1
|
Yan B, Haiyang Zhang, Li H, Gao Y, Wei Y, Chang C, Zhang L, Li Z, Zhu L, Xu J. Molecular regulation of lipid metabolism in Suaeda salsa. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107894. [PMID: 37482030 DOI: 10.1016/j.plaphy.2023.107894] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/27/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
Suaeda salsa is remarkable for its high oil content and abundant unsaturated fatty acids. In this study, the regulatory networks on fatty acid and lipid metabolism were constructed by combining the de novo transcriptome and lipidome data. Differentially expressed genes (DEGs) associated with lipids biosynthesis pathways were identified in the S. salsa transcriptome. DEGs involved in fatty acid and glycerolipids were generally up-regulated in leaf tissues. DEGs for TAG assembly were enriched in developing seeds, while DEGs in phospholipid metabolic pathways were enriched in root tissues. Polar lipids were extracted from S. salsa tissues and analyzed by lipidomics. The proportion of galactolipid MGDG was the highest in S. salsa leaves. The molar percentage of PG was high in the developing seeds, and the other main phospholipids had higher molar percentage in roots of S. salsa. The predominant C36:6 molecular species indicates that S. salsa is a typical 18:3 plant. The combined transcriptomic and lipidomic data revealed that different tissues of S. salsa were featured with DEGs associated with specific lipid metabolic pathways, therefore, represented unique lipid profiles. This study will be helpful on understanding lipid metabolism pathway and exploring the key genes involved in lipid synthesis in S. salsa.
Collapse
Affiliation(s)
- Bowei Yan
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, China; Heilongjiang Academy of Agricultural Sciences Postdoctoral Programme, Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Haiyang Zhang
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Huixin Li
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Yuqiao Gao
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Yulei Wei
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Chuanyi Chang
- Harbin Academy of Agricultural Science, Harbin, 150028, China
| | - Liguo Zhang
- Heilongjiang Academy of Agricultural Sciences Postdoctoral Programme, Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Zuotong Li
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Lei Zhu
- College of Food Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| | - Jingyu Xu
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| |
Collapse
|
2
|
Xiao R, Zou Y, Guo X, Li H, Lu H. Fatty acid desaturases (FADs) modulate multiple lipid metabolism pathways to improve plant resistance. Mol Biol Rep 2022; 49:9997-10011. [PMID: 35819557 DOI: 10.1007/s11033-022-07568-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/28/2022] [Indexed: 01/03/2023]
Abstract
BACKGROUND Biological and abiotic stresses such as salt, extreme temperatures, and pests and diseases place major constraints on plant growth and crop yields. Fatty acids (FAs) and FA- derivatives are unique biologically active substance that show a wide range of functions in biological systems. They are not only participated in the regulation of energy storage substances and cell membrane plasm composition, but also extensively participate in the regulation of plant basic immunity, effector induced resistance and systemic resistance and other defense pathways, thereby improving plant resistance to adversity stress. Fatty acid desaturases (FADs) is involved in the desaturation of fatty acids, where desaturated fatty acids can be used as substrates for FA-derivatives. OBJECTIVE In this paper, the role of omega-FADs (ω-3 FADs and ω-6 FADs) in the prokaryotic and eukaryotic pathways of fatty acid biosynthesis in plant defense against stress (biological and abiotic stress) and the latest research progress were summarized. Moreover' the existing problems in related research and future research directions were also discussed. RESULTS Fatty acid desaturases are involved in various responses of plants during biotic and abiotic stress. For example, it is involved in regulating the stability and fluidity of cell membranes, reactive oxygen species signaling pathways, etc. In this review, we have collected several experimental studies to represent the differential effects of fatty acid desaturases on biotic and abiotic species. CONCLUSION Fatty acid desaturases play an important role in regulating biotic and abiotic stresses.
Collapse
Affiliation(s)
- Ruixue Xiao
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Tsinghua East Road 35, Haidian District, Beijing, 100083, China
| | - Yirong Zou
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Tsinghua East Road 35, Haidian District, Beijing, 100083, China
| | - Xiaorui Guo
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Tsinghua East Road 35, Haidian District, Beijing, 100083, China
| | - Hui Li
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Tsinghua East Road 35, Haidian District, Beijing, 100083, China
| | - Hai Lu
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China.
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 100083, China.
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Tsinghua East Road 35, Haidian District, Beijing, 100083, China.
| |
Collapse
|
3
|
Cappetta E, De Palma M, D’Alessandro R, Aiello A, Romano R, Graziani G, Ritieni A, Paolo D, Locatelli F, Sparvoli F, Docimo T, Tucci M. Development of a High Oleic Cardoon Cell Culture Platform by SAD Overexpression and RNAi-Mediated FAD2.2 Silencing. FRONTIERS IN PLANT SCIENCE 2022; 13:913374. [PMID: 35845700 PMCID: PMC9285897 DOI: 10.3389/fpls.2022.913374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/24/2022] [Indexed: 06/01/2023]
Abstract
The development of effective tools for the sustainable supply of phyto-ingredients and natural substances with reduced environmental footprints can help mitigate the dramatic scenario of climate change. Plant cell cultures-based biorefineries can be a technological advancement to face this challenge and offer a potentially unlimited availability of natural substances, in a standardized composition and devoid of the seasonal variability of cultivated plants. Monounsaturated (MUFA) fatty acids are attracting considerable attention as supplements for biodegradable plastics, bio-additives for the cosmetic industry, and bio-lubricants. Cardoon (Cynara cardunculus L. var. altilis) callus cultures accumulate fatty acids and polyphenols and are therefore suitable for large-scale production of biochemicals and valuable compounds, as well as biofuel precursors. With the aim of boosting their potential uses, we designed a biotechnological approach to increase oleic acid content through Agrobacterium tumefaciens-mediated metabolic engineering. Bioinformatic data mining in the C. cardunculus transcriptome allowed the selection and molecular characterization of SAD (stearic acid desaturase) and FAD2.2 (fatty acid desaturase) genes, coding for key enzymes in oleic and linoleic acid formation, as targets for metabolic engineering. A total of 22 and 27 fast-growing independent CcSAD overexpressing (OE) and CcFAD2.2 RNAi knocked out (KO) transgenic lines were obtained. Further characterization of five independent transgenic lines for each construct demonstrated that, successfully, SAD overexpression increased linoleic acid content, e.g., to 42.5%, of the relative fatty acid content, in the CcSADOE6 line compared with 30.4% in the wild type (WT), whereas FAD2.2 silencing reduced linoleic acid in favor of the accumulation of its precursor, oleic acid, e.g., to almost 57% of the relative fatty acid content in the CcFAD2.2KO2 line with respect to 17.7% in the WT. Moreover, CcSADOE6 and CcFAD2.2KO2 were also characterized by a significant increase in total polyphenolic content up to about 4.7 and 4.1 mg/g DW as compared with 2.7 mg/g DW in the WT, mainly due to the accumulation of dicaffeoyl quinic and feruloyl quinic acids. These results pose the basis for the effective creation of an engineered cardoon cells-based biorefinery accumulating high levels of valuable compounds from primary and specialized metabolism to meet the industrial demand for renewable and sustainable sources of innovative bioproducts.
Collapse
Affiliation(s)
- Elisa Cappetta
- National Research Council, Institute of Bioscience and Bioresources, Portici, Italy
| | - Monica De Palma
- National Research Council, Institute of Bioscience and Bioresources, Portici, Italy
| | - Rosa D’Alessandro
- National Research Council, Institute of Bioscience and Bioresources, Portici, Italy
| | - Alessandra Aiello
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Raffaele Romano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Giulia Graziani
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Alberto Ritieni
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Dario Paolo
- National Research Council, Institute of Agricultural Biology and Biotechnology, Milan, Italy
| | - Franca Locatelli
- National Research Council, Institute of Agricultural Biology and Biotechnology, Milan, Italy
| | - Francesca Sparvoli
- National Research Council, Institute of Agricultural Biology and Biotechnology, Milan, Italy
| | - Teresa Docimo
- National Research Council, Institute of Bioscience and Bioresources, Portici, Italy
| | - Marina Tucci
- National Research Council, Institute of Bioscience and Bioresources, Portici, Italy
| |
Collapse
|
4
|
Zhang F, Li Z, Zhou J, Gu Y, Tan X. Comparative study on fruit development and oil synthesis in two cultivars of Camellia oleifera. BMC PLANT BIOLOGY 2021; 21:348. [PMID: 34301189 PMCID: PMC8299657 DOI: 10.1186/s12870-021-03114-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The oil-tea tree (Camellia oleifera Abel.) is a woody tree species that produces edible oil in the seed. C. oleifera oil has high nutritional value and is also an important raw material for medicine and cosmetics. In China, due to the uncertainty on maturity period and oil synthesis mechanism of many C. oleifera cultivars, growers may harvest fruits prematurely, which could not maximize fruit and oil yields. In this study, our objective was to explore the mechanism and differences of oil synthesis between two Camellia oleifera cultivars for a precise definition of the fruit ripening period and the selection of appropriate cultivars. RESULTS The results showed that 'Huashuo' had smaller fruits and seeds, lower dry seed weight and lower expression levels of fatty acid biosynthesis genes in July. We could not detect the presence of oil and oil bodies in 'Huashuo' seeds until August, and oil and oil bodies were detected in 'Huajin' seeds in July. Moreover, 'Huashuo' seeds were not completely blackened in October with up to 60.38% of water and approximately 37.98% of oil in seed kernels whose oil content was much lower than normal mature seed kernels. The oil bodies in seed endosperm cells of 'Huajin' were always higher than those of 'Huashuo' from July to October. CONCLUSION Our results confirmed that C. oleifera 'Huashuo' fruits matured at a lower rate compared to 'Huajin' fruits and that 'Huajin' seeds entered the oil synthesis period earlier than 'Huashuo' seeds. Moreover, 'Huashuo' fruits did not mature during the Frost's Descent period (October 23-24 each year).
Collapse
Affiliation(s)
- Fanhang Zhang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, 410004 Hunan China
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 Jiangsu China
| | - Ze Li
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, 410004 Hunan China
- Engineering Technology Research Center of Southern Hilly and Mountainous Ecological Non-Wood Forestry Industry of Hunan Province, Central South University of Forestry and Technology, Changsha, 410004 Hunan China
| | - Junqin Zhou
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, 410004 Hunan China
- Engineering Technology Research Center of Southern Hilly and Mountainous Ecological Non-Wood Forestry Industry of Hunan Province, Central South University of Forestry and Technology, Changsha, 410004 Hunan China
| | - Yiyang Gu
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, 410004 Hunan China
- Engineering Technology Research Center of Southern Hilly and Mountainous Ecological Non-Wood Forestry Industry of Hunan Province, Central South University of Forestry and Technology, Changsha, 410004 Hunan China
| | - Xiaofeng Tan
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, 410004 Hunan China
- Engineering Technology Research Center of Southern Hilly and Mountainous Ecological Non-Wood Forestry Industry of Hunan Province, Central South University of Forestry and Technology, Changsha, 410004 Hunan China
| |
Collapse
|