1
|
Datir SS. Invertase inhibitors in potato: towards a biochemical and molecular understanding of cold-induced sweetening. Crit Rev Food Sci Nutr 2020; 61:3804-3818. [PMID: 32838549 DOI: 10.1080/10408398.2020.1808876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Invertase inhibitors classified as cell wall/apoplastic and vacuolar belonging to the pectin methylesterase family, play a major role in cold-induced sweetening (CIS) process of potato tubers. The CIS process is controlled at the post-translational level via an interaction between invertase (cell wall/apoplastic and vacuolar) by their compartment-specific inhibitors (cell wall/apoplastic and vacuolar). Invertase inhibitors have been cloned, sequenced and functionally characterized from potato cultivars differing in their CIS ability. The secondary structure of the invertase inhibitors consisted of seven alpha-helices and four conserved cysteine residues. The well-conserved three amino acids i.e. Pro-Lys-Phe are known to interact with invertase. Location of the genes encoding cell wall/apoplastic and vacuolar invertase inhibitors on potato chromosome number twelve in a tandem orientation without any intervening genes suggest their divergence into the cell wall and vacuole forms following the event of gene duplication. Under cold storage conditions, the vacuolar invertase inhibitor gene showed developmentally regulated alternative splicing and produce hybrid mRNAs which were the result of mRNA splicing of an upstream region of vacuolar invertase inhibitor gene to a downstream region of the apoplastic invertase inhibitor gene. Transgenic potato tubers overexpressing invertase inhibitors resulted in decreased invertase activity, low reducing sugars and improved processing quality making invertase inhibitors highly potential candidate genes for overcoming CIS. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) gene-editing technology offers transgene-free breeding for developing CIS resistant potato cultivars. Moreover, the post-transcriptional regulation of invertase inhibitors during cold storage can be warranted. This review summarizes progress and current knowledge on biochemical and molecular approaches used for the understanding of invertase inhibitors with special reference to key findings in potato.
Collapse
Affiliation(s)
- Sagar S Datir
- Biology Department, Biosciences Complex, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
2
|
Datir S, Ghosh P. In silico analysis of the structural diversity and interactions between invertases and invertase inhibitors from potato ( Solanum tuberosum L.). 3 Biotech 2020; 10:178. [PMID: 32226707 DOI: 10.1007/s13205-020-02171-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 03/17/2020] [Indexed: 10/24/2022] Open
Abstract
We performed sequence diversity, phylogenetic profiling, 3D structure modelling and in silico interactions between invertases (cell wall/apoplastic and vacuolar) and invertase inhibitors (cell wall/apoplastic and vacuolar) from potato. Cloning and sequencing of invertase inhibitors was performed from different potato cultivars. The comparison of the protein sequences of the different isoforms of invertases and invertase inhibitors exhibited insertions and deletions as well as the variation in terms of amino acid residues. Furthermore, the phylogenetic tree analysis displayed two groups of invertase inhibitors corresponding to the cell wall/apoplast and vacuole. Using Phyre2 protein homology recognition engine, it revealed that the structure of invertase inhibitors was predominantly α-helical and that of invertase was α helices and β strands. Results of the Ramachandran plots for each structure showed that the percentage of amino acid residues in favoured region and in allowed region. Also, the Z score and QMEAN score indicated overall good, acceptable and reliable models. In silico interactions between different isoforms of invertase and invertase inhibitors suggested that cell wall/ apoplastic invertase inhibitor exhibited stronger interaction with vacuolar invertase compared to the vacuolar invertase inhibitor. In silico interactions provides valuable information in selecting the appropriate combinations of invertase and invertase inhibitor. Therefore, a better understanding of the interactions between specific invertase and invertase inhibitor alleles will be helpful for an intelligent manipulation of the cold-induced sweetening process of potato tubers.
Collapse
|
3
|
Kesarwani AK, Lee HC, Ricca PG, Sullivan G, Faiss N, Wagner G, Wunderling A, Wachter A. Multifactorial and Species-Specific Feedback Regulation of the RNA Surveillance Pathway Nonsense-Mediated Decay in Plants. PLANT & CELL PHYSIOLOGY 2019; 60:1986-1999. [PMID: 31368494 DOI: 10.1093/pcp/pcz141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 07/06/2019] [Indexed: 05/16/2023]
Abstract
Nonsense-mediated decay (NMD) is an RNA surveillance mechanism that detects aberrant transcript features and triggers degradation of erroneous as well as physiological RNAs. Originally considered to be constitutive, NMD is now recognized to be tightly controlled in response to inherent signals and diverse stresses. To gain a better understanding of NMD regulation and its functional implications, we systematically examined feedback control of the central NMD components in two dicot and one monocot species. On the basis of the analysis of transcript features, turnover rates and steady-state levels, up-frameshift (UPF) 1, UPF3 and suppressor of morphological defects on genitalia (SMG) 7, but not UPF2, are under feedback control in both dicots. In the monocot investigated in this study, only SMG7 was slightly induced upon NMD inhibition. The detection of the endogenous NMD factor proteins in Arabidopsis thaliana substantiated a negative correlation between NMD activity and SMG7 amounts. Furthermore, evidence was provided that SMG7 is required for the dephosphorylation of UPF1. Our comprehensive and comparative study of NMD feedback control in plants reveals complex and species-specific attenuation of this RNA surveillance pathway, with critical implications for the numerous functions of NMD in physiology and stress responses.
Collapse
Affiliation(s)
- Anil K Kesarwani
- Center for Plant Molecular Biology (ZMBP), University of T�bingen, Auf der Morgenstelle, 32 T�bingen, Germany
| | - Hsin-Chieh Lee
- Center for Plant Molecular Biology (ZMBP), University of T�bingen, Auf der Morgenstelle, 32 T�bingen, Germany
| | - Patrizia G Ricca
- Center for Plant Molecular Biology (ZMBP), University of T�bingen, Auf der Morgenstelle, 32 T�bingen, Germany
| | - Gabriele Sullivan
- Center for Plant Molecular Biology (ZMBP), University of T�bingen, Auf der Morgenstelle, 32 T�bingen, Germany
| | - Natalie Faiss
- Center for Plant Molecular Biology (ZMBP), University of T�bingen, Auf der Morgenstelle, 32 T�bingen, Germany
| | - Gabriele Wagner
- Center for Plant Molecular Biology (ZMBP), University of T�bingen, Auf der Morgenstelle, 32 T�bingen, Germany
| | - Anna Wunderling
- Center for Plant Molecular Biology (ZMBP), University of T�bingen, Auf der Morgenstelle, 32 T�bingen, Germany
| | - Andreas Wachter
- Center for Plant Molecular Biology (ZMBP), University of T�bingen, Auf der Morgenstelle, 32 T�bingen, Germany
- Institute for Molecular Physiology (imP), University of Mainz, Johannes von M�ller-Weg 6, Mainz, Germany
| |
Collapse
|
4
|
Plant glutathione biosynthesis revisited: redox-mediated activation of glutamylcysteine ligase does not require homo-dimerization. Biochem J 2019; 476:1191-1203. [PMID: 30877193 PMCID: PMC6463388 DOI: 10.1042/bcj20190072] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 02/08/2019] [Accepted: 03/04/2019] [Indexed: 11/17/2022]
Abstract
Plant γ-glutamylcysteine ligase (GCL), catalyzing the first and tightly regulated step of glutathione (GSH) biosynthesis, is redox-activated via formation of an intramolecular disulfide bond. In vitro, redox-activation of recombinant GCL protein causes formation of homo-dimers. Here, we have investigated whether dimerization occurs in vivo and if so whether it contributes to redox-activation. FPLC analysis indicated that recombinant redox-activated WT (wild type) AtGCL dissociates into monomers at concentrations below 10-6 M, i.e. below the endogenous AtGCL concentration in plastids, which was estimated to be in the micromolar range. Thus, dimerization of redox-activated GCL is expected to occur in vivo To determine the possible impact of dimerization on redox-activation, AtGCL mutants were generated in which salt bridges or hydrophobic interactions at the dimer interface were interrupted. WT AtGCL and mutant proteins were analyzed by non-reducing SDS-PAGE to address their redox state and probed by FPLC for dimerization status. Furthermore, their substrate kinetics (K M, V max) were compared. The results indicate that dimer formation is not required for redox-mediated enzyme activation. Also, crystal structure analysis confirmed that dimer formation does not affect binding of GSH as competitive inhibitor. Whether dimerization affects other enzyme properties, e.g. GCL stability in vivo, remains to be investigated.
Collapse
|
5
|
Tang X, Su T, Han M, Wei L, Wang W, Yu Z, Xue Y, Wei H, Du Y, Greiner S, Rausch T, Liu L. Suppression of extracellular invertase inhibitor gene expression improves seed weight in soybean (Glycine max). JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:469-482. [PMID: 28204559 PMCID: PMC5441900 DOI: 10.1093/jxb/erw425] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Cell wall invertase (CWI) and vacuolar invertase (VI) play multiple functions in plant growth. As well as depending on transcriptional and post-transcriptional regulation, there is growing evidence that CWI and VI are also subject to post-translational control by small inhibitory proteins. Despite the significance of this, genes encoding inhibitors, their molecular and biochemical properties, and their potential roles in regulating seed production have not been well documented in soybean (Glycine max). In this study, two invertase inhibitor isoforms, GmCIF1 and GmC/VIF2, were characterized to possess inhibitory activities in vitro via heterologous expression. Transcript analyses showed that they were predominantly expressed in developing seeds and in response to ABA. In accordance with this, surveys of primary targets showed subcellular localizations to the apoplast in tobacco epidermis after expressing YFP-fusion constructs. Investigations using RNAi transgenic plants demonstrated marked elevations of CWI activities and improvements in seed weight in conjunction with higher accumulations of hexoses, starch, and protein in mature seeds. Further co-expression analyses of GmCIF1 with several putative CWI genes corroborated the notion that GmCIF1 modulation of CWI that affects seed weight is mainly contingent on post-translational mechanisms. Overall, the results suggest that post-translational elevation of CWI by silencing of GmCIF1 expression orchestrates the process of seed maturation through fine-tuning sucrose metabolism and sink strength.
Collapse
Affiliation(s)
- Xiaofei Tang
- Soybean Research Institute, Academy of Agricultural Sciences, Harbin, China
- Plant Molecular Physiology, Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld, Heidelberg, Germany
| | - Tao Su
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and Environment, Nanjing Forestry University, Nanjing, China
- Plant Molecular Physiology, Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld, Heidelberg, Germany
| | - Mei Han
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and Environment, Nanjing Forestry University, Nanjing, China
| | - Lai Wei
- Soybean Research Institute, Academy of Agricultural Sciences, Harbin, China
| | - Weiwei Wang
- Soybean Research Institute, Academy of Agricultural Sciences, Harbin, China
| | - Zhiyuan Yu
- Soybean Research Institute, Academy of Agricultural Sciences, Harbin, China
| | - Yongguo Xue
- Soybean Research Institute, Academy of Agricultural Sciences, Harbin, China
| | - Hongbin Wei
- Plant Molecular Physiology, Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld, Heidelberg, Germany
| | - Yejie Du
- Plant Molecular Physiology, Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld, Heidelberg, Germany
| | - Steffen Greiner
- Plant Molecular Physiology, Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld, Heidelberg, Germany
| | - Thomas Rausch
- Plant Molecular Physiology, Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld, Heidelberg, Germany
| | - Lijun Liu
- Soybean Research Institute, Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
6
|
Hothorn M, Van den Ende W, Lammens W, Rybin V, Scheffzek K. Structural insights into the pH-controlled targeting of plant cell-wall invertase by a specific inhibitor protein. Proc Natl Acad Sci U S A 2010; 107:17427-32. [PMID: 20858733 PMCID: PMC2951410 DOI: 10.1073/pnas.1004481107] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Invertases are highly regulated enzymes with essential functions in carbohydrate partitioning, sugar signaling, and plant development. Here we present the 2.6 Å crystal structure of Arabidopsis cell-wall invertase 1 (INV1) in complex with a protein inhibitor (CIF, or cell-wall inhibitor of β-fructosidase) from tobacco. The structure identifies a small amino acid motif in CIF that directly targets the invertase active site. The activity of INV1 and its interaction with CIF are strictly pH-dependent with a maximum at about pH 4.5. At this pH, isothermal titration calorimetry reveals that CIF tightly binds its target with nanomolar affinity. CIF competes with sucrose (Suc) for the same binding site, suggesting that both the extracellular Suc concentration and the pH changes regulate association of the complex. A conserved glutamate residue in the complex interface was previously identified as an important quantitative trait locus affecting fruit quality, which implicates the invertase-inhibitor complex as a main regulator of carbon partitioning in plants. Comparison of the CIF/INV1 structure with the complex between the structurally CIF-related pectin methylesterase inhibitor (PMEI) and pectin methylesterase indicates a common targeting mechanism in PMEI and CIF. However, CIF and PMEI use distinct surface areas to selectively inhibit very different enzymatic scaffolds.
Collapse
Affiliation(s)
- Michael Hothorn
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037; and
| | - Wim Van den Ende
- K.U.Leuven, Laboratory of Molecular Plant Physiology, B-3001 Heverlee, Belgium
| | - Willem Lammens
- K.U.Leuven, Laboratory of Molecular Plant Physiology, B-3001 Heverlee, Belgium
| | - Vladimir Rybin
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Klaus Scheffzek
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| |
Collapse
|
7
|
Sadgrove NJ. The influence of indigenous food procurement techniques on populations of cyanobacteria in pre-European Australia: a potential small-scale water amelioration tool. ECOHEALTH 2009; 6:390-403. [PMID: 20108022 DOI: 10.1007/s10393-010-0276-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 10/28/2009] [Accepted: 11/12/2009] [Indexed: 05/28/2023]
Abstract
During times of pre-European Australia, indigenous people utilized methods of food procurement that resulted in toxic phytochemicals from plants entering their waterholes. This paper focuses on three of these plants, namely the leaves of Acacia colei and Duboisia hopwoodii, which were used by hunters to poison water holes to stun fish or a drinking animal, and the seeds of Castanospermum australe, which were eaten following the leaching of toxins into a running stream. If consumed by humans, the main toxins from these plants--saponins/sesquiterpenes, nicotine/nornicotine, and australine/castanospermine--are fatal. However, it is undetermined whether populations of Cyanobacteria also can be affected. During this study, the previously mentioned plants were administered to populations of the species Anabaena circinalis, Microcystis aeruginosa, and Nodularia spumigena, while mimicking the traditional applications of these plants as closely as possible. Results varied with treatments and species; however, cell chlorosis manifested in nearly all treatments, concomitantly with thylakoid membrane disorganization. Cell dormancy typically manifested, along with destruction of populations at higher treatments. The results indicated that populations of Cyanobacteria could have been destroyed or inhibited by indigenous people during traditional applications of these plants. Findings presented herein indicate a more sophisticated and complex traditional Australian resource management scheme than is currently understood, contributing to the growing awareness of the plight of earlier indigenous Australians. The reintroduction of traditional water management techniques may have potential as a suitable small-scale water resource management strategy.
Collapse
Affiliation(s)
- Nicholas John Sadgrove
- Centre for Bioactive Discovery in Health and Ageing, University of New England, Armidale, Australia,
| |
Collapse
|
8
|
Wolf S, Rausch T, Greiner S. The N-terminal pro region mediates retention of unprocessed type-I PME in the Golgi apparatus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 58:361-75. [PMID: 19144003 DOI: 10.1111/j.1365-313x.2009.03784.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The pectin matrix of the cell wall, a complex and dynamic network, impacts on cell growth, cell shape and signaling processes. A hallmark of pectin structure is the methylesterification status of its major component, homogalacturonan (HGA), which affects the biophysical properties and enzymatic turnover of pectin. The pectin methylesterases (PMEs), responsible for de-esterification, encompass a protein family of more than 60 isoforms in the Arabidopsis genome. The pivotal role of PME in the regulation of pectin properties also requires tight control at the post-translational level. Type-I PMEs are characterized by an N-terminal pro region, which exhibits homology with pectin methylesterase inhibitors (PMEIs). Here, we demonstrate that the proteolytic removal of the N-terminal pro region depends on conserved basic tetrad motifs, occurs in the early secretory pathway, and is required for the subsequent export of the PME core domain to the cell wall. In addition, we demonstrate the involvement of AtS1P, a subtilisin-like protease, in Arabidopsis PME processing. Our results indicate that the pro region operates as an effective retention mechanism, keeping unprocessed PME in the Golgi apparatus. Consequently, pro-protein processing could constitute a post-translational mechanism regulating PME activity.
Collapse
Affiliation(s)
- Sebastian Wolf
- Heidelberg Institute for Plant Sciences, INF 360, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
9
|
Gromes R, Hothorn M, Lenherr ED, Rybin V, Scheffzek K, Rausch T. The redox switch of gamma-glutamylcysteine ligase via a reversible monomer-dimer transition is a mechanism unique to plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 54:1063-75. [PMID: 18346196 DOI: 10.1111/j.1365-313x.2008.03477.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In plants, the first committed enzyme for glutathione biosynthesis, gamma-glutamylcysteine ligase (GCL), is under multiple controls. The recent elucidation of GCL structure from Brassica juncea (BjGCL) has revealed the presence of two intramolecular disulfide bridges (CC1, CC2), which both strongly impact on GCL activity in vitro. Here we demonstrate that cysteines of CC1 are confined to plant species from the Rosids clade, and are absent in other plant families. Conversely, cysteines of CC2 involved in the monomer-dimer transition in BjGCL are not only conserved in the plant kingdom, but are also conserved in the evolutionarily related alpha- (and some gamma-) proteobacterial GCLs. Focusing on the role of CC2 for GCL redox regulation, we have extended our analysis to all available plant (31; including moss and algal) and related proteobacterial GCL (46) protein sequences. Amino acids contributing to the homodimer interface in BjGCL are highly conserved among plant GCLs, but are not conserved in related proteobacterial GCLs. To probe the significance of this distinction, recombinant GCLs from Nicotiana tabacum (NtGCL), Agrobacterium tumefaciens (AtuGCL, alpha-proteobacteria) and Xanthomonas campestris (XcaGCL, gamma-proteobacteria) were analyzed for their redox response. As expected, NtGCL forms a homodimer under oxidizing conditions, and is activated more than threefold. Conversely, proteobacterial GCLs remain monomeric under oxidizing and reducing conditions, and their activities are not inhibited by DTT, despite the presence of CC2. We conclude that although plant GCLs are evolutionarily related to proteobacterial GCLs, redox regulation of their GCLs via CC2-dependent dimerization has been acquired later in evolution, possibly as a consequence of compartmentation in the redox-modulated plastid environment.
Collapse
Affiliation(s)
- Roland Gromes
- Heidelberg Institute for Plant Sciences, Molecular Ecophysiology, Im Neuenheimer Feld 360, 69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
10
|
Privat I, Foucrier S, Prins A, Epalle T, Eychenne M, Kandalaft L, Caillet V, Lin C, Tanksley S, Foyer C, Mccarthy J. Differential regulation of grain sucrose accumulation and metabolism in Coffea arabica (Arabica) and Coffea canephora (Robusta) revealed through gene expression and enzyme activity analysis. THE NEW PHYTOLOGIST 2008; 178:781-797. [PMID: 18384509 DOI: 10.1111/j.1469-8137.2008.02425.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
* Coffea arabica (Arabica) and Coffea canephora (Robusta) are the two main cultivated species used for coffee bean production. Arabica genotypes generally produce a higher coffee quality than Robusta genotypes. Understanding the genetic basis for sucrose accumulation during coffee grain maturation is an important goal because sucrose is an important coffee flavor precursor. * Nine new Coffea genes encoding sucrose metabolism enzymes have been identified: sucrose phosphate synthase (CcSPS1, CcSPS2), sucrose phosphate phosphatase (CcSP1), cytoplasmic (CaInv3) and cell wall (CcInv4) invertases and four invertase inhibitors (CcInvI1, 2, 3, 4). * Activities and mRNA abundance of the sucrose metabolism enzymes were compared at different developmental stages in Arabica and Robusta grains, characterized by different sucrose contents in mature grain. * It is concluded that Robusta accumulates less sucrose than Arabica for two reasons: Robusta has higher sucrose synthase and acid invertase activities early in grain development - the expression of CcSS1 and CcInv2 appears to be crucial at this stage and Robusta has a lower SPS activity and low CcSPS1 expression at the final stages of grain development and hence has less capacity for sucrose re-synthesis. Regulation of vacuolar invertase CcInv2 activity by invertase inhibitors CcInvI2 and/or CcInvI3 during Arabica grain development is considered.
Collapse
Affiliation(s)
- Isabelle Privat
- Centre de Recherche Nestlé, 101 Av. Gustave Eiffel, Notre Dame d'Oé, BP 49716-37097 Tours, France
| | - Séverine Foucrier
- Centre de Recherche Nestlé, 101 Av. Gustave Eiffel, Notre Dame d'Oé, BP 49716-37097 Tours, France
| | - Anneke Prins
- School of Agriculture, Food and Rural Development, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Thibaut Epalle
- Centre de Recherche Nestlé, 101 Av. Gustave Eiffel, Notre Dame d'Oé, BP 49716-37097 Tours, France
| | - Magali Eychenne
- Centre de Recherche Nestlé, 101 Av. Gustave Eiffel, Notre Dame d'Oé, BP 49716-37097 Tours, France
| | - Laurianne Kandalaft
- Centre de Recherche Nestlé, 101 Av. Gustave Eiffel, Notre Dame d'Oé, BP 49716-37097 Tours, France
| | - Victoria Caillet
- Centre de Recherche Nestlé, 101 Av. Gustave Eiffel, Notre Dame d'Oé, BP 49716-37097 Tours, France
| | - Chenwei Lin
- Department of Plant Breeding, 248 Emerson, Cornell University, Ithaca, NY 14853, USA
| | - Steve Tanksley
- Department of Plant Breeding, 248 Emerson, Cornell University, Ithaca, NY 14853, USA
| | - Christine Foyer
- School of Agriculture, Food and Rural Development, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - James Mccarthy
- Centre de Recherche Nestlé, 101 Av. Gustave Eiffel, Notre Dame d'Oé, BP 49716-37097 Tours, France
| |
Collapse
|
11
|
Röckel N, Wolf S, Kost B, Rausch T, Greiner S. Elaborate spatial patterning of cell-wall PME and PMEI at the pollen tube tip involves PMEI endocytosis, and reflects the distribution of esterified and de-esterified pectins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 53:133-43. [PMID: 17971035 DOI: 10.1111/j.1365-313x.2007.03325.x] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In dicots, pectins are the major structural determinant of the cell wall at the pollen tube tip. Recently, immunological studies revealed that esterified pectins are prevalent at the apex of growing pollen tubes, where the cell wall needs to be expandable. In contrast, lateral regions of the cell wall contain mostly de-esterified pectins, which can be cross-linked to rigid gels by Ca(2+) ions. In pollen tubes, several pectin methylesterases (PMEs), enzymes that de-esterify pectins, are co-expressed with different PME inhibitors (PMEIs). This raises the possibility that interactions between PMEs and PMEIs play a key role in the regulation of cell-wall stability at the pollen tube tip. Our data establish that the PME isoform AtPPME1 (At1g69940) and the PMEI isoform AtPMEI2 (At3g17220), which are both specifically expressed in Arabidopsis pollen, physically interact, and that AtPMEI2 inactivates AtPPME1 in vitro. Furthermore, transient expression in tobacco pollen tubes revealed a growth-promoting activity of AtPMEI2, and a growth-inhibiting effect of AtPPME1. Interestingly, AtPPME1:YFP accumulated to similar levels throughout the cell wall of tobacco pollen tubes, including the tip region, whereas AtPMEI2:YFP was exclusively detected at the apex. In contrast to AtPPME1, AtPMEI2 localized to Brefeldin A-induced compartments, and was found in FYVE-induced endosomal aggregates. Our data strongly suggest that the polarized accumulation of PMEI isoforms at the pollen tube apex, which depends at least in part on local PMEI endocytosis at the flanks of the tip, regulates cell-wall stability by locally inhibiting PME activity.
Collapse
Affiliation(s)
- Nina Röckel
- Heidelberg Institute for Plant Sciences, INF 360, 69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
12
|
Hothorn M, Wachter A, Gromes R, Stuwe T, Rausch T, Scheffzek K. Structural Basis for the Redox Control of Plant Glutamate Cysteine Ligase. J Biol Chem 2006; 281:27557-65. [PMID: 16766527 DOI: 10.1074/jbc.m602770200] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glutathione (GSH) plays a crucial role in plant metabolism and stress response. The rate-limiting step in the biosynthesis of GSH is catalyzed by glutamate cysteine ligase (GCL) the activity of which is tightly regulated. The regulation of plant GCLs is poorly understood. The crystal structure of substrate-bound GCL from Brassica juncea at 2.1-A resolution reveals a plant-unique regulatory mechanism based on two intramolecular redox-sensitive disulfide bonds. Reduction of one disulfide bond allows a beta-hairpin motif to shield the active site of B. juncea GCL, thereby preventing the access of substrates. Reduction of the second disulfide bond reversibly controls dimer to monomer transition of B. juncea GCL that is associated with a significant inactivation of the enzyme. These regulatory events provide a molecular link between high GSH levels in the plant cell and associated down-regulation of its biosynthesis. Furthermore, known mutations in the Arabidopsis GCL gene affect residues in the close proximity of the active site and thus explain the decreased GSH levels in mutant plants. In particular, the mutation in rax1-1 plants causes impaired binding of cysteine.
Collapse
Affiliation(s)
- Michael Hothorn
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
13
|
Link M, Rausch T, Greiner S. In Arabidopsis thaliana, the invertase inhibitors AtC/VIF1 and 2 exhibit distinct target enzyme specificities and expression profiles. FEBS Lett 2004; 573:105-9. [PMID: 15327983 DOI: 10.1016/j.febslet.2004.07.062] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2004] [Revised: 07/26/2004] [Accepted: 07/27/2004] [Indexed: 10/26/2022]
Abstract
Plant cell wall (CWI) and vacuolar invertases (VI) play important roles in carbohydrate metabolism, stress responses and sugar signaling. Addressing the regulation of invertase activities by inhibitor proteins (C/VIF, cell wall/vacuolar inhibitor of fructosidase), we have identified two C/VIFs from Arabidopsis thaliana. AtC/VIF1 showed specific inhibition of VI activity, whereas AtC/VIF2 inhibited both, CWI and VI. Expression analysis revealed that expression of AtC/VIF1 was restricted to specific organs, AtC/VIF2, however, was weakly expressed throughout plant development. Promoter::GUS transformants confirmed pronounced differences of tissue/cell type-specific expression between both isoforms. Growth of an AtC/VIF1 T-DNA KO mutant was unaffected, but VI activity and hexose content were slightly increased.
Collapse
Affiliation(s)
- Manuela Link
- Heidelberg Institute of Plant Sciences (HIP), Im Neuenheimer Feld 360, D-69120 Heidelberg, Germany
| | | | | |
Collapse
|
14
|
Hothorn M, D'Angelo I, Márquez JA, Greiner S, Scheffzek K. The invertase inhibitor Nt-CIF from tobacco: a highly thermostable four-helix bundle with an unusual N-terminal extension. J Mol Biol 2004; 335:987-95. [PMID: 14698293 DOI: 10.1016/j.jmb.2003.10.066] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Plant invertases are sucrolytic enzymes essential for plant metabolism and development. Enzyme activity is regulated on a posttranslational level via inhibitory proteins, referred to as invertase inhibitors. Ectopic expression of invertase inhibitors in crop plants has high biotechnological potential. However, little biochemical and up to now no detailed structural information is available about this class of plant regulatory proteins. Here, we present the crystal structure of the cell wall-associated invertase inhibitor Nt-CIF from tobacco at a resolution of 1.87A. The structural model reveals an asymmetric four-helix bundle with an uncommon N-terminal extension that appears to be critical for the structural integrity of the protein. Structure analysis of a second crystal form grown in the presence of CdCl(2) reveals two metal binding sites. Nt-CIF is highly thermostable and retains full inhibitory activity after cooling to ambient temperatures. The structure of Nt-CIF provides the first three-dimensional information source for the posttranslational regulation of plant invertases. Based on the recently discovered sequence homology between inhibitors of invertases and pectin methylesterases, our structural model is likely to represent a scaffold also used for the regulation of the latter enzymes, which do not share sequence similarity with invertases. Thus, our structural model sets the 3D-stage for the investigation of posttranslational regulation of invertases as well as pectin methylesterases.
Collapse
Affiliation(s)
- Michael Hothorn
- European Molecular Biology Laboratory, Structural and Computational Biology Programme, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | | | | | | | | |
Collapse
|