1
|
TAKAHARA A, ISHIGE R, HIRAI T, NISHIBORI M, HIGAKI Y, YAMAZOE K, HARADA Y. Characterization of Soft Materials by Synchrotron Radiation X-ray Based Scattering and Spectroscopic Techniques. BUNSEKI KAGAKU 2022. [DOI: 10.2116/bunsekikagaku.71.461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Atsushi TAKAHARA
- Research Center for Negative Emission Technologies, Kyushu University
| | - Ryohei ISHIGE
- Department of Chemical Science and Engineering, Tokyo Institute of Technology
| | - Tomoyasu HIRAI
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology
| | - Maiko NISHIBORI
- International Center for Synchrotron Radiation Innovation Smart, Tohoku University
| | - Yuji HIGAKI
- Department of Integrated Science and Technology, Faculty of Science and Technology, Oita University
| | | | | |
Collapse
|
2
|
Hamamoto H, Takagi H, Akiba I, Yamamoto K. Analysis of Homopolymer Distribution in a Polymer Blend Thin Film by Anomalous Grazing Incidence Small-Angle X-ray Scattering at the Bromine K-Edge. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c02017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hiroki Hamamoto
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Hideaki Takagi
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Isamu Akiba
- Department of Chemistry and Biochemistry, The University of Kitakyusyu, 1-1 Hibikino, Kitakyusyu 808-0135, Japan
| | - Katsuhiro Yamamoto
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
3
|
Kamitani K, Hamada A, Yokomachi K, Ninomiya K, Uno K, Mukai M, Konishi Y, Ohta N, Nishibori M, Hirai T, Takahara A. Depth-Resolved Characterization of Perylenediimide Side-Chain Polymer Thin Film Structure Using Grazing-Incidence Wide-Angle X-ray Diffraction with Tender X-rays. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:8516-8521. [PMID: 29950098 DOI: 10.1021/acs.langmuir.8b01566] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Polymers with a perylenediimide (PDI) side chain (PAc12PDI) consist of two kinds of crystalline structures with various types of orientations in a thin film. Understanding the population of the microcrystalline structure and its orientation along the thickness is strongly desired. Grazing-incidence wide-angle X-ray diffraction (GIWAXD) measurements with hard X-rays, which are generally chosen as λ = 0.1 nm, are a powerful tool to evaluate the molecular aggregation structure in thin films. A depth-resolved analysis for the outermost surface of the polymeric materials using conventional GIWAXD measurements, however, has limitations on depth resolution because the X-ray penetration depth dramatically increases above the critical angle. Meanwhile, tender X-rays (λ = 0.5 nm) have the potential advantage that the penetration depth gradually increases above the critical angle, leading to precise characterization for the population of crystallite distribution along the thickness. The population of the microcrystalline states in the PAc12PDI thin film was precisely characterized utilizing GIWAXD measurements using tender X-rays. The outermost surface of the PAc12PDI thin film is occupied by a monoclinic lattice with a = 2.38 nm, b = 0.74 nm, c = 5.98 nm, and β = 108.13°, while maintaining the c-axis perpendicular to the substrate surface. Additionally, the presence of solid substrate controls the formation of the crystallite with unidirectional orientation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Noboru Ohta
- Japan Synchrotron Radiation Research Institute/SPring-8 , Sayo , Hyogo 679-5198 , Japan
| | - Maiko Nishibori
- Research Center for Synchrotron Light Applications , Kyushu University , 6-1 Kasugakoen , Kasuga , Fukuoka 816-8580 , Japan
| | | | - Atsushi Takahara
- Research Center for Synchrotron Light Applications , Kyushu University , 6-1 Kasugakoen , Kasuga , Fukuoka 816-8580 , Japan
| |
Collapse
|
4
|
Characterization of the surface morphology and grain growth near the surface of a block copolymer thin film with cylindrical microdomains oriented perpendicular to the surface. Polym J 2017. [DOI: 10.1038/pj.2017.36] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
5
|
OGAWA H, TSUJIOKA K, TAKENAKA M, KAMITANI K, SUGIYAMA T, KANAYA T, TAKAHARA A. Depth-Dependent Structural Analyses in PS- b-P2VP Thin Films as Revealed by Grazing Incidence Small Angle Scattering in the Tender Energy Region. KOBUNSHI RONBUNSHU 2017. [DOI: 10.1295/koron.2016-0058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hiroki OGAWA
- Institute for Chemical Research, Kyoto University
| | | | - Mikihito TAKENAKA
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University
| | | | - Takeharu SUGIYAMA
- Research Center for Synchrotron Light Applications, Kyushu University
| | | | - Atsushi TAKAHARA
- Institute for Material Chemistry and Engineering, Kyushu University
- Research Center for Synchrotron Light Applications, Kyushu University
| |
Collapse
|
6
|
Schwartzkopf M, Roth SV. Investigating Polymer-Metal Interfaces by Grazing Incidence Small-Angle X-Ray Scattering from Gradients to Real-Time Studies. NANOMATERIALS (BASEL, SWITZERLAND) 2016; 6:E239. [PMID: 28335367 PMCID: PMC5302712 DOI: 10.3390/nano6120239] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/06/2016] [Accepted: 12/07/2016] [Indexed: 01/13/2023]
Abstract
Tailoring the polymer-metal interface is crucial for advanced material design. Vacuum deposition methods for metal layer coating are widely used in industry and research. They allow for installing a variety of nanostructures, often making use of the selective interaction of the metal atoms with the underlying polymer thin film. The polymer thin film may eventually be nanostructured, too, in order to create a hierarchy in length scales. Grazing incidence X-ray scattering is an advanced method to characterize and investigate polymer-metal interfaces. Being non-destructive and yielding statistically relevant results, it allows for deducing the detailed polymer-metal interaction. We review the use of grazing incidence X-ray scattering to elucidate the polymer-metal interface, making use of the modern synchrotron radiation facilities, allowing for very local studies via in situ (so-called "stop-sputter") experiments as well as studies observing the nanostructured metal nanoparticle layer growth in real time.
Collapse
Affiliation(s)
| | - Stephan V Roth
- Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, D-22607 Hamburg, Germany.
- KTH Royal Institute of Technology, Department of Fibre and Polymer Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden.
| |
Collapse
|
7
|
Synchrotron X-ray scattering and photon correlation spectroscopy studies on thin film morphology details and structural changes of an amorphous-crystalline brush diblock copolymer. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Roth SV. A deep look into the spray coating process in real-time-the crucial role of x-rays. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:403003. [PMID: 27537198 DOI: 10.1088/0953-8984/28/40/403003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Tailoring functional thin films and coating by rapid solvent-based processes is the basis for the fabrication of large scale high-end applications in nanotechnology. Due to solvent loss of the solution or dispersion inherent in the installation of functional thin films and multilayers the spraying and drying processes are strongly governed by non-equilibrium kinetics, often passing through transient states, until the final structure is installed. Therefore, the challenge is to observe the structural build-up during these coating processes in a spatially and time-resolved manner on multiple time and length scales, from the nanostructure to macroscopic length scales. During installation, the interaction of solid-fluid interfaces and between the different layers, the flow and evaporation themselves determine the structure of the coating. Advanced x-ray scattering methods open a powerful pathway for observing the involved processes in situ, from the spray to the coating, and allow for gaining deep insight in the nanostructuring processes. This review first provides an overview over these rapidly evolving methods, with main focus on functional coatings, organic photovoltaics and organic electronics. Secondly the role and decisive advantage of x-rays is outlined. Thirdly, focusing on spray deposition as a rapidly emerging method, recent advances in investigations of spray deposition of functional materials and devices via advanced x-ray scattering methods are presented.
Collapse
Affiliation(s)
- Stephan V Roth
- Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, D-22607 Hamburg, Germany. Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
| |
Collapse
|
9
|
Sakurai S. Recent developments in polymer applications of synchrotron small-angle X-ray scattering. POLYM INT 2016. [DOI: 10.1002/pi.5136] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Shinichi Sakurai
- Department of Biobased Materials Science; Kyoto Institute of Technology; Matsugasaki Sakyo-ku, Kyoto 606-8585 Japan
| |
Collapse
|
10
|
Orientation and relaxation behaviors of lamellar microdomains of poly(methyl methacrylate)-b-poly(n-butyl acrylate) thin films as revealed by grazing-incidence small-angle X-ray scattering. Polym J 2016. [DOI: 10.1038/pj.2016.2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Saito I, Miyazaki T, Yamamoto K. Depth-Resolved Structure Analysis of Cylindrical Microdomain in Block Copolymer Thin Film by Grazing-Incidence Small-Angle X-ray Scattering Utilizing Low-Energy X-rays. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b01883] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Itsuki Saito
- Department
of Materials Science and Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Tsukasa Miyazaki
- Nitto Denko Corporation, 1-1-2, Shimohozumi,
Ibaraki, Osaka 567-8680, Japan
| | - Katsuhiro Yamamoto
- Department
of Materials Science and Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
12
|
Wernecke J, Krumrey M, Hoell A, Kline RJ, Liu HK, Wu WL. Traceable GISAXS measurements for pitch determination of a 25 nm self-assembled polymer grating. J Appl Crystallogr 2014. [DOI: 10.1107/s1600576714021050] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The feature sizes of only a few nanometres in modern nanotechnology and next-generation microelectronics continually increase the demand for suitable nanometrology tools. Grazing-incidence small-angle X-ray scattering (GISAXS) is a versatile technique to measure lateral and vertical sizes in the nanometre range, but the traceability of the obtained parameters, which is a prerequisite for any metrological measurement, has not been demonstrated so far. In this work, the first traceable GISAXS measurements, demonstrated with a self-assembled block copolymer grating structure with a nominal pitch of 25 nm, are reported. The different uncertainty contributions to the obtained pitch value of 24.83 (9) nm are discussed individually. The main uncertainty contribution results from the sample–detector distance and the pixel size measurement, whereas the intrinsic asymmetry of the scattering features is of minor relevance for the investigated grating structure. The uncertainty analysis provides a basis for the evaluation of the uncertainty of GISAXS data in a more general context, for example in numerical data modeling.
Collapse
|
13
|
Wernecke J, Okuda H, Ogawa H, Siewert F, Krumrey M. Depth-Dependent Structural Changes in PS-b-P2VP Thin Films Induced by Annealing. Macromolecules 2014. [DOI: 10.1021/ma500642d] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Jan Wernecke
- Physikalisch-Technische Bundesanstalt (PTB), Abbestrasse 2-12, 10587 Berlin, Germany
| | - Hiroshi Okuda
- Department
of Materials Science and Engineering, Kyoto University, Yoshida Honmachi, Sakyoku, Kyoto, 606-8501, Japan
| | - Hiroki Ogawa
- SPring-8, Japan Synchrotron Radiation Research Institute , 1-1-1, Kouto,
Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Frank Siewert
- Institute
Nanometre Optics and Technology, Helmholtz Zentrum Berlin (HZB), Albert-Einstein-Strasse 15, 12489 Berlin, Germany
| | - Michael Krumrey
- Physikalisch-Technische Bundesanstalt (PTB), Abbestrasse 2-12, 10587 Berlin, Germany
| |
Collapse
|
14
|
Ree M. Probing the self-assembled nanostructures of functional polymers with synchrotron grazing incidence X-ray scattering. Macromol Rapid Commun 2014; 35:930-59. [PMID: 24706560 DOI: 10.1002/marc.201400025] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Indexed: 11/09/2022]
Abstract
For advanced functional polymers such as biopolymers, biomimic polymers, brush polymers, star polymers, dendritic polymers, and block copolymers, information about their surface structures, morphologies, and atomic structures is essential for understanding their properties and investigating their potential applications. Grazing incidence X-ray scattering (GIXS) is established for the last 15 years as the most powerful, versatile, and nondestructive tool for determining these structural details when performed with the aid of an advanced third-generation synchrotron radiation source with high flux, high energy resolution, energy tunability, and small beam size. One particular merit of this technique is that GIXS data can be obtained facilely for material specimens of any size, type, or shape. However, GIXS data analysis requires an understanding of GIXS theory and of refraction and reflection effects, and for any given material specimen, the best methods for extracting the form factor and the structure factor from the data need to be established. GIXS theory is reviewed here from the perspective of practical GIXS measurements and quantitative data analysis. In addition, schemes are discussed for the detailed analysis of GIXS data for the various self-assembled nanostructures of functional homopolymers, brush, star, and dendritic polymers, and block copolymers. Moreover, enhancements to the GIXS technique are discussed that can significantly improve its structure analysis by using the new synchrotron radiation sources such as third-generation X-ray sources with picosecond pulses and partial coherence and fourth-generation X-ray laser sources with femtosecond pulses and full coherence.
Collapse
Affiliation(s)
- Moonhor Ree
- Department of Chemistry, Division of Advanced Materials Science, Pohang Accelerator Laboratory, Center for Electro-Photo Behaviors in Advanced Molecular Systems, Polymer Research Institute, and BK School of Molecular Science, Pohang University of Science & Technology, Pohang, 790-784, Republic of Korea
| |
Collapse
|
15
|
Yamamoto T, Okuda H, Takeshita K, Usami N, Kitajima Y, Ogawa H. Grazing-incidence small-angle X-ray scattering from Ge nanodots self-organized on Si(001) examined with soft X-rays. JOURNAL OF SYNCHROTRON RADIATION 2014; 21:161-164. [PMID: 24365931 DOI: 10.1107/s1600577513026088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Accepted: 09/20/2013] [Indexed: 06/03/2023]
Abstract
Grazing-incidence small-angle X-ray scattering (GISAXS) measurements with soft X-rays have been applied to Ge nanodots capped with a Si layer. Spatially anisotropic distribution of nanodots resulted in strongly asymmetric GISAXS patterns in the qy direction in the soft X-ray region, which have not been observed with conventional hard X-rays. However, such apparent differences were explained by performing a GISAXS intensity calculation on the Ewald sphere, i.e. taking the curvature of Ewald sphere into account.
Collapse
Affiliation(s)
- Takayoshi Yamamoto
- Graduate School of Engineering, Kyoto University, Yoshida Honmachi, Kyoto 606-8501, Japan
| | - Hiroshi Okuda
- Department of Materials Science and Engineering, Kyoto University, Yoshida Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kohki Takeshita
- Graduate School of Engineering, Kyoto University, Yoshida Honmachi, Kyoto 606-8501, Japan
| | - Noritaka Usami
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Sendai 980-8577, Japan
| | - Yoshinori Kitajima
- Photon Factory, High Energy Accelerator Research Organization, Oho, Tsukuba 305-0801, Japan
| | | |
Collapse
|
16
|
Rho Y, Ahn B, Yoon J, Ree M. Comprehensive synchrotron grazing-incidence X-ray scattering analysis of nanostructures in porous polymethylsilsesquioxane dielectric thin films. J Appl Crystallogr 2013. [DOI: 10.1107/s0021889812050923] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
A complete grazing-incidence X-ray scattering (GIXS) formula has been derived for nanopores buried in a polymer dielectric thin film supported by a substrate. Using the full power of the scattering formula, GIXS data from nanoporous polymethylsilsesquioxane dielectric thin films, a model nanoporous system, have successfully been analysed. The nanopores were found to be spherical and to have a certain degree of size distribution but were randomly dispersed in the film. In the film, GIXS was confirmed to arise predominantlyviathe first scattering process in which the incident X-ray beam scatters without reflection; the other scattering processes and their contributions were significantly dependent on the grazing angle. This study also confirmed that GIXS scattering can be analysed using only independent scattering terms, but this simple approach can only provide structural parameters. The cross terms were found to make a relatively small contribution to the intensity of the overall scattering but were required for the complete characterization of the measured two-dimensional scattering data, in particular the extracted out-of-plane scattering data, and their inclusion in the analysis enabled film properties such as film thickness, critical angle (i.e.electron density), refractive index and the absorption term to be determined.
Collapse
|
17
|
Okuda H, Takeshita K, Ochiai S, Kitajima Y, Sakurai S, Ogawa H. Contrast matching of an Si substrate with polymer films by anomalous dispersion at the SiKabsorption edge. J Appl Crystallogr 2011. [DOI: 10.1107/s002188981105206x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Anomalous dispersion at the SiKabsorption edge has been used to control the reflection from the interface between a film and an Si substrate, which otherwise complicates the nanostructure analysis of such a film, particularly for the soft-matter case, in grazing-incidence small-angle scattering. Such a reflectionless condition has been chosen for a triblock copolymer thin film, and two-dimensional grazing-incidence small-angle scattering patterns were obtained without the effect of the reflection. The present approach is useful for analysing nanostructures without introducing complicated corrections arising from the reflection.
Collapse
|