1
|
Bergonzo C, Aryal B, Rao VA. Divalent ions as mediators of carbonylation in cardiac myosin binding protein C. J Mol Graph Model 2023; 124:108576. [PMID: 37536231 DOI: 10.1016/j.jmgm.2023.108576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/12/2023] [Accepted: 07/27/2023] [Indexed: 08/05/2023]
Abstract
The dosing and efficacy of chemotherapeutic drugs can be limited by toxicity caused by off-pathway reactions. One hypothesis for how such toxicity arises is via metal-catalyzed oxidative damage of cardiac myosin binding protein C (cMyBP-C) found in cardiac tissue. Previous research indicates that metal ion mediated reactive oxygen species induce high levels of protein carbonylation, changing the structure and function of this protein. In this work, we use long timescale all-atom molecular dynamics simulations to investigate the ion environment surrounding the C0 and C1 subunits of cMyBP-C responsible for actin binding. We show that divalent cations are co-localized with protein carbonylation-prone amino acid residues and that carbonylation of these residues can lead to site-specific interruption to the actin-cMyBP-C binding.
Collapse
Affiliation(s)
- Christina Bergonzo
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology, the University of Maryland, 9600 Gudelsky Way, Rockville, MD, 20850, USA.
| | - Baikuntha Aryal
- Laboratory of Applied Biochemistry, Division of Biotechnology Review and Research III, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - V Ashutosh Rao
- Laboratory of Applied Biochemistry, Division of Biotechnology Review and Research III, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
2
|
Govada L, Chayen NE. Crystallisation and characterisation of muscle proteins: a mini-review. J Muscle Res Cell Motil 2023; 44:209-215. [PMID: 37133758 PMCID: PMC10542657 DOI: 10.1007/s10974-023-09648-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 03/29/2023] [Indexed: 05/04/2023]
Abstract
The techniques of X-ray protein crystallography, NMR and high-resolution cryo-electron microscopy have all been used to determine the high-resolution structure of proteins. The most-commonly used method, however, remains X-ray crystallography but it does rely heavily on the production of suitable crystals. Indeed, the production of diffraction quality crystals remains the rate-limiting step for most protein systems. This mini-review highlights the crystallisation trials that used existing and newly developed crystallisation methods on two muscle protein targets - the actin binding domain (ABD) of α-actinin and the C0-C1 domain of human cardiac myosin binding protein C (cMyBP-C). Furthermore, using heterogenous nucleating agents the crystallisation of the C1 domain of cMyBP-C was successfully achieved in house along with preliminary actin binding studies using electron microscopy and co-sedimentation assays .
Collapse
Affiliation(s)
- Lata Govada
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, W12 0NN, London, UK.
| | - Naomi E Chayen
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, W12 0NN, London, UK
| |
Collapse
|
3
|
In silico drug repurposing for the treatment of heart diseases using gene expression data and molecular docking techniques. Biochem Biophys Res Commun 2021; 572:138-144. [PMID: 34364293 DOI: 10.1016/j.bbrc.2021.07.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 11/24/2022]
Abstract
Heart diseases are known as the most primary causes of mortality worldwide. Although many therapeutic approaches and medications are proposed for these diseases, the identification of novel therapeutics in fatal heart conditions is promptly demanded. Besides, the interplay between gene expression data and molecular docking provides several novel insights to discover more effective and specific drugs for the treatment of the diseases. This study aimed to discover potent therapeutic drugs in the heart diseases based on the expression profile of heart-specific genes exclusively. Initially, the heart-specific and highly expressed genes were identified by comparing the gene expression profile of different body tissues. Subsequently, the druggable-genes were identified using in silico techniques. The interaction between these druggable genes with more than 1600 FDA approved drugs was then investigated using the molecular docking simulation. By comprehensively analyzing RNA-sequencing data obtained from 949 normal tissue samples, 48 heart-specific genes were identified in both the heart development and function. Notably, of these, 24 heart-specific genes were capable to be considered as druggable genes, among which only MYBPC3, MYLK3, and SCN5A genes entered the molecular docking process due to their functions. Afterward, the pharmacokinetics properties of top 10 ligands with the highest binding affinity for these proteins were studied. Accordingly, methylergonovine, fosaprepitant, pralatrexate, daunorubicin, glecaprevir, digoxin, and venetoclax drugs were competent, in order to interact with the target proteins perfectly. It was shown that these medications can be used as specific drugs for the treatment of heart diseases after fulfilling further experiments in this regard.
Collapse
|
4
|
Doh CY, Li J, Mamidi R, Stelzer JE. The HCM-causing Y235S cMyBPC mutation accelerates contractile function by altering C1 domain structure. Biochim Biophys Acta Mol Basis Dis 2019; 1865:661-677. [PMID: 30611859 DOI: 10.1016/j.bbadis.2019.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/18/2018] [Accepted: 01/02/2019] [Indexed: 12/20/2022]
Abstract
Mutations in cardiac myosin binding protein C (cMyBPC) are a major cause of hypertrophic cardiomyopathy (HCM). In particular, a single amino acid substitution of tyrosine to serine at residue 237 in humans (residue 235 in mice) has been linked to HCM with strong disease association. Although cMyBPC truncations, deletions and insertions, and frame shift mutations have been studied, relatively little is known about the functional consequences of missense mutations in cMyBPC. In this study, we characterized the functional and structural effects of the HCM-causing Y235S mutation by performing mechanical experiments and molecular dynamics simulations (MDS). cMyBPC null mouse myocardium was virally transfected with wild-type (WT) or Y235S cMyBPC (KOY235S). We found that Y235S cMyBPC was properly expressed and incorporated into the cardiac sarcomere, suggesting that the mechanism of disease of the Y235S mutation is not haploinsufficiency or poison peptides. Mechanical experiments in detergent-skinned myocardium isolated from KOY235S hearts revealed hypercontractile behavior compared to KOWT hearts, evidenced by accelerated cross-bridge kinetics and increased Ca2+ sensitivity of force generation. In addition, MDS revealed that the Y235S mutation causes alterations in important intramolecular interactions, surface conformations, and electrostatic potential of the C1 domain of cMyBPC. Our combined in vitro and in silico data suggest that the Y235S mutation directly disrupts internal and surface properties of the C1 domain of cMyBPC, which potentially alters its ligand-binding interactions. These molecular changes may underlie the mechanism for hypercontractile cross-bridge behavior, which ultimately results in the development of cardiac hypertrophy and in vivo cardiac dysfunction.
Collapse
Affiliation(s)
- Chang Yoon Doh
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Jiayang Li
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Ranganath Mamidi
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Julian E Stelzer
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
5
|
Wang L, Geist J, Grogan A, Hu LYR, Kontrogianni-Konstantopoulos A. Thick Filament Protein Network, Functions, and Disease Association. Compr Physiol 2018; 8:631-709. [PMID: 29687901 PMCID: PMC6404781 DOI: 10.1002/cphy.c170023] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sarcomeres consist of highly ordered arrays of thick myosin and thin actin filaments along with accessory proteins. Thick filaments occupy the center of sarcomeres where they partially overlap with thin filaments. The sliding of thick filaments past thin filaments is a highly regulated process that occurs in an ATP-dependent manner driving muscle contraction. In addition to myosin that makes up the backbone of the thick filament, four other proteins which are intimately bound to the thick filament, myosin binding protein-C, titin, myomesin, and obscurin play important structural and regulatory roles. Consistent with this, mutations in the respective genes have been associated with idiopathic and congenital forms of skeletal and cardiac myopathies. In this review, we aim to summarize our current knowledge on the molecular structure, subcellular localization, interacting partners, function, modulation via posttranslational modifications, and disease involvement of these five major proteins that comprise the thick filament of striated muscle cells. © 2018 American Physiological Society. Compr Physiol 8:631-709, 2018.
Collapse
Affiliation(s)
- Li Wang
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland, USA
| | - Janelle Geist
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland, USA
| | - Alyssa Grogan
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland, USA
| | - Li-Yen R. Hu
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland, USA
| | | |
Collapse
|
6
|
Mohamed IA, Krishnamoorthy NT, Nasrallah GK, Da'as SI. The Role of Cardiac Myosin Binding Protein C3 in Hypertrophic Cardiomyopathy-Progress and Novel Therapeutic Opportunities. J Cell Physiol 2017; 232:1650-1659. [PMID: 27731493 DOI: 10.1002/jcp.25639] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 10/07/2016] [Indexed: 11/11/2022]
Abstract
Hypertrophic cardiomyopathy (HCM) is a common autosomal dominant genetic cardiovascular disorder marked by genetic and phenotypic heterogeneity. Mutations in the gene encodes the cardiac myosin-binding protein C, cMYBPC3 is amongst the various sarcomeric genes that are associated with HCM. These mutations produce mutated mRNAs and truncated cMyBP-C proteins. In this review, we will discuss the implications and molecular mechanisms involved in MYBPC3 different mutations. Further, we will highlight the novel targets that can be developed into potential therapeutics for the treatment of HMC. J. Cell. Physiol. 232: 1650-1659, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Iman A Mohamed
- Department of Biomedical Science, Zewail City of Science and Technology, Giza, Egypt
| | - Navaneethakrishnan T Krishnamoorthy
- Division of Experimental Genetics, Sidra Medical and Research Center, Doha, Qatar.,Heart Science Centre, National Heart and Lung Institute, Imperial College London, London, UK
| | - Gheyath K Nasrallah
- Department of Biomedical Science, College of Health Science, Qatar University, Doha, Qatar.,Biomedical Research Center, Qatar University, Doha, Qatar
| | - Sahar I Da'as
- Division of Experimental Genetics, Sidra Medical and Research Center, Doha, Qatar.,Department of Biomedical and Biological Sciences, Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
7
|
Ball KA, Johnson JR, Lewinski MK, Guatelli J, Verschueren E, Krogan NJ, Jacobson MP. Non-degradative Ubiquitination of Protein Kinases. PLoS Comput Biol 2016; 12:e1004898. [PMID: 27253329 PMCID: PMC4890936 DOI: 10.1371/journal.pcbi.1004898] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/02/2016] [Indexed: 12/22/2022] Open
Abstract
Growing evidence supports other regulatory roles for protein ubiquitination in addition to serving as a tag for proteasomal degradation. In contrast to other common post-translational modifications, such as phosphorylation, little is known about how non-degradative ubiquitination modulates protein structure, dynamics, and function. Due to the wealth of knowledge concerning protein kinase structure and regulation, we examined kinase ubiquitination using ubiquitin remnant immunoaffinity enrichment and quantitative mass spectrometry to identify ubiquitinated kinases and the sites of ubiquitination in Jurkat and HEK293 cells. We find that, unlike phosphorylation, ubiquitination most commonly occurs in structured domains, and on the kinase domain, ubiquitination is concentrated in regions known to be important for regulating activity. We hypothesized that ubiquitination, like other post-translational modifications, may alter the conformational equilibrium of the modified protein. We chose one human kinase, ZAP-70, to simulate using molecular dynamics with and without a monoubiquitin modification. In Jurkat cells, ZAP-70 is ubiquitinated at several sites that are not sensitive to proteasome inhibition and thus may have other regulatory roles. Our simulations show that ubiquitination influences the conformational ensemble of ZAP-70 in a site-dependent manner. When monoubiquitinated at K377, near the C-helix, the active conformation of the ZAP-70 C-helix is disrupted. In contrast, when monoubiquitinated at K476, near the kinase hinge region, an active-like ZAP-70 C-helix conformation is stabilized. These results lead to testable hypotheses that ubiquitination directly modulates kinase activity, and that ubiquitination is likely to alter structure, dynamics, and function in other protein classes as well. Attachment of ubiquitin to another protein is typically used to mark the protein for degradation by the proteasome. However, recent studies show that many proteins are tagged with ubiquitin and not degraded. We hypothesized that ubiquitin can regulate the protein it is attached to by changing its structure and dynamics. We performed proteomics experiments to identify all of the kinase proteins tagged by ubiquitin in a human cell line as well as the site of ubiquitination. We found that kinases are often ubiquitinated in structured regions important for regulation and activity. We then performed molecular dynamics simulations of one kinase, ZAP-70, to see if a ubiquitin tag could affect the kinase structure. We found that ubiquitin does affect the structure of ZAP-70, and the effect depends on where the ubiquitin is attached. At K377, ubiquitin changes the ZAP-70 structure to resemble the inactive state, while ubiquitin attached at K476, on the other side of the protein, has the opposite effect. These simulations indicate that ubiquitin, like other post-translational modifications, may alter the structure and dynamics of proteins in ways that impact activity and function.
Collapse
Affiliation(s)
- K. Aurelia Ball
- Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, California, United States of America
| | - Jeffrey R. Johnson
- Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, California, United States of America
| | - Mary K. Lewinski
- Division of Infectious Diseases, University of California at San Diego School of Medicine, La Jolla, California, United States of America
| | - John Guatelli
- Division of Infectious Diseases, University of California at San Diego School of Medicine, La Jolla, California, United States of America
| | - Erik Verschueren
- Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, California, United States of America
| | - Nevan J. Krogan
- Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, California, United States of America
- * E-mail: (NJK); (MPJ)
| | - Matthew P. Jacobson
- Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, California, United States of America
- * E-mail: (NJK); (MPJ)
| |
Collapse
|
8
|
Site-directed spectroscopy of cardiac myosin-binding protein C reveals effects of phosphorylation on protein structural dynamics. Proc Natl Acad Sci U S A 2016; 113:3233-8. [PMID: 26908877 DOI: 10.1073/pnas.1521281113] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We have used the site-directed spectroscopies of time-resolved fluorescence resonance energy transfer (TR-FRET) and double electron-electron resonance (DEER), combined with complementary molecular dynamics (MD) simulations, to resolve the structure and dynamics of cardiac myosin-binding protein C (cMyBP-C), focusing on the N-terminal region. The results have implications for the role of this protein in myocardial contraction, with particular relevance to β-adrenergic signaling, heart failure, and hypertrophic cardiomyopathy. N-terminal cMyBP-C domains C0-C2 (C0C2) contain binding regions for potential interactions with both thick and thin filaments. Phosphorylation by PKA in the MyBP-C motif regulates these binding interactions. Our spectroscopic assays detect distances between pairs of site-directed probes on cMyBP-C. We engineered intramolecular pairs of labeling sites within cMyBP-C to measure, with high resolution, the distance and disorder in the protein's flexible regions using TR-FRET and DEER. Phosphorylation reduced the level of molecular disorder and the distribution of C0C2 intramolecular distances became more compact, with probes flanking either the motif between C1 and C2 or the Pro/Ala-rich linker (PAL) between C0 and C1. Further insight was obtained from microsecond MD simulations, which revealed a large structural change in the disordered motif region in which phosphorylation unmasks the surface of a series of residues on a stable α-helix within the motif with high potential as a protein-protein interaction site. These experimental and computational findings elucidate structural transitions in the flexible and dynamic portions of cMyBP-C, providing previously unidentified molecular insight into the modulatory role of this protein in cardiac muscle contractility.
Collapse
|
9
|
Finley NL, Cuperman TI. Cardiac myosin binding protein-C: a structurally dynamic regulator of myocardial contractility. Pflugers Arch 2014; 466:433-8. [PMID: 24469349 DOI: 10.1007/s00424-014-1451-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 01/10/2014] [Accepted: 01/14/2014] [Indexed: 11/28/2022]
Abstract
Cardiac myosin binding protein-C (cMyBP-C) is a modular protein anchored to the thick filament through interactions mediated by its C-terminal region. The N-terminal region of cMyBPC-C regulates myocardial contractility by modifying actin-myosin association. Phosphorylation of the N-terminal region diminishes cMyBP-C's capacity to regulate actin-myosin function. Despite a substantial body of literature, many issues remain unclear regarding the structural and functional roles of cMyBP-C. While no high-resolution structures of the intact protein exist, crystallographic and nuclear magnetic resonance (NMR) structures of isolated N-terminal domains provide important molecular details regarding cMyBP-C's role in controlling contractility. In this review, we summarize the emerging structural understanding of cMyBP-C with a particular emphasis placed on describing how its dynamic molecular interactions with both thin and thick filament proteins likely contribute to contractile regulation. Furthermore, we discuss the future directions and strategies by which we may improve the mechanistic understanding of its role in modulating cardiac muscle contraction.
Collapse
Affiliation(s)
- Natosha L Finley
- The Cell, Molecular, and Structural Biology Program, Department of Microbiology, Miami University, 700 East High Street, 32 Pearson Hall, Oxford, OH, 45056, USA,
| | | |
Collapse
|
10
|
Gajendrarao P, Krishnamoorthy N, Kassem HS, Moharem-Elgamal S, Cecchi F, Olivotto I, Yacoub MH. Molecular modeling of disease causing mutations in domain C1 of cMyBP-C. PLoS One 2013; 8:e59206. [PMID: 23527136 PMCID: PMC3602012 DOI: 10.1371/journal.pone.0059206] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 02/12/2013] [Indexed: 11/20/2022] Open
Abstract
Cardiac myosin binding protein-C (cMyBP-C) is a multi-domain (C0-C10) protein that regulates heart muscle contraction through interaction with myosin, actin and other sarcomeric proteins. Several mutations of this protein cause familial hypertrophic cardiomyopathy (HCM). Domain C1 of cMyBP-C plays a central role in protein interactions with actin and myosin. Here, we studied structure-function relationship of three disease causing mutations, Arg177His, Ala216Thr and Glu258Lys of the domain C1 using computational biology techniques with its available X-ray crystal structure. The results suggest that each mutation could affect structural properties of the domain C1, and hence it's structural integrity through modifying intra-molecular arrangements in a distinct mode. The mutations also change surface charge distributions, which could impact the binding of C1 with other sarcomeric proteins thereby affecting contractile function. These structural consequences of the C1 mutants could be valuable to understand the molecular mechanisms for the disease.
Collapse
Affiliation(s)
| | | | - Heba Sh Kassem
- BA-HCM National Programme at Aswan Heart Centre, Egypt
- Pathology Department and Clinical Genomics Centre, Alexandria Faculty of Medicine, Alexandria, Egypt
| | - Sarah Moharem-Elgamal
- BA-HCM National Programme at Aswan Heart Centre, Egypt
- National Heart Institute, Giza, Egypt
| | - Franco Cecchi
- Referral Center for Myocardial Diseases, Careggi University Hospital, Florence, Italy
| | - Iacopo Olivotto
- Referral Center for Myocardial Diseases, Careggi University Hospital, Florence, Italy
| | - Magdi H. Yacoub
- Qatar Cardiovascular Research Center, Qatar Foundation, Doha, Qatar
- BA-HCM National Programme at Aswan Heart Centre, Egypt
- National Heart and Lung Institute, Imperial College London, United Kingdom
| |
Collapse
|
11
|
Fisher SJ, Blakeley MP, Cianci M, McSweeney S, Helliwell JR. Protonation-state determination in proteins using high-resolution X-ray crystallography: effects of resolution and completeness. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:800-9. [PMID: 22751665 DOI: 10.1107/s0907444912012589] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 03/22/2012] [Indexed: 11/11/2022]
Abstract
A bond-distance analysis has been undertaken to determine the protonation states of ionizable amino acids in trypsin, subtilisin and lysozyme. The diffraction resolutions were 1.2 Å for trypsin (97% complete, 12% H-atom visibility at 2.5σ), 1.26 Å for subtilisin (100% complete, 11% H-atom visibility at 2.5σ) and 0.65 Å for lysozyme (PDB entry 2vb1; 98% complete, 30% H-atom visibility at 3σ). These studies provide a wide diffraction resolution range for assessment. The bond-length e.s.d.s obtained are as small as 0.008 Å and thus provide an exceptional opportunity for bond-length analyses. The results indicate that useful information can be obtained from diffraction data at around 1.2-1.3 Å resolution and that minor increases in resolution can have significant effects on reducing the associated bond-length standard deviations. The protonation states in histidine residues were also considered; however, owing to the smaller differences between the protonated and deprotonated forms it is much more difficult to infer the protonation states of these residues. Not even the 0.65 Å resolution lysozyme structure provided the necessary accuracy to determine the protonation states of histidine.
Collapse
Affiliation(s)
- S J Fisher
- School of Chemistry, University of Manchester, Brunswick Street, Manchester M13 9PL, England.
| | | | | | | | | |
Collapse
|
12
|
Correlation between cross-bridge kinetics obtained from Trp fluorescence of myofibril suspensions and mechanical studies of single muscle fibers in rabbit psoas. J Muscle Res Cell Motil 2011; 32:315-26. [PMID: 22006015 DOI: 10.1007/s10974-011-9264-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 09/13/2011] [Indexed: 10/16/2022]
Abstract
Our goal is to correlate kinetic constants obtained from fluorescence studies of myofibril suspension with those from mechanical studies of skinned muscle fibers from rabbit psoas. In myofibril studies, the stopped-flow technique with tryptophan fluorescence was used; in muscle fiber studies, tension transients with small amplitude sinusoidal length perturbations were used. All experiments were performed using the equivalent solution conditions (200 mM ionic strength, pH 7.00) at 10°C. The concentration of MgATP was varied to characterize kinetic constants of the ATP binding step 1 (K (1): dissociation constant), the binding induced cross-bridge detachment step 2 (k (2), k (-2): rate constants), and the ATP cleavage step 3 (k (3), k (-3)). In myofibrils we found that K (1) = 0.52 ± 0.08 mM (±95% confidence limits), k (2) = 242 ± 24 s(-1), and k (-2) ≈ 0; in muscle fibers, K (1) = 0.46 ± 0.06 mM, k (2) = 286 ± 32 s(-1), and k (-2) = 57 ± 21 s(-1). From these results, we conclude that myofibrils and muscle fibers exhibit nearly equal ATP binding step, and nearly equal ATP binding induced cross-bridge detachment step. Consequently, there is a good correlation between process C (phase 2 of step analysis) and the cross-bridge detachment step. The reverse detachment step is finite in fibers, but almost absent in myofibrils. We further studied partially cross-linked myofibrils and found little change in steps 2 and 3, indicating that cross-linking does not affect these steps. However, we found that K (1) is 2.5× of native myofibrils, indicating that MgATP binding is weakened by the presence of the extra load. We further studied the phosphate (Pi) effect in myofibrils, and found that Pi is a competitive inhibitor of MgATP, with the inhibitory dissociation constant of ~9 mM. Similar results were also deduced from fiber studies. To characterize the ATP cleavage step in myofibrils, we measured the slow rate constant in fluorescence, and found that k (3) + k (-3) = 16 ± 1 s(-1).
Collapse
|
13
|
Mun JY, Gulick J, Robbins J, Woodhead J, Lehman W, Craig R. Electron microscopy and 3D reconstruction of F-actin decorated with cardiac myosin-binding protein C (cMyBP-C). J Mol Biol 2011; 410:214-25. [PMID: 21601575 PMCID: PMC3115431 DOI: 10.1016/j.jmb.2011.05.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 05/03/2011] [Accepted: 05/05/2011] [Indexed: 12/30/2022]
Abstract
Myosin-binding protein C (MyBP-C) is an ∼130-kDa rod-shaped protein of the thick (myosin containing) filaments of vertebrate striated muscle. It is composed of 10 or 11 globular 10-kDa domains from the immunoglobulin and fibronectin type III families and an additional MyBP-C-specific motif. The cardiac isoform cMyBP-C plays a key role in the phosphorylation-dependent enhancement of cardiac function that occurs upon β-adrenergic stimulation, and mutations in MyBP-C cause skeletal muscle and heart diseases. In addition to binding to myosin, MyBP-C can also bind to actin via its N-terminal end, potentially modulating contraction in a novel way via this thick-thin filament bridge. To understand the structural basis of actin binding, we have used negative stain electron microscopy and three-dimensional reconstruction to study the structure of F-actin decorated with bacterially expressed N-terminal cMyBP-C fragments. Clear decoration was obtained under a variety of salt conditions varying from 25 to 180 mM KCl concentration. Three-dimensional helical reconstructions, carried out at the 180-mM KCl level to minimize nonspecific binding, showed MyBP-C density over a broad portion of the periphery of subdomain 1 of actin and extending tangentially from its surface in the direction of actin's pointed end. Molecular fitting with an atomic structure of a MyBP-C Ig domain suggested that most of the N-terminal domains may be well ordered on actin. The location of binding was such that it could modulate tropomyosin position and would interfere with myosin head binding to actin.
Collapse
Affiliation(s)
- Ji Young Mun
- Department of Cell Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655
| | - James Gulick
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229
| | - Jeffrey Robbins
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229
| | - John Woodhead
- Department of Cell Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655
| | - William Lehman
- Department of Physiology and Biophysics, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118
| | - Roger Craig
- Department of Cell Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655
| |
Collapse
|
14
|
Oksanen E, Blakeley MP, Bonneté F, Dauvergne MT, Dauvergne F, Budayova-Spano M. Large crystal growth by thermal control allows combined X-ray and neutron crystallographic studies to elucidate the protonation states in Aspergillus flavus urate oxidase. J R Soc Interface 2009; 6 Suppl 5:S599-610. [PMID: 19586953 DOI: 10.1098/rsif.2009.0162.focus] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Urate oxidase (Uox) catalyses the oxidation of urate to allantoin and is used to reduce toxic urate accumulation during chemotherapy. X-ray structures of Uox with various inhibitors have been determined and yet the detailed catalytic mechanism remains unclear. Neutron crystallography can provide complementary information to that from X-ray studies and allows direct determination of the protonation states of the active-site residues and substrate analogues, provided that large, well-ordered deuterated crystals can be grown. Here, we describe a method and apparatus used to grow large crystals of Uox (Aspergillus flavus) with its substrate analogues 8-azaxanthine and 9-methyl urate, and with the natural substrate urate, in the presence and absence of cyanide. High-resolution X-ray (1.05-1.20 A) and neutron diffraction data (1.9-2.5 A) have been collected for the Uox complexes at the European Synchrotron Radiation Facility and the Institut Laue-Langevin, respectively. In addition, room temperature X-ray data were also collected in preparation for joint X-ray and neutron refinement. Preliminary results indicate no major structural differences between crystals grown in H(2)O and D(2)O even though the crystallization process is affected. Moreover, initial nuclear scattering density maps reveal the proton positions clearly, eventually providing important information towards unravelling the mechanism of catalysis.
Collapse
Affiliation(s)
- E Oksanen
- Institute of Biotechnology, University of Helsinki, PO Box 65, 00014 Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
15
|
Ababou A, Rostkova E, Mistry S, Masurier CL, Gautel M, Pfuhl M. Myosin binding protein C positioned to play a key role in regulation of muscle contraction: structure and interactions of domain C1. J Mol Biol 2008; 384:615-30. [PMID: 18926831 PMCID: PMC2631168 DOI: 10.1016/j.jmb.2008.09.065] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 09/06/2008] [Accepted: 09/10/2008] [Indexed: 01/27/2023]
Abstract
Myosin binding protein C (MyBP-C) is a thick filament protein involved in the regulation of muscle contraction. Mutations in the gene for MyBP-C are the second most frequent cause of hypertrophic cardiomyopathy. MyBP-C binds to myosin with two binding sites, one at its C-terminus and another at its N-terminus. The N-terminal binding site, consisting of immunoglobulin domains C1 and C2 connected by a flexible linker, interacts with the S2 segment of myosin in a phosphorylation-regulated manner. It is assumed that the function of MyBP-C is to act as a tether that fixes the S1 heads in a resting position and that phosphorylation releases the S1 heads into an active state. Here, we report the structure and binding properties of domain C1. Using a combination of site-directed mutagenesis and NMR interaction experiments, we identified the binding site of domain C1 in the immediate vicinity of the S1–S2 hinge, very close to the light chains. In addition, we identified a zinc binding site on domain C1 in close proximity to the S2 binding site. Its zinc binding affinity (Kd of approximately 10–20 μM) might not be sufficient for a physiological effect. However, the familial hypertrophic cardiomyopathy-related mutation of one of the zinc ligands, glutamine 210 to histidine, will significantly increase the binding affinity, suggesting that this mutation may affect S2 binding. The close proximity of the C1 binding site to the hinge, the light chains and the S1 heads also provides an explanation for recent observations that (a) shorter fragments of MyBP-C unable to act as a tether still have an effect on the actomyosin ATPase and (b) as to why the myosin head positions in phosphorylated wild-type mice and MyBP-C knockout mice are so different: Domain C1 bound to the S1–S2 hinge is able to manipulate S1 head positions, thus influencing force generation without tether. The potentially extensive extra interactions of C1 are expected to keep it in place, while phosphorylation dislodges the C1–C2 linker and domain C2. As a result, the myosin heads would always be attached to a tether that has phosphorylation-dependent length regulation.
Collapse
Affiliation(s)
- Abdessamad Ababou
- Department of Biochemistry, University of Leicester, Lancaster Road, Leicester LE1 9HN, UK
| | - Elena Rostkova
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunts House, Guy's Hospital, London SE1 1UL, UK
| | - Shreena Mistry
- Department of Biochemistry, University of Leicester, Lancaster Road, Leicester LE1 9HN, UK
| | - Clare Le Masurier
- Department of Biochemistry, University of Leicester, Lancaster Road, Leicester LE1 9HN, UK
| | - Mathias Gautel
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunts House, Guy's Hospital, London SE1 1UL, UK
| | - Mark Pfuhl
- Department of Biochemistry, University of Leicester, Lancaster Road, Leicester LE1 9HN, UK
- Corresponding author.
| |
Collapse
|