identified in Arabidopsis thaliana the orphan receptor kinase HAESA-LIKE 3 (HSL3) as the CTNIP receptor via a proteomics approach. CTNIP binding, ligand-triggered complex formation with BAK1, and induced downstream responses all involve HSL3. Notably, the HSL3-CTNIP signalling module is evolutionarily conserved amongst most extant angiosperms. The identification of this novel signalling module will further shed light on the diverse functions played by plant signalling peptides and will provide insights into receptor-ligand co-evolution.
Collapse
Affiliation(s)
- Jack Rhodes
- The Sainsbury Laboratory, Norwich, United Kingdom
| | - Andra-Octavia Roman
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Marta Bjornson
- Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Benjamin Brandt
- Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | | | | | | | | | - Julia Santiago
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Cyril Zipfel
- Department of Plant Molecular Biology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
20
|
Bai Q, Li C, Wu L, Liu H, Ren H, Li G, Wang Q, Wu G, Zheng B. Engineering Chimeras by Fusing Plant Receptor-like Kinase EMS1 and BRI1 Reveals the Two Receptors' Structural Specificity and Molecular Mechanisms. Int J Mol Sci 2022; 23:ijms23042155. [PMID: 35216268 PMCID: PMC8876890 DOI: 10.3390/ijms23042155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/13/2022] [Accepted: 02/13/2022] [Indexed: 02/04/2023] Open
Abstract
Brassinosteriods (BRs) are plant hormones essential for plant growth and development. The receptor-like kinase (RLK) BRI1 perceives BRs to initiate a well-known transduction pathway which finally activate the transcription factors BZR1/BES1 specifically regulating BR-mediated gene expression. The RLK EMS1 governs tapetum formation via the same signaling pathway shared with BRI1. BRI1 and EMS1 have a common signal output, but the gene structural specificity and the molecular response remain unclear. In this study, we identified that the transmembrane (TM), intracellular juxtamembrane (iJM), kinase, and leucin-rich repeats 1-13 (LRR1-13) domains of EMS1 could replace the corresponding BRI1 domain to maintain the BR receptor function, whereas the extracellular juxtamembrane (eJM) and LRR1-14 domains could not, indicating that the LRR14-EJM domain conferred functional specificity to BRI1. We compared the kinase domains of EMS1 and BRI1, and found that EMS1’s kinase activity was weaker than BRI1’s. Further investigation of the specific phosphorylation sites in BRI1 and EMS1 revealed that the Y1052 site in the kinase domain was essential for the BRI1 biological function, but the corresponding site in EMS1 showed no effect on the biological function of EMS1, suggesting a site regulation difference in the two receptors. Furthermore, we showed that EMS1 shared the substrate BSKs with BRI1. Our study provides insight into the structural specificity and molecular mechanism of BRI1 and EMS1, as well as the origin and divergence of BR receptors.
Collapse
Affiliation(s)
- Qunwei Bai
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (Q.B.); (C.L.); (L.W.); (H.L.); (H.R.); (G.L.); (G.W.)
| | - Chenxi Li
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (Q.B.); (C.L.); (L.W.); (H.L.); (H.R.); (G.L.); (G.W.)
| | - Lei Wu
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (Q.B.); (C.L.); (L.W.); (H.L.); (H.R.); (G.L.); (G.W.)
| | - Huan Liu
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (Q.B.); (C.L.); (L.W.); (H.L.); (H.R.); (G.L.); (G.W.)
| | - Hongyan Ren
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (Q.B.); (C.L.); (L.W.); (H.L.); (H.R.); (G.L.); (G.W.)
| | - Guishuang Li
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (Q.B.); (C.L.); (L.W.); (H.L.); (H.R.); (G.L.); (G.W.)
| | - Qiuling Wang
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, China;
| | - Guang Wu
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (Q.B.); (C.L.); (L.W.); (H.L.); (H.R.); (G.L.); (G.W.)
| | - Bowen Zheng
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (Q.B.); (C.L.); (L.W.); (H.L.); (H.R.); (G.L.); (G.W.)
- Correspondence: ; Tel.: +86-15102902460
| |
Collapse
|
21
|
Roman AO, Jimenez-Sandoval P, Augustin S, Broyart C, Hothorn LA, Santiago J. HSL1 and BAM1/2 impact epidermal cell development by sensing distinct signaling peptides. Nat Commun 2022; 13:876. [PMID: 35169143 PMCID: PMC8847575 DOI: 10.1038/s41467-022-28558-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 02/01/2022] [Indexed: 12/17/2022] Open
Abstract
The membrane receptor kinases HAESA and HSL2 recognize a family of IDA/IDL signaling peptides to control cell separation processes in different plant organs. The homologous HSL1 has been reported to regulate epidermal cell patterning by interacting with a different class of signaling peptides from the CLE family. Here we demonstrate that HSL1 binds IDA/IDL peptides with high, and CLE peptides with lower affinity, respectively. Ligand sensing capability and receptor activation of HSL1 require a SERK co-receptor kinase. Crystal structures with IDA/IDLs or with CLE9 reveal that HSL1-SERK1 complex recognizes the entire IDA/IDL signaling peptide, while only parts of CLE9 are bound to the receptor. In contrast, the receptor kinase BAM1 interacts with the entire CLE9 peptide with high affinity and specificity. Furthermore, the receptor tandem BAM1/BAM2 regulates epidermal cell division homeostasis. Consequently, HSL1-IDLs and BAM1/BAM2-CLEs independently regulate cell patterning in the leaf epidermal tissue.
Collapse
Affiliation(s)
- Andra-Octavia Roman
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Pedro Jimenez-Sandoval
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Sebastian Augustin
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Caroline Broyart
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Ludwig A Hothorn
- Institute of Biostatistics, Leibniz University, 30167, Hannover, Germany
| | - Julia Santiago
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, 1015, Lausanne, Switzerland.
| |
Collapse
|
22
|
Activation loop phosphorylaton of a non-RD receptor kinase initiates plant innate immune signaling. Proc Natl Acad Sci U S A 2021; 118:2108242118. [PMID: 34531323 PMCID: PMC8463890 DOI: 10.1073/pnas.2108242118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2021] [Indexed: 01/01/2023] Open
Abstract
Receptor kinases (RKs) are fundamental for extracellular sensing and regulate development and stress responses across kingdoms. In plants, leucine-rich repeat receptor kinases (LRR-RKs) are primarily peptide receptors that regulate responses to myriad internal and external stimuli. Phosphorylation of LRR-RK cytoplasmic domains is among the earliest responses following ligand perception, and reciprocal transphosphorylation between a receptor and its coreceptor is thought to activate the receptor complex. Originally proposed based on characterization of the brassinosteroid receptor, the prevalence of complex activation via reciprocal transphosphorylation across the plant RK family has not been tested. Using the LRR-RK ELONGATION FACTOR TU RECEPTOR (EFR) as a model, we set out to understand the steps critical for activating RK complexes. While the EFR cytoplasmic domain is an active protein kinase in vitro and is phosphorylated in a ligand-dependent manner in vivo, catalytically deficient EFR variants are functional in antibacterial immunity. These results reveal a noncatalytic role for EFR in triggering immune signaling and indicate that reciprocal transphoshorylation is not a ubiquitous requirement for LRR-RK complex activation. Rather, our analysis of EFR along with a detailed survey of the literature suggests a distinction between LRR-RKs with RD- versus non-RD protein kinase domains. Based on newly identified phosphorylation sites that regulate the activation state of the EFR complex in vivo, we propose that LRR-RK complexes containing a non-RD protein kinase may be regulated by phosphorylation-dependent conformational changes of the ligand-binding receptor, which could initiate signaling either allosterically or through driving the dissociation of negative regulators of the complex.
Collapse
|
23
|
DeFalco TA, Zipfel C. Molecular mechanisms of early plant pattern-triggered immune signaling. Mol Cell 2021; 81:3449-3467. [PMID: 34403694 DOI: 10.1016/j.molcel.2021.07.029] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 10/20/2022]
Abstract
All eukaryotic organisms have evolved sophisticated immune systems to appropriately respond to biotic stresses. In plants and animals, a key part of this immune system is pattern recognition receptors (PRRs). Plant PRRs are cell-surface-localized receptor kinases (RKs) or receptor proteins (RPs) that sense microbe- or self-derived molecular patterns to regulate pattern-triggered immunity (PTI), a robust form of antimicrobial immunity. Remarkable progress has been made in understanding how PRRs perceive their ligands, form active protein complexes, initiate cell signaling, and ultimately coordinate the cellular reprogramming that leads to PTI. Here, we discuss the critical roles of PRR complex formation and phosphorylation in activating PTI signaling, as well as the emerging paradigm in which receptor-like cytoplasmic kinases (RLCKs) act as executors of signaling downstream of PRR activation.
Collapse
Affiliation(s)
- Thomas A DeFalco
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Cyril Zipfel
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland; The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
24
|
Kim S, Park J, Jeon BW, Hwang G, Kang NY, We Y, Park WY, Oh E, Kim J. Chemical control of receptor kinase signaling by rapamycin-induced dimerization. MOLECULAR PLANT 2021; 14:1379-1390. [PMID: 33964457 DOI: 10.1016/j.molp.2021.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/31/2021] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
Membrane-localized leucine-rich repeat receptor kinases (LRR-RKs) sense diverse extracellular signals, and coordinate and specify cellular functions in plants. However, functional understanding and identification of the cellular signaling of most LRR-RKs remain a major challenge owing to their genetic redundancy, the lack of ligand information, and subtle phenotypes of LRR-RK overexpression. Here, we report an engineered rapamycin-inducible dimerization (RiD) receptor system that triggers a receptor-specific LRR-RK signaling independent of their cognate ligands or endogenous receptors. Using the RiD-receptors, we demonstrated that the rapamycin-mediated association of chimeric cytosolic kinase domains from the BRI1/BAK1 receptor/co-receptor, but not the BRI1/BRI1 or BAK1/BAK1 homodimer, is sufficient to activate downstream brassinosteroid signaling and physiological responses. Furthermore, we showed that the engineered RiD-FLS2/BAK1 could activate flagellin-22-mediated immune signaling and responses. Using the RiD system, we also identified the potential function of an unknown orphan receptor in immune signaling and revealed the differential activities of SERK co-receptors of LRR-RKs. Our results indicate that the RiD method can serve as a synthetic biology tool for precise temporal manipulation of LRR-RK signaling and for understanding LRR-RK biology.
Collapse
Affiliation(s)
- Sara Kim
- Department of Life Sciences, Korea University, Seoul, Korea
| | | | - Byeong Wook Jeon
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, Korea; Kumho Life Science Laboratory, Chonnam National University, Gwangju, Korea
| | - Geonhee Hwang
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Na Young Kang
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, Korea
| | - Yeim We
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Won-Young Park
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Eunkyoo Oh
- Department of Life Sciences, Korea University, Seoul, Korea.
| | - Jungmook Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, Korea; Kumho Life Science Laboratory, Chonnam National University, Gwangju, Korea; Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, Korea.
| |
Collapse
|
25
|
Herrmann A, Torii KU. Shouting out loud: signaling modules in the regulation of stomatal development. PLANT PHYSIOLOGY 2021; 185:765-780. [PMID: 33793896 PMCID: PMC8133662 DOI: 10.1093/plphys/kiaa061] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/31/2020] [Indexed: 05/18/2023]
Abstract
Stomata are small pores on the surface of land plants that facilitate gas exchange for photosynthesis while minimizing water loss. The function of stomata is pivotal for plant growth and survival. Intensive research on the model plant Arabidopsis (Arabidopsis thaliana) has discovered key peptide signaling pathways, transcription factors, and polarity components that together drive proper stomatal development and patterning. In this review, we focus on recent findings that have revealed co-option of peptide-receptor kinase signaling modules-utilized for diverse developmental processes and immune response. We further discuss an emerging connection between extrinsic signaling and intrinsic polarity modules. These findings have further enlightened our understanding of this fascinating developmental process.
Collapse
Affiliation(s)
- Arvid Herrmann
- Howard Hughes Medical Institute and Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA
| | - Keiko U Torii
- Howard Hughes Medical Institute and Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
26
|
Wang L, Liu J, Shen Y, Pu R, Hou M, Wei Q, Zhang X, Li G, Ren H, Wu G. Brassinosteroids synthesised by CYP85A/A1 but not CYP85A2 function via a BRI1-like receptor but not via BRI1 in Picea abies. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1748-1763. [PMID: 33247718 DOI: 10.1093/jxb/eraa557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
Brassinosteroids (BRs) are essential plant hormones. In angiosperms, brassinolide and castasterone, the first and second most active BRs, respectively, are synthesised by CYP85A2 and CYP85A/A1, respectively. BRs in angiosperms function through an essential receptor, BR Insensitive 1 (BRI1). In addition, some angiosperms also have non-essential BRI1-like 1/3 (BRL1/3). In conifers, BRs promote seed germination under drought stress; however, how BRs function in gymnosperms is unknown. In this study, we performed functional complementation of BR biosynthesis and receptor genes from Picea abies with respective Arabidopsis mutants. We found that P. abies possessed functional PaCYP85A and PaBRL1 but not PaCYP85A2 or PaBRI1, and this results in weak BR signaling, and both PaCYP85A and PaBRL1 were abundantly expressed. However, neither BR treatment of P. abies seedlings nor expression of PaBRL1 in the Arabidopsis Atbri1 mutant promoted plant height, despite the fact that BR-responsive genes were activated. Importantly, chimeric AtBRI1 replaced with the BR-binding domain of PaBRL1 complemented the Atbri1 phenotypes. Furthermore, PaBRL1 had less kinase activity than BRI1 in vitro. Overall, P. abies had weak but still active BR signaling, explaining aspects of its slow growth and high stress tolerance. Our study sheds light on the functional and evolutionary significance of distinct BR signaling that is independent of BRI1 and brassinolide.
Collapse
Affiliation(s)
- Li Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi Province, P.R. China
| | - Jing Liu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi Province, P.R. China
| | - Yitong Shen
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi Province, P.R. China
| | - Ruolan Pu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi Province, P.R. China
| | - Meiying Hou
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi Province, P.R. China
| | - Qiang Wei
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi Province, P.R. China
| | - Xinzhen Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi Province, P.R. China
| | - Guishuang Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi Province, P.R. China
| | - Hongyan Ren
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi Province, P.R. China
| | - Guang Wu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi Province, P.R. China
| |
Collapse
|