1
|
Fañanás‐Pueyo I, Carrera‐Castaño G, Pernas M, Oñate‐Sánchez L. Signalling and regulation of plant development by carbon/nitrogen balance. PHYSIOLOGIA PLANTARUM 2025; 177:e70228. [PMID: 40269445 PMCID: PMC12018728 DOI: 10.1111/ppl.70228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 03/13/2025] [Indexed: 04/25/2025]
Abstract
The two most abundant macronutrients in plant cells are carbon (C) and nitrogen (N). Coordination of their cellular metabolism is a fundamental factor in guaranteeing the optimal growth and development of plants. N availability and assimilation profoundly affect plant gene expression and modulate root and stem architecture, thus affecting whole plant growth and crop yield. N status also affects C fixation, as it is an important component of the photosynthetic machinery in leaves. Reciprocally, increasing C supply promotes N uptake and assimilation. There is extensive knowledge of the different mechanisms that plants use for sensing and signalling their nutritional status to regulate the assimilation, metabolism and transport of C and N. However, the crosstalk between C and N pathways has received much less attention. Plant growth and development are greatly affected by suboptimal C/N balance, which can arise from nutrient deficiencies or/and environmental cues. Mechanisms that integrate and respond to changes in this specific nutritional balance have started to arise. This review will examine the specific responses to C/N imbalance in plants by focusing on the main inorganic and organic metabolites involved, how they are sensed and transported, and the interconnection between the early signalling components and hormonal networks that underlies plants' adaptive responses.
Collapse
Affiliation(s)
- Iris Fañanás‐Pueyo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) ‐ Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPMPozuelo de Alarcón (Madrid)Spain
| | - Gerardo Carrera‐Castaño
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) ‐ Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPMPozuelo de Alarcón (Madrid)Spain
| | - Mónica Pernas
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) ‐ Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPMPozuelo de Alarcón (Madrid)Spain
| | - Luis Oñate‐Sánchez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) ‐ Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPMPozuelo de Alarcón (Madrid)Spain
- Departamento de Biotecnología‐Biología VegetalEscuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPMMadridSpain
| |
Collapse
|
2
|
Yao XL, Li ZD, Zhang MH, Meng HX, Wang YZ, Dong S, Yuan X, Li X, Gao L, Yang G, Chu X, Wang JG. Transcriptomic analysis of hub genes regulating nitrate and glucose response of nitrate response deficiency 1 (NRD1) mutant in foxtail millet. PLANT CELL REPORTS 2024; 43:289. [PMID: 39578264 DOI: 10.1007/s00299-024-03379-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/05/2024] [Indexed: 11/24/2024]
Affiliation(s)
- Xin-Li Yao
- Houji Laboratory in Shanxi Province, College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Zi-Dong Li
- Houji Laboratory in Shanxi Province, College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Ming-Hua Zhang
- Houji Laboratory in Shanxi Province, College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Hui-Xin Meng
- Houji Laboratory in Shanxi Province, College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Yu-Ze Wang
- Houji Laboratory in Shanxi Province, College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Shuqi Dong
- Houji Laboratory in Shanxi Province, College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
- State Key Laboratory of Sustainable Dryland Agriculture (in Preparation), Shanxi Agricultural University, Taigu, 030801, China
| | - Xiangyang Yuan
- Houji Laboratory in Shanxi Province, College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
- State Key Laboratory of Sustainable Dryland Agriculture (in Preparation), Shanxi Agricultural University, Taigu, 030801, China
| | - Xiaorui Li
- Houji Laboratory in Shanxi Province, College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
- State Key Laboratory of Sustainable Dryland Agriculture (in Preparation), Shanxi Agricultural University, Taigu, 030801, China
| | - Lulu Gao
- Houji Laboratory in Shanxi Province, College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Guanghui Yang
- Houji Laboratory in Shanxi Province, College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Xiaoqian Chu
- Houji Laboratory in Shanxi Province, College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China.
| | - Jia-Gang Wang
- Houji Laboratory in Shanxi Province, College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China.
| |
Collapse
|
3
|
Ma N, Sun T, Liu G, Wang Q, Liu C, Liu N, Han S, Zhen W, Hou C, Wang D. Translationally controlled tumor protein interacts with TaCIPK23 to positively regulate wheat resistance to Puccinia triticina. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:302-317. [PMID: 39180235 DOI: 10.1111/tpj.16987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 08/26/2024]
Abstract
Hypersensitive response-programmed cell death (HR-PCD) regulated by Ca2+ signal is considered the major regulator of resistance against Puccinia triticina (Pt.) infection in wheat. In this study, the bread wheat variety Thatcher and its near-isogenic line with the leaf rust resistance locus Lr26 were infected with the Pt. race 260 to obtain the compatible and incompatible combinations, respectively. The expression of translationally controlled tumor protein (TaTCTP) was upregulated upon infection with Pt., through a Ca2+-dependent mechanism in the incompatible combination. The knockdown of TaTCTP markedly increased the area of dying cell and the number of Pt. haustorial mother cells (HMCs) at the infection sites, whereas plants overexpressing the gene exhibited enhanced resistance. The interaction between TaTCTP and calcineurin B-like protein-interacting protein kinase 23 (TaCIPK23) was also investigated, and the interaction was found occurred in the endoplasmic reticulum. TaCIPK23 phosphorylated TaTCTP in vitro. The expression of a phospho-mimic TaTCTP mutant in Nicotiana benthamiana promoted HR-like cell death. Silencing TaCIPK23 or TaCIPK23/TaTCTP co-silencing resulted in the same results as silencing TaTCTP. This suggested that TaTCTP is a novel phosphorylation target of TaCIPK23, and both participate in the resistance of wheat to Pt. in the same pathway.
Collapse
Affiliation(s)
- Nan Ma
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, China
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Tianjie Sun
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, China
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Gang Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, China
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Qian Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, China
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Chunji Liu
- CSIRO Plant Industry, Brisbane, Australia
| | - Na Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, China
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Shengfang Han
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, China
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Wenchao Zhen
- Key Laboratory of Regulation and Control of Crop Growth of Hebei, Baoding, China
- College of Agronomy, Hebei Agriculture University, Baoding, China
| | - Chunyan Hou
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, China
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Dongmei Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, China
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| |
Collapse
|
4
|
Gao G, Zhou L, Liu J, Wang P, Gong P, Tian S, Qin G, Wang W, Wang Y. E3 ligase SlCOP1-1 stabilizes transcription factor SlOpaque2 and enhances fruit resistance to Botrytis cinerea in tomato. PLANT PHYSIOLOGY 2024; 196:1196-1213. [PMID: 39077783 PMCID: PMC11444291 DOI: 10.1093/plphys/kiae404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/12/2024] [Accepted: 06/26/2024] [Indexed: 07/31/2024]
Abstract
CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), a pivotal repressor in plant photomorphogenesis, has been extensively studied in various plant processes. However, the specific roles of COP1 in fruit remain poorly understood. Here, we functionally characterized SlCOP1-1 (also known as LeCOP1), an Arabidopsis (Arabidopsis thaliana) COP1 ortholog, in tomato (Solanum lycopersicum) fruit ripening and disease resistance. Despite the clear upregulation of SlCOP1-1 during fruit ripening, knockout or overexpression (OE) of SlCOP1-1 in tomatoes only minimally affected ripening. Intriguingly, these genetic manipulations substantially altered fruit resistance to the fungal pathogen Botrytis cinerea. Proteomic analysis revealed differential accumulation of proteins associated with fruit disease resistance upon SlCOP1-1 knockout or OE. To unravel the mechanism of SlCOP1-1 in disease resistance, we conducted a screen for SlCOP1-1-interacting proteins and identified the stress-related bZIP transcription factor SlOpaque2. We provide evidence that SlOpaque2 functions in tomato resistance to B. cinerea, and SlCOP1-1-mediated mono-ubiquitination and stabilization of SlOpaque2 contributes to fruit resistance against B. cinerea. Our findings uncover a regulatory role of COP1 in controlling fruit disease resistance, enriching our understanding of the regulatory network orchestrating fruit responses to disease.
Collapse
Affiliation(s)
- Guangtong Gao
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, China
- China National Botanical Garden, 100093 Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Leilei Zhou
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, China
- China National Botanical Garden, 100093 Beijing, China
| | - Jinying Liu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, China
- China National Botanical Garden, 100093 Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Peiwen Wang
- China National Botanical Garden, 100093 Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Pichang Gong
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, China
- China National Botanical Garden, 100093 Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Shiping Tian
- China National Botanical Garden, 100093 Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Guozheng Qin
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, China
- China National Botanical Garden, 100093 Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Weihao Wang
- China National Botanical Garden, 100093 Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Yuying Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, China
- China National Botanical Garden, 100093 Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, 100049 Beijing, China
| |
Collapse
|
5
|
Wang J, Zhu R, Meng Q, Qin H, Quan R, Wei P, Li X, Jiang L, Huang R. A natural variation in OsDSK2a modulates plant growth and salt tolerance through phosphorylation by SnRK1A in rice. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1881-1896. [PMID: 38346083 PMCID: PMC11182596 DOI: 10.1111/pbi.14308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 12/11/2023] [Accepted: 01/29/2024] [Indexed: 06/19/2024]
Abstract
Plants grow rapidly for maximal production under optimal conditions; however, they adopt a slower growth strategy to maintain survival when facing environmental stresses. As salt stress restricts crop architecture and grain yield, identifying genetic variations associated with growth and yield responses to salinity is critical for breeding optimal crop varieties. OsDSK2a is a pivotal modulator of plant growth and salt tolerance via the modulation of gibberellic acid (GA) metabolism; however, its regulation remains unclear. Here, we showed that OsDSK2a can be phosphorylated at the second amino acid (S2) to maintain its stability. The gene-edited mutant osdsk2aS2G showed decreased plant height and enhanced salt tolerance. SnRK1A modulated OsDSK2a-S2 phosphorylation and played a substantial role in GA metabolism. Genetic analysis indicated that SnRK1A functions upstream of OsDSK2a and affects plant growth and salt tolerance. Moreover, SnRK1A activity was suppressed under salt stress, resulting in decreased phosphorylation and abundance of OsDSK2a. Thus, SnRK1A preserves the stability of OsDSK2a to maintain plant growth under normal conditions, and reduces the abundance of OsDSK2a to limit growth under salt stress. Haplotype analysis using 3 K-RG data identified a natural variation in OsDSK2a-S2. The allele of OsDSK2a-G downregulates plant height and improves salt-inhibited grain yield. Thus, our findings revealed a new mechanism for OsDSK2a stability and provided a valuable target for crop breeding to overcome yield limitations under salinity stress.
Collapse
Affiliation(s)
- Juan Wang
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
- National Key Facility of Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Rui Zhu
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
| | - Qingshi Meng
- Institute of Animal SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Hua Qin
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
- National Key Facility of Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Ruidang Quan
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
- National Key Facility of Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Pengcheng Wei
- College of AgronomyAnhui Agricultural UniversityHefeiChina
| | - Xiaoying Li
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
| | - Lei Jiang
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
| | - Rongfeng Huang
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
- National Key Facility of Crop Gene Resources and Genetic ImprovementBeijingChina
| |
Collapse
|
6
|
Artins A, Martins MCM, Meyer C, Fernie AR, Caldana C. Sensing and regulation of C and N metabolism - novel features and mechanisms of the TOR and SnRK1 signaling pathways. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1268-1280. [PMID: 38349940 DOI: 10.1111/tpj.16684] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/15/2024]
Abstract
Carbon (C) and nitrogen (N) metabolisms are tightly integrated to allow proper plant growth and development. Photosynthesis is dependent on N invested in chlorophylls, enzymes, and structural components of the photosynthetic machinery, while N uptake and assimilation rely on ATP, reducing equivalents, and C-skeletons provided by photosynthesis. The direct connection between N availability and photosynthetic efficiency allows the synthesis of precursors for all metabolites and building blocks in plants. Thus, the capacity to sense and respond to sudden changes in C and N availability is crucial for plant survival and is mediated by complex yet efficient signaling pathways such as TARGET OF RAPAMYCIN (TOR) and SUCROSE-NON-FERMENTING-1-RELATED PROTEIN KINASE 1 (SnRK1). In this review, we present recent advances in mechanisms involved in sensing C and N status as well as identifying current gaps in our understanding. We finally attempt to provide new perspectives and hypotheses on the interconnection of diverse signaling pathways that will allow us to understand the integration and orchestration of the major players governing the regulation of the CN balance.
Collapse
Affiliation(s)
- Anthony Artins
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Golm, Germany
| | - Marina C M Martins
- in Press - Scientific Consulting and Communication Services, 05089-030, São Paulo, São Paulo, Brazil
| | - Christian Meyer
- Institut Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Golm, Germany
| | - Camila Caldana
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Golm, Germany
| |
Collapse
|
7
|
Yang T, Huang Y, Liao L, Wang S, Zhang H, Pan J, Huang Y, Li X, Chen D, Liu T, Lu X, Wu Y. Sucrose-associated SnRK1a1-mediated phosphorylation of Opaque2 modulates endosperm filling in maize. MOLECULAR PLANT 2024; 17:788-806. [PMID: 38615195 DOI: 10.1016/j.molp.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/29/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
During maize endosperm filling, sucrose not only serves as a source of carbon skeletons for storage-reserve synthesis but also acts as a stimulus to promote this process. However, the molecular mechanisms underlying sucrose and endosperm filling are poorly understood. In this study, we found that sucrose promotes the expression of endosperm-filling hub gene Opaque2 (O2), coordinating with storage-reserve accumulation. We showed that the protein kinase SnRK1a1 can attenuate O2-mediated transactivation, but sucrose can release this suppression. Biochemical assays revealed that SnRK1a1 phosphorylates O2 at serine 41 (S41), negatively affecting its protein stability and transactivation ability. We observed that mutation of SnRK1a1 results in larger seeds with increased kernel weight and storage reserves, while overexpression of SnRK1a1 causes the opposite effect. Overexpression of the native O2 (O2-OE), phospho-dead (O2-SA), and phospho-mimetic (O2-SD) variants all increased 100-kernel weight. Although O2-SA seeds exhibit smaller kernel size, they have higher accumulation of starch and proteins, resulting in larger vitreous endosperm and increased test weight. O2-SD seeds display larger kernel size but unchanged levels of storage reserves and test weight. O2-OE seeds show elevated kernel dimensions and nutrient storage, like a mixture of O2-SA and O2-SD seeds. Collectively, our study discovers a novel regulatory mechanism of maize endosperm filling. Identification of S41 as a SnRK1-mediated phosphorylation site in O2 offers a potential engineering target for enhancing storage-reserve accumulation and yield in maize.
Collapse
Affiliation(s)
- Tao Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Yunqin Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Longyu Liao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Shanshan Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Haoyu Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Jingying Pan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yongcai Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xiaoling Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Di Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Tao Liu
- Institute of Molecular Breeding for Maize, Qilu Normal University, Jinan, China
| | - Xiaoduo Lu
- Institute of Molecular Breeding for Maize, Qilu Normal University, Jinan, China
| | - Yongrui Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
8
|
Li J, Gu W, Yang Z, Chen J, Yi F, Li T, Li J, Zhou Y, Guo Y, Song W, Lai J, Zhao H. ZmELP1, an Elongator complex subunit, is required for the maintenance of histone acetylation and RNA Pol II phosphorylation in maize kernels. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1251-1268. [PMID: 38098341 PMCID: PMC11022810 DOI: 10.1111/pbi.14262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/20/2023] [Accepted: 11/26/2023] [Indexed: 01/26/2024]
Abstract
The Elongator complex was originally identified as an interactor of hyperphosphorylated RNA polymerase II (RNAPII) in yeast and has histone acetyltransferase (HAT) activity. However, the genome-wide regulatory roles of Elongator on transcriptional elongation and histone acetylation remain unclear. We characterized a maize miniature seed mutant, mn7 and map-based cloning revealed that Mn7 encodes one of the subunits of the Elongator complex, ZmELP1. ZmELP1 deficiency causes marked reductions in the kernel size and weight. Molecular analyses showed that ZmELP1 interacts with ZmELP3, which is required for H3K14 acetylation (H3K14ac), and Elongator complex subunits interact with RNA polymerase II (RNAPII) C-terminal domain (CTD). Genome-wide analyses indicated that loss of ZmELP1 leads to a significant decrease in the deposition of H3K14ac and the CTD of phosphorylated RNAPII on Ser2 (Ser2P). These chromatin changes positively correlate with global transcriptomic changes. ZmELP1 mutation alters the expression of genes involved in transcriptional regulation and kernel development. We also showed that the decrease of Ser2P depends on the deposition of Elongator complex-mediated H3K14ac. Taken together, our results reveal an important role of ZmELP1 in the H3K14ac-dependent transcriptional elongation, which is critical for kernel development.
Collapse
Affiliation(s)
- Jianrui Li
- State Key Laboratory of Maize Bio‐breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and BreedingChina Agricultural UniversityBeijingChina
| | - Wei Gu
- State Key Laboratory of Maize Bio‐breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and BreedingChina Agricultural UniversityBeijingChina
- Crop Breeding, Cultivation Research Institution/CIMMYT‐China Specialty Maize Research Center, Shanghai Engineering Research Center of Specialty Maize, Shanghai Key Laboratory of Agricultural Genetics and BreedingShanghai Academy of Agricultural SciencesShanghaiChina
| | - Zhijia Yang
- State Key Laboratory of Maize Bio‐breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and BreedingChina Agricultural UniversityBeijingChina
| | - Jian Chen
- State Key Laboratory of Maize Bio‐breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and BreedingChina Agricultural UniversityBeijingChina
| | - Fei Yi
- State Key Laboratory of Maize Bio‐breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and BreedingChina Agricultural UniversityBeijingChina
- Engineering Research Center of Plant Growth Regulator, Ministry of Education, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Tong Li
- State Key Laboratory of Maize Bio‐breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and BreedingChina Agricultural UniversityBeijingChina
| | - Jingrui Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Yue Zhou
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
| | - Yan Guo
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Weibin Song
- State Key Laboratory of Maize Bio‐breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and BreedingChina Agricultural UniversityBeijingChina
| | - Jinsheng Lai
- State Key Laboratory of Maize Bio‐breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and BreedingChina Agricultural UniversityBeijingChina
| | - Haiming Zhao
- State Key Laboratory of Maize Bio‐breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and BreedingChina Agricultural UniversityBeijingChina
| |
Collapse
|
9
|
Yuan Y, Huo Q, Zhang Z, Wang Q, Wang J, Chang S, Cai P, Song KM, Galbraith DW, Zhang W, Huang L, Song R, Ma Z. Decoding the gene regulatory network of endosperm differentiation in maize. Nat Commun 2024; 15:34. [PMID: 38167709 PMCID: PMC10762121 DOI: 10.1038/s41467-023-44369-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
The persistent cereal endosperm constitutes the majority of the grain volume. Dissecting the gene regulatory network underlying cereal endosperm development will facilitate yield and quality improvement of cereal crops. Here, we use single-cell transcriptomics to analyze the developing maize (Zea mays) endosperm during cell differentiation. After obtaining transcriptomic data from 17,022 single cells, we identify 12 cell clusters corresponding to five endosperm cell types and revealing complex transcriptional heterogeneity. We delineate the temporal gene-expression pattern from 6 to 7 days after pollination. We profile the genomic DNA-binding sites of 161 transcription factors differentially expressed between cell clusters and constructed a gene regulatory network by combining the single-cell transcriptomic data with the direct DNA-binding profiles, identifying 181 regulons containing genes encoding transcription factors along with their high-confidence targets, Furthermore, we map the regulons to endosperm cell clusters, identify cell-cluster-specific essential regulators, and experimentally validated three predicted key regulators. This study provides a framework for understanding cereal endosperm development and function at single-cell resolution.
Collapse
Affiliation(s)
- Yue Yuan
- State Key Laboratory of Maize Bio-breeding, Frontiers Science Center for Molecular Design Breeding, Joint International Research Laboratory of Crop Molecular Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Qiang Huo
- State Key Laboratory of Maize Bio-breeding, Frontiers Science Center for Molecular Design Breeding, Joint International Research Laboratory of Crop Molecular Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Ziru Zhang
- State Key Laboratory of Maize Bio-breeding, Frontiers Science Center for Molecular Design Breeding, Joint International Research Laboratory of Crop Molecular Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Qun Wang
- State Key Laboratory of Maize Bio-breeding, Frontiers Science Center for Molecular Design Breeding, Joint International Research Laboratory of Crop Molecular Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Juanxia Wang
- State Key Laboratory of Maize Bio-breeding, Frontiers Science Center for Molecular Design Breeding, Joint International Research Laboratory of Crop Molecular Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Shuaikang Chang
- State Key Laboratory of Maize Bio-breeding, Frontiers Science Center for Molecular Design Breeding, Joint International Research Laboratory of Crop Molecular Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Peng Cai
- State Key Laboratory of Maize Bio-breeding, Frontiers Science Center for Molecular Design Breeding, Joint International Research Laboratory of Crop Molecular Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Karen M Song
- Department of Biology, Trinity College of Arts and Sciences, Duke University, Durham, NC, 27708, USA
| | - David W Galbraith
- School of Plant Sciences and Bio5 Institute, University of Arizona, Tucson, AZ, 85721, USA
| | - Weixiao Zhang
- State Key Laboratory of Maize Bio-breeding, Frontiers Science Center for Molecular Design Breeding, Joint International Research Laboratory of Crop Molecular Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Long Huang
- State Key Laboratory of Maize Bio-breeding, Frontiers Science Center for Molecular Design Breeding, Joint International Research Laboratory of Crop Molecular Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Rentao Song
- State Key Laboratory of Maize Bio-breeding, Frontiers Science Center for Molecular Design Breeding, Joint International Research Laboratory of Crop Molecular Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
- Sanya Institute of China Agricultural University, Sanya, 572025, China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China.
| | - Zeyang Ma
- State Key Laboratory of Maize Bio-breeding, Frontiers Science Center for Molecular Design Breeding, Joint International Research Laboratory of Crop Molecular Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
- Sanya Institute of China Agricultural University, Sanya, 572025, China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China.
| |
Collapse
|
10
|
Yang T, Wu X, Wang W, Wu Y. Regulation of seed storage protein synthesis in monocot and dicot plants: A comparative review. MOLECULAR PLANT 2023; 16:145-167. [PMID: 36495013 DOI: 10.1016/j.molp.2022.12.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/27/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Seeds are a major source of nutrients for humans and animal livestock worldwide. With improved living standards, high nutritional quality has become one of the main targets for breeding. Storage protein content in seeds, which is highly variable depending on plant species, serves as a pivotal criterion of seed nutritional quality. In the last few decades, our understanding of the molecular genetics and regulatory mechanisms of storage protein synthesis has greatly advanced. Here, we systematically and comprehensively summarize breakthroughs on the conservation and divergence of storage protein synthesis in dicot and monocot plants. With regard to storage protein accumulation, we discuss evolutionary origins, developmental processes, characteristics of main storage protein fractions, regulatory networks, and genetic modifications. In addition, we discuss potential breeding strategies to improve storage protein accumulation and provide perspectives on some key unanswered problems that need to be addressed.
Collapse
Affiliation(s)
- Tao Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xingguo Wu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200233, China
| | - Wenqin Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200233, China
| | - Yongrui Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
11
|
Feng X, Meng Q, Zeng J, Yu Q, Xu D, Dai X, Ge L, Ma W, Liu W. Genome-wide identification of sucrose non-fermenting-1-related protein kinase genes in maize and their responses to abiotic stresses. FRONTIERS IN PLANT SCIENCE 2022; 13:1087839. [PMID: 36618673 PMCID: PMC9815513 DOI: 10.3389/fpls.2022.1087839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Introduction Protein kinases play an important role in plants in response to environmental changes through signal transduction. As a large family of protein kinases, sucrose non-fermenting-1 (SNF1)-related kinases (SnRKs) were found and functionally verified in many plants. Nevertheless, little is known about the SnRK family of Zea mays. Methods Evolutionary relationships, chromosome locations, gene structures, conserved motifs, and cis-elements in promoter regions were systematically analyzed. Besides, tissue-specific and stress-induced expression patterns of ZmSnRKs were determined. Finally, functional regulatory networks between ZmSnRKs and other proteins or miRNAs were constructed. Results and Discussion In total, 60 SnRK genes located on 10 chromosomes were discovered in maize. ZmSnRKs were classified into three subfamilies (ZmSnRK1, ZmSnRK2, and ZmSnRK3), consisting of 4, 14, and 42 genes, respectively. Gene structure analysis showed that 33 of the 42 ZmSnRK3 genes contained only one exon. Most ZmSnRK genes contained at least one ABRE, MBS, and LTR cis-element and a few ZmSnRK genes had AuxRR-core, P-box, MBSI, and SARE ciselements in their promoter regions. The Ka:Ks ratio of 22 paralogous ZmSnRK gene pairs revealed that the ZmSnRK gene family had experienced a purifying selection. Meanwhile, we analyzed the expression profiles of ZmSnRKs, and they exhibited significant differences in various tissues and abiotic stresses. In addition, A total of eight ZmPP2Cs, which can interact with ZmSnRK proteins, and 46 miRNAs, which can target 24 ZmSnRKs, were identified. Generally, these results provide valuable information for further function verification of ZmSnRKs, and improve our understanding of the role of ZmSnRKs in the climate resilience of maize.
Collapse
Affiliation(s)
- Xue Feng
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Quan Meng
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Jianbin Zeng
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Qian Yu
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Dengan Xu
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Xuehuan Dai
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Lei Ge
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Wujun Ma
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
- State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Wenxing Liu
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
- The Key Laboratory of the Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| |
Collapse
|
12
|
Jin L, Zhang G, Yang G, Dong J. Identification of the Karyopherin Superfamily in Maize and Its Functional Cues in Plant Development. Int J Mol Sci 2022; 23:ijms232214103. [PMID: 36430578 PMCID: PMC9699179 DOI: 10.3390/ijms232214103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/06/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022] Open
Abstract
Appropriate nucleo-cytoplasmic partitioning of proteins is a vital regulatory mechanism in phytohormone signaling and plant development. However, how this is achieved remains incompletely understood. The Karyopherin (KAP) superfamily is critical for separating the biological processes in the nucleus from those in the cytoplasm. The KAP superfamily is divided into Importin α (IMPα) and Importin β (IMPβ) families and includes the core components in mediating nucleocytoplasmic transport. Recent reports suggest the KAPs play crucial regulatory roles in Arabidopsis development and stress response by regulating the nucleo-cytoplasmic transport of members in hormone signaling. However, the KAP members and their associated molecular mechanisms are still poorly understood in maize. Therefore, we first identified seven IMPα and twenty-seven IMPβ genes in the maize genome and described their evolution traits and the recognition rules for substrates with nuclear localization signals (NLSs) or nuclear export signals (NESs) in plants. Next, we searched for the protein interaction partners of the ZmKAPs and selected the ones with Arabidopsis orthologs functioning in auxin biosynthesis, transport, and signaling to predict their potential function. Finally, we found that several ZmKAPs share similar expression patterns with their interacting proteins, implying their function in root development. Overall, this article focuses on the Karyopherin superfamily in maize and starts with this entry point by systematically comprehending the KAP-mediated nucleo-cytoplasmic transport process in plants, and then predicts the function of the ZmKAPs during maize development, with a perspective on a closely associated regulatory mechanism between the nucleo-cytoplasmic transport and the phytohormone network.
Collapse
Affiliation(s)
- Lu Jin
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Guobin Zhang
- College of Agronomy, Shandong Agricultural University, Taian 271018, China
| | - Guixiao Yang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Jiaqiang Dong
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
- Correspondence:
| |
Collapse
|
13
|
Peixoto B, Baena-González E. Management of plant central metabolism by SnRK1 protein kinases. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7068-7082. [PMID: 35708960 PMCID: PMC9664233 DOI: 10.1093/jxb/erac261] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/14/2022] [Indexed: 05/07/2023]
Abstract
SUCROSE NON-FERMENTING1 (SNF1)-RELATED KINASE 1 (SnRK1) is an evolutionarily conserved protein kinase with key roles in plant stress responses. SnRK1 is activated when energy levels decline during stress, reconfiguring metabolism and gene expression to favour catabolism over anabolism, and ultimately to restore energy balance and homeostasis. The capacity to efficiently redistribute resources is crucial to cope with adverse environmental conditions and, accordingly, genetic manipulations that increase SnRK1 activity are generally associated with enhanced tolerance to stress. In addition to its well-established function in stress responses, an increasing number of studies implicate SnRK1 in the homeostatic control of metabolism during the regular day-night cycle and in different organs and developmental stages. Here, we review how the genetic manipulation of SnRK1 alters central metabolism in several plant species and tissue types. We complement this with studies that provide mechanistic insight into how SnRK1 modulates metabolism, identifying changes in transcripts of metabolic components, altered enzyme activities, or direct regulation of enzymes or transcription factors by SnRK1 via phosphorylation. We identify patterns of response that centre on the maintenance of sucrose levels, in an analogous manner to the role described for its mammalian orthologue in the control of blood glucose homeostasis. Finally, we highlight several knowledge gaps and technical limitations that will have to be addressed in future research aiming to fully understand how SnRK1 modulates metabolism at the cellular and whole-plant levels.
Collapse
Affiliation(s)
- Bruno Peixoto
- Instituto Gulbenkian de Ciência, Oeiras, Portugal and GREEN-IT Bioresources for Sustainability, ITQB NOVA, Oeiras, Portugal
| | | |
Collapse
|
14
|
Wang H, Pak S, Yang J, Wu Y, Li W, Feng H, Yang J, Wei H, Li C. Two high hierarchical regulators, PuMYB40 and PuWRKY75, control the low phosphorus driven adventitious root formation in Populus ussuriensis. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1561-1577. [PMID: 35514032 PMCID: PMC9342623 DOI: 10.1111/pbi.13833] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 04/11/2022] [Accepted: 04/28/2022] [Indexed: 05/20/2023]
Abstract
Adventitious rooting is an essential biological process in the vegetative propagation of economically important horticultural and forest tree species. It enables utilization of the elite genotypes in breeding programmes and production. Promotion of adventitious root (AR) formation has been associated with starvation of inorganic phosphate and some factors involved in low phosphorus (LP) signalling. However, the regulatory mechanism underlying LP-mediated AR formation remains largely elusive. We established an efficient experimental system that guaranteed AR formation through short-term LP treatment in Populus ussuriensis. We then generated a time-course RNA-seq data set to recognize key regulatory genes and regulatory cascades positively regulating AR formation through data analysis and gene network construction, which were followed by experimental validation and characterization. We constructed a multilayered hierarchical gene regulatory network, from which PuMYB40, a typical R2R3-type MYB transcription factor (TF), and its interactive partner, PuWRKY75, as well as their direct targets, PuLRP1 and PuERF003, were identified to function upstream of the known adventitious rooting genes. These regulatory genes were functionally characterized and proved their roles in promoting AR formation in P. ussuriensis. In conclusion, our study unveiled a new hierarchical regulatory network that promoted AR formation in P. ussuriensis, which was activated by short-term LP stimulus and primarily governed by PuMYB40 and PuWRKY75.
Collapse
Affiliation(s)
- Hanzeng Wang
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
- College of AgricultureJilin Agricultural Science and Technology UniversityJilinChina
| | - Solme Pak
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
| | - Jia Yang
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
| | - Ye Wu
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
| | - Wenlong Li
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
| | - He Feng
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
| | - Jingli Yang
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
| | - Hairong Wei
- College of Forest Resources and Environmental ScienceMichigan Technological UniversityHoughtonMIUSA
| | - Chenghao Li
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
| |
Collapse
|
15
|
Xu X, Hummel S, Harter K, Kolukisaoglu Ü, Riemann M, Nick P. The Minus-End-Directed Kinesin OsDLK Shuttles to the Nucleus and Modulates the Expression of Cold-Box Factor 4. Int J Mol Sci 2022; 23:ijms23116291. [PMID: 35682970 PMCID: PMC9181729 DOI: 10.3390/ijms23116291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 02/04/2023] Open
Abstract
The transition to terrestrial plants was accompanied by a progressive loss of microtubule minus-end-directed dynein motors. Instead, the minus-end-directed class-XIV kinesins expanded considerably, likely related to novel functions. One of these motors, OsDLK (Dual Localisation Kinesin from rice), decorates cortical microtubules but moves into the nucleus in response to cold stress. This analysis of loss-of-function mutants in rice indicates that OsDLK participates in cell elongation during development. Since OsDLK harbours both a nuclear localisation signal and a putative leucin zipper, we asked whether the cold-induced import of OsDLK into the nucleus might correlate with specific DNA binding. Conducting a DPI-ELISA screen with recombinant OsDLKT (lacking the motor domain), we identified the Opaque2 motif as the most promising candidate. This motif is present in the promoter of NtAvr9/Cf9, the tobacco homologue of Cold-Box Factor 4, a transcription factor involved in cold adaptation. A comparative study revealed that the cold-induced accumulation of NtAvr9/Cfp9 was specifically quelled in transgenic BY-2 cells overexpressing OsDLK-GFP. These findings are discussed as a working model, where, in response to cold stress, OsDLK partitions from cortical microtubules at the plasma membrane into the nucleus and specifically modulates the expression of genes involved in cold adaptation.
Collapse
Affiliation(s)
- Xiaolu Xu
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, D-76131 Karlsruhe, Germany;
- Correspondence: (X.X.); (P.N.)
| | - Sabine Hummel
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, D-72076 Tübingen, Germany; (S.H.); (K.H.); (Ü.K.)
| | - Klaus Harter
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, D-72076 Tübingen, Germany; (S.H.); (K.H.); (Ü.K.)
| | - Üner Kolukisaoglu
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, D-72076 Tübingen, Germany; (S.H.); (K.H.); (Ü.K.)
| | - Michael Riemann
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, D-76131 Karlsruhe, Germany;
| | - Peter Nick
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, D-76131 Karlsruhe, Germany;
- Correspondence: (X.X.); (P.N.)
| |
Collapse
|
16
|
Yuan T, Zhu C, Li G, Liu Y, Yang K, Li Z, Song X, Gao Z. An Integrated Regulatory Network of mRNAs, microRNAs, and lncRNAs Involved in Nitrogen Metabolism of Moso Bamboo. Front Genet 2022; 13:854346. [PMID: 35651936 PMCID: PMC9149284 DOI: 10.3389/fgene.2022.854346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/14/2022] [Indexed: 11/18/2022] Open
Abstract
Nitrogen is a key macronutrient essential for plant growth and development, and its availability has a strong influence on biological processes. Nitrogen fertilizer has been widely applied in bamboo forests in recent decades; however, the mechanism of nitrogen metabolism in bamboo is not fully elucidated. Here, we characterized the morphological, physiological, and transcriptome changes of moso bamboo in response to different schemes for nitrogen addition to illuminate the regulation mechanism of nitrogen metabolism. The appropriate addition of nitrogen improved the chlorophyll content and Pn (net photosynthetic rate) of leaves, the nitrogen and ammonium contents of the seedling roots, the biomass of the whole seedling, the number of lateral roots, and the activity of enzymes involved in nitrogen metabolism in the roots. Based on the whole transcriptome data of the roots, a total of 8,632 differentially expressed mRNAs (DEGs) were identified under different nitrogen additions, such as 52 nitrate transporter genes, 6 nitrate reductase genes, 2 nitrite reductase genes, 2 glutamine synthase genes, 2 glutamate synthase genes (GOGAT), 3 glutamate dehydrogenase genes, and 431 TFs belonging to 23 families. Meanwhile, 123 differentially expressed miRNAs (DEMs) and 396 differentially expressed lncRNAs (DELs) were characterized as nitrogen responsive, respectively. Furthermore, 94 DEM-DEG pairs and 23 DEL-DEG pairs involved in nitrogen metabolism were identified. Finally, a predicted regulatory network of nitrogen metabolism was initially constructed, which included 17 nitrogen metabolic pathway genes, 15 TFs, 4 miRNAs, and 10 lncRNAs by conjoint analysis of DEGs, DEMs, and DELs and their regulatory relationships, which was supported by RNA-seq data and qPCR results. The lncRNA-miRNA-mRNA network provides new insights into the regulation mechanism of nitrogen metabolism in bamboo, which facilitates further genetic improvement for bamboo to adapt to the fluctuating nitrogen environment.
Collapse
Affiliation(s)
- Tingting Yuan
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Beijing, China.,International Center for Bamboo and Rattan, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, Beijing, China
| | - Chenglei Zhu
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Beijing, China.,International Center for Bamboo and Rattan, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, Beijing, China
| | - Guangzhu Li
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Beijing, China.,International Center for Bamboo and Rattan, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, Beijing, China
| | - Yan Liu
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Beijing, China.,International Center for Bamboo and Rattan, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, Beijing, China
| | - Kebin Yang
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Beijing, China.,International Center for Bamboo and Rattan, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, Beijing, China
| | - Zhen Li
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Beijing, China.,International Center for Bamboo and Rattan, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, Beijing, China
| | - Xinzhang Song
- State Key Laboratory of Subtropical Silviculture, Zhejiang A and F University, Hangzhou, China
| | - Zhimin Gao
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Beijing, China.,International Center for Bamboo and Rattan, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, Beijing, China
| |
Collapse
|
17
|
Li Q, Sun Q, Wang D, Liu Y, Zhang P, Lu H, Zhang Y, Zhang S, Wang A, Ding X, Xiao J. Quantitative phosphoproteomics reveals the role of wild soybean GsSnRK1 as a metabolic regulator under drought and alkali stresses. J Proteomics 2022; 258:104528. [PMID: 35182787 DOI: 10.1016/j.jprot.2022.104528] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/04/2022] [Accepted: 02/04/2022] [Indexed: 11/25/2022]
Abstract
Drought and alkali stresses cause detrimental effects on plant growth and development. SnRK1 protein kinases act as key energy and stress sensors by phosphorylation-mediated signaling in the regulation of plant defense reactions against adverse environments. To understand SnRK1-dependent phosphorylation events in signaling pathways triggered by abiotic factors, we employed quantitative phosphoproteomics to compare the global changes in phosphopeptides and phosphoproteins in 2kinm mutant Arabidopsis (SnRK1.1 T-DNA knockout and SnRK1.2 knockdown by β-estradiol-induced RNAi) complemented with wild soybean GsSnRK1(wt) or dominant negative mutant GsSnRK1(K49M) in response to drought and alkali stresses. Among 4014 phosphopeptides (representing 2380 phosphoproteins) identified in this study, we finalized 74 phosphopeptides (representing 61 phosphoproteins), and 75 phosphopeptides (representing 57 phosphoproteins) showing significant changes in phosphorylation levels under drought and alkali treatments respectively. Function enrichment and protein-protein interaction analyses indicated that the differentially-expressed phosphoproteins (DPs) under drought and alkali stresses were mainly involved in signaling transduction, stress response, carbohydrate and energy metabolism, transport and membrane trafficking, RNA splicing and processing, DNA binding and gene expression, and protein synthesis/folding/degradation. These results provide assistance to identify bona fide and novel SnRK1 phosphorylation substrates and shed new light on the biological functions of SnRK1 kinase in responses to abiotic stresses. SIGNIFICANCE: These results provide assistance to identify novel SnRK1 phosphorylation substrates and regulatory proteins, and shed new light on investigating the potential roles of reversible phosphorylation in plant responses to abiotic stresses.
Collapse
Affiliation(s)
- Qiang Li
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China
| | - Qi Sun
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China
| | - Di Wang
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China
| | - Yuanming Liu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China
| | - Pengmin Zhang
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China
| | - Haoran Lu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China
| | - Yao Zhang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Shuzhen Zhang
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China
| | - Aoxue Wang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| | - Xiaodong Ding
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China.
| | - Jialei Xiao
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
18
|
Yang T, Wang H, Guo L, Wu X, Xiao Q, Wang J, Wang Q, Ma G, Wang W, Wu Y. ABA-induced phosphorylation of basic leucine zipper 29, ABSCISIC ACID INSENSITIVE 19, and Opaque2 by SnRK2.2 enhances gene transactivation for endosperm filling in maize. THE PLANT CELL 2022; 34:1933-1956. [PMID: 35157077 PMCID: PMC9048887 DOI: 10.1093/plcell/koac044] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/03/2022] [Indexed: 05/23/2023]
Abstract
Opaque2 (O2) functions as a central regulator of the synthesis of starch and storage proteins and the O2 gene is transcriptionally regulated by a hub coordinator of seed development and grain filling, ABSCISIC ACID INSENSITIVE 19 (ZmABI19), in maize (Zea mays). Here, we identified a second hub coordinator, basic Leucine Zipper 29 (ZmbZIP29) that interacts with ZmABI19 to regulate O2 expression. Like zmabi19, zmbzip29 mutations resulted in a dramatic decrease of transcript and protein levels of O2 and thus a significant reduction of starch and storage proteins. zmbzip29 seeds developed slower and had a smaller size at maturity than those of the wild type. The zmbzip29;zmabi19 double mutant displayed more severe seed phenotypes and a greater reduction of storage reserves compared to the single mutants, whereas overexpression of the two transcription factors enhanced O2 expression, storage-reserve accumulation, and kernel weight. ZmbZIP29, ZmABI19, and O2 expression was induced by abscisic acid (ABA). With ABA treatment, ZmbZIP29 and ZmABI19 synergistically transactivated the O2 promoter. Through liquid chromatography tandem-mass spectrometry analysis, we established that the residues threonine(T) 57 in ZmABI19, T75 in ZmbZIP29, and T387 in O2 were phosphorylated, and that SnRK2.2 was responsible for the phosphorylation. The ABA-induced phosphorylation at these sites was essential for maximum transactivation of downstream target genes for endosperm filling in maize.
Collapse
Affiliation(s)
- Tao Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Haonan Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Liangxing Guo
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xingguo Wu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200233, China
| | - Qiao Xiao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jiechen Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qiong Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Guangjin Ma
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wenqin Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200233, China
| | | |
Collapse
|
19
|
Matiolli CC, Soares RC, Alves HLS, Abreu IA. Turning the Knobs: The Impact of Post-translational Modifications on Carbon Metabolism. FRONTIERS IN PLANT SCIENCE 2022; 12:781508. [PMID: 35087551 PMCID: PMC8787203 DOI: 10.3389/fpls.2021.781508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Plants rely on the carbon fixed by photosynthesis into sugars to grow and reproduce. However, plants often face non-ideal conditions caused by biotic and abiotic stresses. These constraints impose challenges to managing sugars, the most valuable plant asset. Hence, the precise management of sugars is crucial to avoid starvation under adverse conditions and sustain growth. This review explores the role of post-translational modifications (PTMs) in the modulation of carbon metabolism. PTMs consist of chemical modifications of proteins that change protein properties, including protein-protein interaction preferences, enzymatic activity, stability, and subcellular localization. We provide a holistic view of how PTMs tune resource distribution among different physiological processes to optimize plant fitness.
Collapse
|
20
|
Wu H, Becraft PW, Dannenhoffer JM. Maize Endosperm Development: Tissues, Cells, Molecular Regulation and Grain Quality Improvement. FRONTIERS IN PLANT SCIENCE 2022; 13:852082. [PMID: 35330868 PMCID: PMC8940253 DOI: 10.3389/fpls.2022.852082] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/11/2022] [Indexed: 05/12/2023]
Abstract
Maize endosperm plays important roles in human diet, animal feed and industrial applications. Knowing the mechanisms that regulate maize endosperm development could facilitate the improvement of grain quality. This review provides a detailed account of maize endosperm development at the cellular and histological levels. It features the stages of early development as well as developmental patterns of the various individual tissues and cell types. It then covers molecular genetics, gene expression networks, and current understanding of key regulators as they affect the development of each tissue. The article then briefly considers key changes that have occurred in endosperm development during maize domestication. Finally, it considers prospects for how knowledge of the regulation of endosperm development could be utilized to enhance maize grain quality to improve agronomic performance, nutrition and economic value.
Collapse
Affiliation(s)
- Hao Wu
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, United States
| | - Philip W. Becraft
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, United States
- *Correspondence: Philip W. Becraft,
| | | |
Collapse
|
21
|
Liang J, Zhang S, Yu W, Wu X, Wang W, Peng F, Xiao Y. PpSnRK1α overexpression alters the response to light and affects photosynthesis and carbon metabolism in tomato. PHYSIOLOGIA PLANTARUM 2021; 173:1808-1823. [PMID: 34387863 DOI: 10.1111/ppl.13523] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/21/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
Sucrose nonfermentation 1 (SNF1) related kinase 1 (SnRK1) is a central energy sensor kinase in plants and a key switch regulating carbon and nitrogen metabolism. Fruit quality depends on leaf photosynthetic efficiency and carbohydrate accumulation, but the role of peach (Prunus persica) SnRK1 α subunit (PpSnRK1α) in regulating leaf carbon metabolism and the light signal response remains unclear. We studied the carbon metabolism of tomato leaves overexpressing PpSnRK1α and the responses of PpSnRK1α-overexpressing tomato leaves to light signals. Transcriptome, metabolome, and real-time quantitative polymerase chain reaction analyses revealed that uridine 5'-diphosphoglucose, glutamate, and glucose-6-phosphate accumulated in tomato leaves overexpressing PpSnRK1α. The expression of genes (e.g., GDH2, SuSy) encoding enzymes related to carbon metabolism (e.g., glutamate dehydrogenase (GDH2; EC: 1.4.1.3), sucrose synthase (SS; EC: 2.4.1.13)) and chlorophyllase (CLH) encoding chlorophyllase (EC: 3.1.1.14), which regulates photosynthetic pigments and photosynthesis, was significantly increased in PpSnRK1α-overexpressing plants. PpSnRK1α overexpression inhibited the growth of hypocotyls and primary roots in response to light. The chlorophyll content of the leaves was increased, the activity of SS and ADPG pyrophosphatase (AGPase; EC: 2.7.7.27) was increased, and photosynthesis was promoted in PpSnRK1α-overexpressing plants relative to wild-type plants. Under light stress, the net photosynthetic rate of plants was significantly higher in plants overexpressing PpSnRK1α than in wild-type plants. This indicates that PpSnRK1α promotes the accumulation of carbohydrates by regulating genes related to carbon metabolism, regulating genes related to chlorophyll synthesis, and then responding to light signals to increase the net photosynthetic rate of leaves.
Collapse
Affiliation(s)
- Jiahui Liang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, China
| | - Shuhui Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, China
| | - Wenying Yu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, China
| | - Xuelian Wu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, China
| | - Wenru Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, China
| | - Futian Peng
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, China
| | - Yuansong Xiao
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, China
| |
Collapse
|
22
|
Peixoto B, Moraes TA, Mengin V, Margalha L, Vicente R, Feil R, Höhne M, Sousa AGG, Lilue J, Stitt M, Lunn JE, Baena-González E. Impact of the SnRK1 protein kinase on sucrose homeostasis and the transcriptome during the diel cycle. PLANT PHYSIOLOGY 2021; 187:1357-1373. [PMID: 34618060 PMCID: PMC8566312 DOI: 10.1093/plphys/kiab350] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/09/2021] [Indexed: 05/04/2023]
Abstract
SNF1-related Kinase 1 (SnRK1) is an evolutionarily conserved protein kinase with key functions in energy management during stress responses in plants. To address a potential role of SnRK1 under favorable conditions, we performed a metabolomic and transcriptomic characterization of rosettes of 20-d-old Arabidopsis (Arabidopsis thaliana) plants of SnRK1 gain- and loss-of-function mutants during the regular diel cycle. Our results show that SnRK1 manipulation alters the sucrose and trehalose 6-phosphate (Tre6P) relationship, influencing how the sucrose content is translated into Tre6P accumulation and modulating the flux of carbon to the tricarboxylic acid cycle downstream of Tre6P signaling. On the other hand, daily cycles of Tre6P accumulation were accompanied by changes in SnRK1 signaling, leading to a maximum in the expression of SnRK1-induced genes at the end of the night, when Tre6P levels are lowest, and to a minimum at the end of the day, when Tre6P levels peak. The expression of SnRK1-induced genes was strongly reduced by transient Tre6P accumulation in an inducible Tre6P synthase (otsA) line, further suggesting the involvement of Tre6P in the diel oscillations in SnRK1 signaling. Transcriptional profiling of wild-type plants and SnRK1 mutants also uncovered defects that are suggestive of an iron sufficiency response and of a matching induction of sulfur acquisition and assimilation when SnRK1 is depleted. In conclusion, under favorable growth conditions, SnRK1 plays a role in sucrose homeostasis and transcriptome remodeling in autotrophic tissues and its activity is influenced by diel fluctuations in Tre6P levels.
Collapse
Affiliation(s)
- Bruno Peixoto
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal and GREEN-IT Bioresources for Sustainability, ITQB NOVA, 2780-157 Oeiras, Portugal
| | - Thiago A Moraes
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
- Present address: Crop Science Centre, Lawrence Weaver Road, Cambridge CB3 0LE, UK
| | - Virginie Mengin
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
- Present address: University of Essex, School of Life Sciences, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Leonor Margalha
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal and GREEN-IT Bioresources for Sustainability, ITQB NOVA, 2780-157 Oeiras, Portugal
| | - Rubén Vicente
- GREEN-IT Bioresources for Sustainability, ITQB NOVA, 2780-157 Oeiras, Portugal
| | - Regina Feil
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Melanie Höhne
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - António G G Sousa
- Instituto Gulbenkian de Ciência, Bioinformatics Unit, 2780-156 Oeiras, Portugal
| | - Jingtao Lilue
- Instituto Gulbenkian de Ciência, Bioinformatics Unit, 2780-156 Oeiras, Portugal
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - John E Lunn
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Elena Baena-González
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal and GREEN-IT Bioresources for Sustainability, ITQB NOVA, 2780-157 Oeiras, Portugal
- Author for communication:
| |
Collapse
|
23
|
Dai D, Ma Z, Song R. Maize kernel development. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:2. [PMID: 37309525 PMCID: PMC10231577 DOI: 10.1007/s11032-020-01195-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/03/2020] [Indexed: 06/14/2023]
Abstract
Maize (Zea mays) is a leading cereal crop in the world. The maize kernel is the storage organ and the harvest portion of this crop and is closely related to its yield and quality. The development of maize kernel is initiated by the double fertilization event, leading to the formation of a diploid embryo and a triploid endosperm. The embryo and endosperm are then undergone independent developmental programs, resulting in a mature maize kernel which is comprised of a persistent endosperm, a large embryo, and a maternal pericarp. Due to the well-characterized morphogenesis and powerful genetics, maize kernel has long been an excellent model for the study of cereal kernel development. In recent years, with the release of the maize reference genome and the development of new genomic technologies, there has been an explosive expansion of new knowledge for maize kernel development. In this review, we overviewed recent progress in the study of maize kernel development, with an emphasis on genetic mapping of kernel traits, transcriptome analysis during kernel development, functional gene cloning of kernel mutants, and genetic engineering of kernel traits.
Collapse
Affiliation(s)
- Dawei Dai
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, 200444 China
| | - Zeyang Ma
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| | - Rentao Song
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
24
|
Cai Y. SnRK1-ZmRFWD3-Opaque2: A Nexus of Seed Nutrient Accumulation and Diurnal Cycles. THE PLANT CELL 2020; 32:2671-2672. [PMID: 32727909 PMCID: PMC7474277 DOI: 10.1105/tpc.20.00592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Affiliation(s)
- Yingqi Cai
- Biology DepartmentBrookhaven National LaboratoryUpton, New York
| |
Collapse
|