1
|
Volná A, Bartas M, Nezval J, Pech R, Pečinka P, Špunda V, Červeň J. Beyond the Primary Structure of Nucleic Acids: Potential Roles of Epigenetics and Noncanonical Structures in the Regulations of Plant Growth and Stress Responses. Methods Mol Biol 2023; 2642:331-361. [PMID: 36944887 DOI: 10.1007/978-1-0716-3044-0_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Epigenetics deals with changes in gene expression that are not caused by modifications in the primary sequence of nucleic acids. These changes beyond primary structures of nucleic acids not only include DNA/RNA methylation, but also other reversible conversions, together with histone modifications or RNA interference. In addition, under particular conditions (such as specific ion concentrations or protein-induced stabilization), the right-handed double-stranded DNA helix (B-DNA) can form noncanonical structures commonly described as "non-B DNA" structures. These structures comprise, for example, cruciforms, i-motifs, triplexes, and G-quadruplexes. Their formation often leads to significant differences in replication and transcription rates. Noncanonical RNA structures have also been documented to play important roles in translation regulation and the biology of noncoding RNAs. In human and animal studies, the frequency and dynamics of noncanonical DNA and RNA structures are intensively investigated, especially in the field of cancer research and neurodegenerative diseases. In contrast, noncanonical DNA and RNA structures in plants have been on the fringes of interest for a long time and only a few studies deal with their formation, regulation, and physiological importance for plant stress responses. Herein, we present a review focused on the main fields of epigenetics in plants and their possible roles in stress responses and signaling, with special attention dedicated to noncanonical DNA and RNA structures.
Collapse
Affiliation(s)
- Adriana Volná
- Department of Physics, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Martin Bartas
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Jakub Nezval
- Department of Physics, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Radomír Pech
- Department of Physics, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Petr Pečinka
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Vladimír Špunda
- Department of Physics, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Global Change Research Institute, Czech Academy of Sciences, Brno, Czech Republic
| | - Jiří Červeň
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic.
| |
Collapse
|
2
|
Bhatia G, Prall W, Sharma B, Gregory BD. Covalent RNA modifications and their budding crosstalk with plant epigenetic processes. CURRENT OPINION IN PLANT BIOLOGY 2022; 69:102287. [PMID: 35988352 DOI: 10.1016/j.pbi.2022.102287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/29/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Our recent cognizance of diverse RNA classes undergoing dynamic covalent chemical modifications (or epitranscriptomic marks) in plants has provided fresh insight into the underlying molecular mechanisms of gene expression regulation. Comparatively, epigenetic marks comprising heritable modifications of DNA and histones have been extensively studied in plants and their impact on plant gene expression is quite established. Based on our growing knowledge of the plant epitranscriptome and epigenome, it is logical to explore how the two regulatory layers intermingle to intricately determine gene expression levels underlying key biological processes such as development and response to stress. Herein, we focus on the emerging evidence of crosstalk between the plant epitranscriptome with epigenetic regulation involving DNA modification, histone modification, and non-coding RNAs.
Collapse
Affiliation(s)
- Garima Bhatia
- Department of Biology, University of Pennsylvania, School of Arts and Sciences, Philadelphia, PA 19104, USA
| | - Wil Prall
- Department of Biology, University of Pennsylvania, School of Arts and Sciences, Philadelphia, PA 19104, USA
| | - Bishwas Sharma
- Department of Biology, University of Pennsylvania, School of Arts and Sciences, Philadelphia, PA 19104, USA
| | - Brian D Gregory
- Department of Biology, University of Pennsylvania, School of Arts and Sciences, Philadelphia, PA 19104, USA.
| |
Collapse
|
3
|
Xiao Q, Huang X, Zhang Y, Xu W, Yang Y, Zhang Q, Hu Z, Xing F, Sun Q, Li G, Li X. The landscape of promoter-centred RNA-DNA interactions in rice. NATURE PLANTS 2022; 8:157-170. [PMID: 35115727 DOI: 10.1038/s41477-021-01089-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 12/16/2021] [Indexed: 05/04/2023]
Abstract
Chromatin-associated RNAs play key roles in various biological processes. However, both their repository and conjugation genomic loci and potential functions remain largely unclear. Here, we develop an effective method for mapping of chromatin-associated RNA-DNA interactions, followed by paired-end-tag sequencing (ChRD-PET) in rice. We present a comprehensive interaction map between RNAs and H3K4me3-marked regions based on H3K4me3 ChRD-PET data, showing three types of RNA-DNA interactions-local, proximal and distal. We further characterize the origin and composition of the RNA strand in R-loop RNA-DNA hybrids and identify that extensive cis and trans RNAs, including trans-non-coding RNAs, are prevalently involved in the R-loop. Integrative analysis of rice epigenome and three-dimensional genome data suggests that both coding and non-coding RNAs engage extensively in the formation of chromatin loops and chromatin-interacting domains. In summary, ChRD-PET is an efficient method for studying the features of RNA-chromatin interactions, and the resulting datasets constitute a valuable resource for the study of RNAs and their biological functions.
Collapse
Affiliation(s)
- Qin Xiao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xingyu Huang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, 3D Genomics Research Center, Huazhong Agricultural University, Wuhan, China
| | - Yan Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, 3D Genomics Research Center, Huazhong Agricultural University, Wuhan, China
| | - Wei Xu
- Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, Tsinghua University, Beijing, China
| | - Yongqing Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Qing Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Zhe Hu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Feng Xing
- College of Life Science, Xinyang Normal University, Xinyang, China
| | - Qianwen Sun
- Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, Tsinghua University, Beijing, China
| | - Guoliang Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, 3D Genomics Research Center, Huazhong Agricultural University, Wuhan, China
| | - Xingwang Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|