1
|
Microbial xylanolytic carbohydrate esterases. Essays Biochem 2022; 67:479-491. [PMID: 36468678 DOI: 10.1042/ebc20220129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/04/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022]
Abstract
Abstract
This article reviews microbial esterases participating in the degradation of the major plant hemicellulose, xylan. The main chain of this polysaccharide built of β-1,4-glycosidically linked xylopyranosyl residues is substituted by other sugars and also partially acetylated. Besides esters of acetic acid, there are two other types of ester linkages in plant xylans. L-Arabinofuranosyl side chains form esters with phenolic acids, predominantly with ferulic acid. The dimerization of ferulic acid residues leads to cross-links connecting the hemicellulose molecules. Ferulic acid cross-links were shown to serve as covalent linkage between lignin and hemicellulose. Another cross-linking between lignin and hemicellulose is provided by esters between the xylan side residues of glucuronic or 4-O-methyl-D-glucurononic acid and lignin alcohols. Regardless of the cross-linking, the side residues prevent xylan main chains from association that leads to crystallization similar to that of cellulose. Simultaneously, xylan decorations hamper the action of enzymes acting on the main chain. The enzymatic breakdown of plant xylan, therefore, requires a concerted action of glycanases attacking the main chain and enzymes catalyzing debranching, called accessory xylanolytic enzymes including xylanolytic esterases. While acetylxylan esterases and feruloyl esterases participate directly in xylan degradation, glucuronoyl esterases catalyze its separation from lignin. The current state of knowledge of diversity, classification and structure–function relationship of these three types of xylanolytic carbohydrate esterases is discussed with emphasis on important aspects of their future research relevant to their industrial applications.
Collapse
|
2
|
Ki DU, Song WS, Yoon SI. Structural and biochemical analysis of the GDSL-family esterase CJ0610C from Campylobacter jejuni. Biochem Biophys Res Commun 2022; 631:124-129. [DOI: 10.1016/j.bbrc.2022.09.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 09/18/2022] [Indexed: 11/02/2022]
|
3
|
Lansky S, Salama R, Biarnés X, Shwartstein O, Schneidman-Duhovny D, Planas A, Shoham Y, Shoham G. Integrative structure determination reveals functional global flexibility for an ultra-multimodular arabinanase. Commun Biol 2022; 5:465. [PMID: 35577850 PMCID: PMC9110388 DOI: 10.1038/s42003-022-03054-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 07/15/2021] [Indexed: 11/08/2022] Open
Abstract
AbnA is an extracellular GH43 α-L-arabinanase from Geobacillus stearothermophilus, a key bacterial enzyme in the degradation and utilization of arabinan. We present herein its full-length crystal structure, revealing the only ultra-multimodular architecture and the largest structure to be reported so far within the GH43 family. Additionally, the structure of AbnA appears to contain two domains belonging to new uncharacterized carbohydrate-binding module (CBM) families. Three crystallographic conformational states are determined for AbnA, and this conformational flexibility is thoroughly investigated further using the "integrative structure determination" approach, integrating molecular dynamics, metadynamics, normal mode analysis, small angle X-ray scattering, dynamic light scattering, cross-linking, and kinetic experiments to reveal large functional conformational changes for AbnA, involving up to ~100 Å movement in the relative positions of its domains. The integrative structure determination approach demonstrated here may apply also to the conformational study of other ultra-multimodular proteins of diverse functions and structures.
Collapse
Affiliation(s)
- Shifra Lansky
- Institute of Chemistry, the Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
| | - Rachel Salama
- Department of Biotechnology and Food Engineering, Technion, Haifa, 3200, Israel
| | - Xevi Biarnés
- Laboratory of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona, 08017, Spain
| | - Omer Shwartstein
- Institute of Chemistry, the Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Dina Schneidman-Duhovny
- School of Computer Science and Engineering, the Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Antoni Planas
- Laboratory of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona, 08017, Spain
| | - Yuval Shoham
- Department of Biotechnology and Food Engineering, Technion, Haifa, 3200, Israel.
| | - Gil Shoham
- Institute of Chemistry, the Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
| |
Collapse
|
4
|
Elucidating Sequence and Structural Determinants of Carbohydrate Esterases for Complete Deacetylation of Substituted Xylans. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092655. [PMID: 35566004 PMCID: PMC9105624 DOI: 10.3390/molecules27092655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/07/2022] [Accepted: 04/14/2022] [Indexed: 11/26/2022]
Abstract
Acetylated glucuronoxylan is one of the most common types of hemicellulose in nature. The structure is formed by a β-(1→4)-linked D-xylopyranosyl (Xylp) backbone that can be substituted with an acetyl group at O-2 and O-3 positions, and α-(1→2)-linked 4-O-methylglucopyranosyluronic acid (MeGlcpA). Acetyl xylan esterases (AcXE) that target mono- or doubly acetylated Xylp are well characterized; however, the previously studied AcXE from Flavobacterium johnsoniae (FjoAcXE) was the first to remove the acetyl group from 2-O-MeGlcpA-3-O-acetyl-substituted Xylp units, yet structural characteristics of these enzymes remain unspecified. Here, six homologs of FjoAcXE were produced and three crystal structures of the enzymes were solved. Two of them are complex structures, one with bound MeGlcpA and another with acetate. All homologs were confirmed to release acetate from 2-O-MeGlcpA-3-O-acetyl-substituted xylan, and the crystal structures point to key structural elements that might serve as defining features of this unclassified carbohydrate esterase family. Enzymes comprised two domains: N-terminal CBM domain and a C-terminal SGNH domain. In FjoAcXE and all studied homologs, the sequence motif around the catalytic serine is Gly-Asn-Ser-Ile (GNSI), which differs from other SGNH hydrolases. Binding by the MeGlcpA-Xylp ligand is directed by positively charged and highly conserved residues at the interface of the CBM and SGNH domains of the enzyme.
Collapse
|
5
|
Zhang Y, Ding HT, Jiang WX, Zhang X, Cao HY, Wang JP, Li CY, Huang F, Zhang XY, Chen XL, Zhang YZ, Li PY. Active site architecture of an acetyl xylan esterase indicates a novel cold adaptation strategy. J Biol Chem 2021; 297:100841. [PMID: 34058201 PMCID: PMC8253974 DOI: 10.1016/j.jbc.2021.100841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 11/18/2022] Open
Abstract
SGNH-type acetyl xylan esterases (AcXEs) play important roles in marine and terrestrial xylan degradation, which are necessary for removing acetyl side groups from xylan. However, only a few cold-adapted AcXEs have been reported, and the underlying mechanisms for their cold adaptation are still unknown because of the lack of structural information. Here, a cold-adapted AcXE, AlAXEase, from the Arctic marine bacterium Arcticibacterium luteifluviistationis SM1504T was characterized. AlAXEase could deacetylate xylooligosaccharides and xylan, which, together with its homologs, indicates a novel SGNH-type carbohydrate esterase family. AlAXEase showed the highest activity at 30 °C and retained over 70% activity at 0 °C but had unusual thermostability with a Tm value of 56 °C. To explain the cold adaption mechanism of AlAXEase, we next solved its crystal structure. AlAXEase has similar noncovalent stabilizing interactions to its mesophilic counterpart at the monomer level and forms stable tetramers in solutions, which may explain its high thermostability. However, a long loop containing the catalytic residues Asp200 and His203 in AlAXEase was found to be flexible because of the reduced stabilizing hydrophobic interactions and increased destabilizing asparagine and lysine residues, leading to a highly flexible active site. Structural and enzyme kinetic analyses combined with molecular dynamics simulations at different temperatures revealed that the flexible catalytic loop contributes to the cold adaptation of AlAXEase by modulating the distance between the catalytic His203 in this loop and the nucleophilic Ser32. This study reveals a new cold adaption strategy adopted by the thermostable AlAXEase, shedding light on the cold adaption mechanisms of AcXEs.
Collapse
Affiliation(s)
- Yi Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China; College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Hai-Tao Ding
- SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai, China
| | - Wen-Xin Jiang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xia Zhang
- Department of Molecular Biology, Qingdao Vland Biotech Inc, Qingdao, China
| | - Hai-Yan Cao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Jing-Ping Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Chun-Yang Li
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Feng Huang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xi-Ying Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yu-Zhong Zhang
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China; State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China.
| | - Ping-Yi Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
| |
Collapse
|
6
|
Zhou S, Ko TP, Huang JW, Liu W, Zheng Y, Wu S, Wang Q, Xie Z, Liu Z, Chen CC, Guo RT. Structure of a gut microbial diltiazem-metabolizing enzyme suggests possible substrate binding mode. Biochem Biophys Res Commun 2020; 527:799-804. [PMID: 32423809 DOI: 10.1016/j.bbrc.2020.04.116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 10/24/2022]
Abstract
When administrated orally, the vasodilating drug diltiazem can be metabolized into diacetyl diltiazem in the presence of Bacteroides thetaiotaomicron, a human gut microbe. The removal of acetyl group from the parent drug is carried out by the GDSL/SGNH-family hydrolase BT4096. Here the crystal structure of the enzyme was solved by mercury soaking and single-wavelength anomalous diffraction. The protein folds into two parts. The N-terminal part comprises the catalytic domain which is similar to other GDSL/SGNH hydrolases. The flanking C-terminal part is made up of a β-barrel subdomain and an α-helical subdomain. Structural comparison shows that the catalytic domain is most akin to acetyl-xylooligosaccharide esterase and allows a plausible binding mode of diltiazem to be proposed. The β-barrel subdomain is similar in topology to the immunoglobulin-like domains, including some carbohydrate-binding modules, of various bacterial glycoside hydrolases. Consequently, BT4096 might originally function as an oligosaccharide deacetylase with additional subdomains that could enhance substrate binding, and it acts on diltiazem just by accident.
Collapse
Affiliation(s)
- Shuyu Zhou
- School of Life Science, University of Science and Technology of China, Anhui, 230026, China; Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Tzu-Ping Ko
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan.
| | - Jian-Wen Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Weidong Liu
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Yingying Zheng
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Shan Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Qian Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Zhenzhen Xie
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Ziwei Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Chun-Chi Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| | - Rey-Ting Guo
- School of Life Science, University of Science and Technology of China, Anhui, 230026, China; Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
7
|
Lansky S, Salama R, Shulami S, Lavid N, Sen S, Schapiro I, Shoham Y, Shoham G. Carbohydrate-Binding Capability and Functional Conformational Changes of AbnE, an Arabino-oligosaccharide Binding Protein. J Mol Biol 2020; 432:2099-2120. [PMID: 32067952 DOI: 10.1016/j.jmb.2020.01.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/19/2020] [Accepted: 01/30/2020] [Indexed: 11/27/2022]
Abstract
ABC importers are membrane proteins responsible for the transport of nutrients into the cells of prokaryotes. Although the structures of ABC importers vary, all contain four conserved domains: two nucleotide-binding domains (NBDs), which bind and hydrolyze ATP, and two transmembrane domains (TMDs), which help translocate the substrate. ABC importers are also dependent on an additional protein component, a high-affinity substrate-binding protein (SBP) that specifically binds the target ligand for delivery to the appropriate ABC transporter. AbnE is a SBP belonging to the ABC importer for arabino-oligosaccharides in the Gram-positive thermophilic bacterium Geobacillus stearothermophilus. Using isothermal titration calorimetry (ITC), purified AbnE was shown to bind medium-sized arabino-oligosaccharides, in the range of arabino-triose (A3) to arabino-octaose (A8), all with Kd values in the nanomolar range. We describe herein the 3D structure of AbnE in its closed conformation in complex with a wide range of arabino-oligosaccharide substrates (A2-A8). These structures provide the basis for the detailed structural analysis of the AbnE-sugar complexes, and together with complementary quantum chemical calculations, site-specific mutagenesis, and isothermal titration calorimetry (ITC) experiments, provide detailed insights into the AbnE-substrate interactions involved. Small-angle X-ray scattering (SAXS) experiments and normal mode analysis (NMA) are used to study the conformational changes of AbnE, and these data, taken together, suggest clues regarding its binding mode to the full ABC importer.
Collapse
Affiliation(s)
- Shifra Lansky
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Rachel Salama
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Smadar Shulami
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Noa Lavid
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Saumik Sen
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel; Fritz Haber Center for Molecular Dynamics Research, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Igor Schapiro
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel; Fritz Haber Center for Molecular Dynamics Research, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Yuval Shoham
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, 32000, Israel.
| | - Gil Shoham
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
| |
Collapse
|
8
|
A pair of esterases from a commensal gut bacterium remove acetylations from all positions on complex β-mannans. Proc Natl Acad Sci U S A 2020; 117:7122-7130. [PMID: 32170022 DOI: 10.1073/pnas.1915376117] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
β-mannans and xylans are important components of the plant cell wall and they are acetylated to be protected from degradation by glycoside hydrolases. β-mannans are widely present in human and animal diets as fiber from leguminous plants and as thickeners and stabilizers in processed foods. There are many fully characterized acetylxylan esterases (AcXEs); however, the enzymes deacetylating mannans are less understood. Here we present two carbohydrate esterases, RiCE2 and RiCE17, from the Firmicute Roseburia intestinalis, which together deacetylate complex galactoglucomannan (GGM). The three-dimensional (3D) structure of RiCE17 with a mannopentaose in the active site shows that the CBM35 domain of RiCE17 forms a confined complex, where the axially oriented C2-hydroxyl of a mannose residue points toward the Ser41 of the catalytic triad. Cavities on the RiCE17 surface may accept galactosylations at the C6 positions of mannose adjacent to the mannose residue being deacetylated (subsite -1 and +1). In-depth characterization of the two enzymes using time-resolved NMR, high-performance liquid chromatography (HPLC), and mass spectrometry demonstrates that they work in a complementary manner. RiCE17 exclusively removes the axially oriented 2-O-acetylations on any mannose residue in an oligosaccharide, including double acetylated mannoses, while the RiCE2 is active on 3-O-, 4-O-, and 6-O-acetylations. Activity of RiCE2 is dependent on RiCE17 removing 2-O-acetylations from double acetylated mannose. Furthermore, transacetylation of oligosaccharides with the 2-O-specific RiCE17 provided insight into how temperature and pH affects acetyl migration on manno-oligosaccharides.
Collapse
|
9
|
Carboxylic Ester Hydrolases in Bacteria: Active Site, Structure, Function and Application. CRYSTALS 2019. [DOI: 10.3390/cryst9110597] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Carboxylic ester hydrolases (CEHs), which catalyze the hydrolysis of carboxylic esters to produce alcohol and acid, are identified in three domains of life. In the Protein Data Bank (PDB), 136 crystal structures of bacterial CEHs (424 PDB codes) from 52 genera and metagenome have been reported. In this review, we categorize these structures based on catalytic machinery, structure and substrate specificity to provide a comprehensive understanding of the bacterial CEHs. CEHs use Ser, Asp or water as a nucleophile to drive diverse catalytic machinery. The α/β/α sandwich architecture is most frequently found in CEHs, but 3-solenoid, β-barrel, up-down bundle, α/β/β/α 4-layer sandwich, 6 or 7 propeller and α/β barrel architectures are also found in these CEHs. Most are substrate-specific to various esters with types of head group and lengths of the acyl chain, but some CEHs exhibit peptidase or lactamase activities. CEHs are widely used in industrial applications, and are the objects of research in structure- or mutation-based protein engineering. Structural studies of CEHs are still necessary for understanding their biological roles, identifying their structure-based functions and structure-based engineering and their potential industrial applications.
Collapse
|
10
|
Karnaouri A, Antonopoulou I, Zerva A, Dimarogona M, Topakas E, Rova U, Christakopoulos P. Thermophilic enzyme systems for efficient conversion of lignocellulose to valuable products: Structural insights and future perspectives for esterases and oxidative catalysts. BIORESOURCE TECHNOLOGY 2019; 279:362-372. [PMID: 30685134 DOI: 10.1016/j.biortech.2019.01.062] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/12/2019] [Accepted: 01/15/2019] [Indexed: 06/09/2023]
Abstract
Thermophilic enzyme systems are of major importance nowadays in all industrial processes due to their great performance at elevated temperatures. In the present review, an overview of the current knowledge on the properties of thermophilic and thermotolerant carbohydrate esterases and oxidative enzymes with great thermostability is provided, with respect to their potential use in biotechnological applications. A special focus is given to the lytic polysaccharide monooxygenases that are able to oxidatively cleave lignocellulose through the use of oxygen or hydrogen peroxide as co-substrate and a reducing agent as electron donor. Structural characteristics of the enzymes, including active site conformation and surface properties are discussed and correlated with their substrate specificity and thermostability properties.
Collapse
Affiliation(s)
- Anthi Karnaouri
- Biochemical Process Engineering, Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden.
| | - Io Antonopoulou
- Biochemical Process Engineering, Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden
| | - Anastasia Zerva
- Biotechnology Laboratory, Department of Synthesis and Development of Industrial Processes, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Maria Dimarogona
- Section of Process and Environmental Engineering, Department of Chemical Engineering, University of Patras, 26504 Rio, Patras, Greece
| | - Evangelos Topakas
- Biotechnology Laboratory, Department of Synthesis and Development of Industrial Processes, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Ulrika Rova
- Biochemical Process Engineering, Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering, Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden.
| |
Collapse
|
11
|
Bürger M, Chory J. Structural and chemical biology of deacetylases for carbohydrates, proteins, small molecules and histones. Commun Biol 2018; 1:217. [PMID: 30534609 PMCID: PMC6281622 DOI: 10.1038/s42003-018-0214-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 10/31/2018] [Indexed: 01/02/2023] Open
Abstract
Deacetylation is the removal of an acetyl group and occurs on a plethora of targets and for a wide range of biological reasons. Several pathogens deacetylate their surface carbohydrates to evade immune response or to support biofilm formation. Furthermore, dynamic acetylation/deacetylation cycles govern processes from chromatin remodeling to posttranslational modifications that compete with phosphorylation. Acetylation usually occurs on nitrogen and oxygen atoms and are referred to as N- and O-acetylation, respectively. This review discusses the structural prerequisites that enzymes must have to catalyze the deacetylation reaction, and how they adapted by formation of specific substrate and metal binding sites.
Collapse
Affiliation(s)
- Marco Bürger
- Plant Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037 USA
| | - Joanne Chory
- Plant Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037 USA
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037 USA
| |
Collapse
|
12
|
Sista Kameshwar AK, Qin W. Understanding the structural and functional properties of carbohydrate esterases with a special focus on hemicellulose deacetylating acetyl xylan esterases. Mycology 2018; 9:273-295. [PMID: 30533253 PMCID: PMC6282417 DOI: 10.1080/21501203.2018.1492979] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/21/2018] [Indexed: 11/29/2022] Open
Abstract
Acetyl and methyl esterifications are two major naturally found substitutions in the plant cell-wall polysaccharides. The non-cellulosic plant cell-wall polysaccharides such as pectin and hemicellulose are differentially esterified by the O-acetyl and methyl groups to cease the action of various hydrolytic enzymes secreted by different fungi and bacterial species. Thus, microorganisms have emerged with a special class of enzymes known as carbohydrate esterases (CE). The CE catalyse O-de, N-deacetylation of acetylated saccharide residues (esters or amides, where sugars play the role of alcohol/amine/acid). Carbohydrate active enzyme (CAZy) database has classified CE into 16 classes, of which hemicellulose deacetylating CE were grouped into eight classes (CE-1 to CE-7 and CE-16). Various plant biomass degrading fungi and bacteria secretes acetyl xylan esterases (AcXE); however, these enzymes exhibit varied substrate specificities. AcXE and xylanases-coupled pretreatment methods exhibit significant applications, such as enhancing animal feedstock, baking industry, production of food additives, paper and pulp, xylitol production and biorefinery-based industries, respectively. Thus, understanding the structural and functional properties of acetyl xylan esterase will significantly aid in developing the efficient AcXE with wide range of industrial applications.
Collapse
Affiliation(s)
| | - Wensheng Qin
- Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada
| |
Collapse
|
13
|
Identification and Crystallographic Analysis of a New Carbohydrate Acetylesterase (SmAcE1) from Sinorhizobium meliloti. CRYSTALS 2018. [DOI: 10.3390/cryst8010012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
14
|
Lansky S, Zehavi A, Belrhali H, Shoham Y, Shoham G. Structural basis for enzyme bifunctionality – the case of Gan1D fromGeobacillus stearothermophilus. FEBS J 2017; 284:3931-3953. [DOI: 10.1111/febs.14283] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/31/2017] [Accepted: 09/28/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Shifra Lansky
- Institute of Chemistry The Laboratory for Structural Chemistry and Biology The Hebrew University of Jerusalem Israel
| | - Arie Zehavi
- Department of Biotechnology and Food Engineering Technion ‐ Israel Institute of Technology Haifa Israel
| | | | - Yuval Shoham
- Department of Biotechnology and Food Engineering Technion ‐ Israel Institute of Technology Haifa Israel
| | - Gil Shoham
- Institute of Chemistry The Laboratory for Structural Chemistry and Biology The Hebrew University of Jerusalem Israel
| |
Collapse
|
15
|
McDonnell B, Mahony J, Hanemaaijer L, Neve H, Noben JP, Lugli GA, Ventura M, Kouwen TR, van Sinderen D. Global Survey and Genome Exploration of Bacteriophages Infecting the Lactic Acid Bacterium Streptococcus thermophilus. Front Microbiol 2017; 8:1754. [PMID: 28955321 PMCID: PMC5601072 DOI: 10.3389/fmicb.2017.01754] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 08/29/2017] [Indexed: 01/31/2023] Open
Abstract
Despite the persistent and costly problem caused by (bacterio)phage predation of Streptococcus thermophilus in dairy plants, DNA sequence information relating to these phages remains limited. Genome sequencing is necessary to better understand the diversity and proliferative strategies of virulent phages. In this report, whole genome sequences of 40 distinct bacteriophages infecting S. thermophilus were analyzed for general characteristics, genomic structure and novel features. The bacteriophage genomes display a high degree of conservation within defined groupings, particularly across the structural modules. Supporting this observation, four novel members of a recently discovered third group of S. thermophilus phages (termed the 5093 group) were found to be conserved relative to both phage 5093 and to each other. Replication modules of S. thermophilus phages generally fall within two main groups, while such phage genomes typically encode one putative transcriptional regulator. Such features are indicative of widespread functional synteny across genetically distinct phage groups. Phage genomes also display nucleotide divergence between groups, and between individual phages of the same group (within replication modules and at the 3′ end of the lysis module)—through various insertions and/or deletions. A previously described multiplex PCR phage detection system was updated to reflect current knowledge on S. thermophilus phages. Furthermore, the structural protein complement as well as the antireceptor (responsible for the initial attachment of the phage to the host cell) of a representative of the 5093 group was defined. Our data more than triples the currently available genomic information on S. thermophilus phages, being of significant value to the dairy industry, where genetic knowledge of lytic phages is crucial for phage detection and monitoring purposes. In particular, the updated PCR detection methodology for S. thermophilus phages is highly useful in monitoring particular phage group(s) present in a given whey sample. Studies of this nature therefore not only provide information on the prevalence and associated threat of known S. thermophilus phages, but may also uncover newly emerging and genomically distinct phages infecting this dairy starter bacterium.
Collapse
Affiliation(s)
- Brian McDonnell
- School of Microbiology, College of Science, Engineering and Food Science, University College CorkCork, Ireland
| | - Jennifer Mahony
- School of Microbiology, College of Science, Engineering and Food Science, University College CorkCork, Ireland.,APC Microbiome Institute, University College CorkCork, Ireland
| | | | - Horst Neve
- Department of Microbiology and Biotechnology, Max Rubner-InstitutKiel, Germany
| | - Jean-Paul Noben
- Biomedical Research Institute, Hasselt UniversityDiepenbeek, Belgium
| | - Gabriele A Lugli
- Laboratory of Probiogenomics, Department of Life Sciences, University of ParmaParma, Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Life Sciences, University of ParmaParma, Italy
| | | | - Douwe van Sinderen
- School of Microbiology, College of Science, Engineering and Food Science, University College CorkCork, Ireland.,APC Microbiome Institute, University College CorkCork, Ireland
| |
Collapse
|
16
|
SGNH hydrolase-type esterase domain containing Cbes-AcXE2: a novel and thermostable acetyl xylan esterase from Caldicellulosiruptor bescii. Extremophiles 2017; 21:687-697. [DOI: 10.1007/s00792-017-0934-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 04/17/2017] [Indexed: 12/18/2022]
|
17
|
Oh C, Ryu BH, An DR, Nguyen DD, Yoo W, Kim T, Ngo TD, Kim HS, Kim KK, Kim TD. Structural and Biochemical Characterization of an Octameric Carbohydrate Acetylesterase from Sinorhizobium meliloti. FEBS Lett 2016; 590:1242-52. [PMID: 26991446 DOI: 10.1002/1873-3468.12135] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 03/03/2016] [Accepted: 03/09/2016] [Indexed: 11/06/2022]
Abstract
Carbohydrate acetylesterases, which have a highly specific role among plant-interacting bacterial species, remove the acetyl groups from plant carbohydrates. Here, we determined the crystal structure of Est24, an octameric carbohydrate acetylesterase from Sinorhizobium meliloti, at 1.45 Å resolution and investigated its biochemical properties. The structure of Est24 consisted of five parallel β strands flanked by α helices, which formed an octameric assembly with two distinct interfaces. The deacetylation activity of Est24 and its mutants around the substrate-binding pocket was investigated using several substrates, including glucose pentaacetate and acetyl alginate. Elucidation of the structure-function relationships of Est24 could provide valuable opportunities for biotechnological explorations.
Collapse
Affiliation(s)
- Changsuk Oh
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Bum Han Ryu
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Korea.,Department of Chemistry, College of Natural Sciences, Sookmyung Woman's University, Seoul, Korea
| | - Deu Rae An
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Korea.,Department of Chemistry, College of Natural Sciences, Sookmyung Woman's University, Seoul, Korea
| | - Duy Duc Nguyen
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Wanki Yoo
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Korea.,Department of Chemistry, College of Natural Sciences, Sookmyung Woman's University, Seoul, Korea
| | - Truc Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Tri Duc Ngo
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Hee Sook Kim
- Department of Food Science and Biotechnology, Kyungsung University, Busan, Korea
| | - Kyeong Kyu Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - T Doohun Kim
- Department of Chemistry, College of Natural Sciences, Sookmyung Woman's University, Seoul, Korea
| |
Collapse
|
18
|
Solomon HV, Tabachnikov O, Lansky S, Salama R, Feinberg H, Shoham Y, Shoham G. Structure-function relationships in Gan42B, an intracellular GH42 β-galactosidase from Geobacillus stearothermophilus. ACTA ACUST UNITED AC 2015; 71:2433-48. [PMID: 26627651 DOI: 10.1107/s1399004715018672] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 10/05/2015] [Indexed: 01/08/2023]
Abstract
Geobacillus stearothermophilus T-6 is a Gram-positive thermophilic soil bacterium that contains a battery of degrading enzymes for the utilization of plant cell-wall polysaccharides, including xylan, arabinan and galactan. A 9.4 kb gene cluster has recently been characterized in G. stearothermophilus that encodes a number of galactan-utilization elements. A key enzyme of this degradation system is Gan42B, an intracellular GH42 β-galactosidase capable of hydrolyzing short β-1,4-galactosaccharides into galactose units, making it of high potential for various biotechnological applications. The Gan42B monomer is made up of 686 amino acids, and based on sequence homology it was suggested that Glu323 is the catalytic nucleophile and Glu159 is the catalytic acid/base. In the current study, the detailed three-dimensional structure of wild-type Gan42B (at 2.45 Å resolution) and its catalytic mutant E323A (at 2.50 Å resolution), as determined by X-ray crystallography, are reported. These structures demonstrate that the three-dimensional structure of the Gan42B monomer generally correlates with the overall fold observed for GH42 proteins, consisting of three main domains: an N-terminal TIM-barrel domain, a smaller mixed α/β domain, and the smallest all-β domain at the C-terminus. The two catalytic residues are located in the TIM-barrel domain in a pocket-like active site such that their carboxylic functional groups are about 5.3 Å from each other, consistent with a retaining mechanism. The crystal structure demonstrates that Gan42B is a homotrimer, resembling a flowerpot in general shape, in which each monomer interacts with the other two to form a cone-shaped tunnel cavity in the centre. The cavity is ∼35 Å at the wide opening and ∼5 Å at the small opening and ∼40 Å in length. The active sites are situated at the interfaces between the monomers, so that every two neighbouring monomers participate in the formation of each of the three active sites of the trimer. They are located near the small opening of the cone tunnel, all facing the centre of the cavity. The biological relevance of this trimeric structure is supported by independent results obtained from gel-permeation chromatography. These data and their comparison to the structural data of related GH42 enzymes are used for a more general discussion concerning structure-activity aspects in this GH family.
Collapse
Affiliation(s)
- Hodaya V Solomon
- Institute of Chemistry and the Laboratory for Structural Chemistry and Biology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Orly Tabachnikov
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Shifra Lansky
- Institute of Chemistry and the Laboratory for Structural Chemistry and Biology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Rachel Salama
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Hadar Feinberg
- Institute of Chemistry and the Laboratory for Structural Chemistry and Biology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Yuval Shoham
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Gil Shoham
- Institute of Chemistry and the Laboratory for Structural Chemistry and Biology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
19
|
Abstract
The genus Geobacillus comprises a group of Gram-positive thermophilic bacteria, including obligate aerobes, denitrifiers, and facultative anaerobes that can grow over a range of 45-75°C. Originally classified as group five Bacillus spp., strains of Bacillus stearothermophilus came to prominence as contaminants of canned food and soon became the organism of choice for comparative studies of metabolism and enzymology between mesophiles and thermophiles. More recently, their catabolic versatility, particularly in the degradation of hemicellulose and starch, and rapid growth rates have raised their profile as organisms with potential for second-generation (lignocellulosic) biorefineries for biofuel or chemical production. The continued development of genetic tools to facilitate both fundamental investigation and metabolic engineering is now helping to realize this potential, for both metabolite production and optimized catabolism. In addition, this catabolic versatility provides a range of useful thermostable enzymes for industrial application. A number of genome-sequencing projects have been completed or are underway allowing comparative studies. These reveal a significant amount of genome rearrangement within the genus, the presence of large genomic islands encompassing all the hemicellulose utilization genes and a genomic island incorporating a set of long chain alkane monooxygenase genes. With G+C contents of 45-55%, thermostability appears to derive in part from the ability to synthesize protamine and spermine, which can condense DNA and raise its Tm.
Collapse
|
20
|
Kim K, Ryu BH, Kim SS, An DR, Ngo TD, Pandian R, Kim KK, Kim TD. Structural and biochemical characterization of a carbohydrate acetylesterase from Sinorhizobium meliloti 1021. FEBS Lett 2015; 589:117-122. [PMID: 25436419 DOI: 10.1016/j.febslet.2014.11.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 11/19/2014] [Accepted: 11/20/2014] [Indexed: 12/29/2022]
Abstract
In many microorganisms, carbohydrate acetylesterases remove the acetyl groups from various types of carbohydrates. Sm23 from Sinorhizobium meliloti is a putative member of carbohydrate esterase family 3 (CE3) in the CAZy classification system. Here, we determined the crystal structure of Sm23 at 1.75 Å resolution and investigated functional properties using biochemical methods. Furthermore, immobilized Sm23 exhibited improved stability compared with soluble Sm23, which can be used for the design of plant cell wall degrading-systems.
Collapse
Affiliation(s)
- Kyungmin Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
| | - Bum Han Ryu
- Department of Applied Chemistry and Biological Engineering, College of Engineering, Ajou University, Suwon 443-741, Republic of Korea
| | - Sung Soo Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
| | - Deu Rae An
- Department of Applied Chemistry and Biological Engineering, College of Engineering, Ajou University, Suwon 443-741, Republic of Korea
| | - Tri Duc Ngo
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
| | - Ramesh Pandian
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea.
| | - T Doohun Kim
- Department of Applied Chemistry and Biological Engineering, College of Engineering, Ajou University, Suwon 443-741, Republic of Korea.
| |
Collapse
|
21
|
Dann R, Lansky S, Lavid N, Zehavi A, Belakhov V, Baasov T, Dvir H, Manjasetty B, Belrhali H, Shoham Y, Shoham G. Preliminary crystallographic analysis of Xyn52B2, a GH52 β-D-xylosidase from Geobacillus stearothermophilus T6. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2014; 70:1675-82. [PMID: 25484225 DOI: 10.1107/s2053230x14023887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 10/29/2014] [Indexed: 11/10/2022]
Abstract
Geobacillus stearothermophilus T6 is a thermophilic bacterium that possesses an extensive hemicellulolytic system, including over 40 specific genes that are dedicated to this purpose. For the utilization of xylan, the bacterium uses an extracellular xylanase which degrades xylan to decorated xylo-oligomers that are imported into the cell. These oligomers are hydrolyzed by side-chain-cleaving enzymes such as arabinofuranosidases, acetylesterases and a glucuronidase, and finally by an intracellular xylanase and a number of β-xylosidases. One of these β-xylosidases is Xyn52B2, a GH52 enzyme that has already proved to be useful for various glycosynthesis applications. In addition to its demonstrated glycosynthase properties, interest in the structural aspects of Xyn52B2 stems from its special glycoside hydrolase family, GH52, the structures and mechanisms of which are only starting to be resolved. Here, the cloning, overexpression, purification and crystallization of Xyn52B2 are reported. The most suitable crystal form that has been obtained belonged to the orthorhombic P212121 space group, with average unit-cell parameters a = 97.7, b = 119.1, c = 242.3 Å. Several X-ray diffraction data sets have been collected from flash-cooled crystals of this form, including the wild-type enzyme (3.70 Å resolution), the E335G catalytic mutant (2.95 Å resolution), a potential mercury derivative (2.15 Å resolution) and a selenomethionine derivative (3.90 Å resolution). These data are currently being used for detailed three-dimensional structure determination of the Xyn52B2 protein.
Collapse
Affiliation(s)
- Roie Dann
- Institute of Chemistry and the Laboratory for Structural Chemistry and Biology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Shifra Lansky
- Institute of Chemistry and the Laboratory for Structural Chemistry and Biology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Noa Lavid
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Arie Zehavi
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Valery Belakhov
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Timor Baasov
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Hay Dvir
- Technion Center for Structural Biology, Lorry I. Lokey Center for Life Sciences and Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Babu Manjasetty
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Hassan Belrhali
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Yuval Shoham
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Gil Shoham
- Institute of Chemistry and the Laboratory for Structural Chemistry and Biology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
22
|
Lansky S, Salama R, Solomon HV, Feinberg H, Belrhali H, Shoham Y, Shoham G. Structure-specificity relationships in Abp, a GH27 β-L-arabinopyranosidase from Geobacillus stearothermophilus T6. ACTA ACUST UNITED AC 2014; 70:2994-3012. [PMID: 25372689 DOI: 10.1107/s139900471401863x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/15/2014] [Indexed: 11/10/2022]
Abstract
L-Arabinose sugar residues are relatively abundant in plants and are found mainly in arabinan polysaccharides and in other arabinose-containing polysaccharides such as arabinoxylans and pectic arabinogalactans. The majority of the arabinose units in plants are present in the furanose form and only a small fraction of them are present in the pyranose form. The L-arabinan-utilization system in Geobacillus stearothermophilus T6, a Gram-positive thermophilic soil bacterium, has recently been characterized, and one of the key enzymes was found to be an intracellular β-L-arabinopyranosidase (Abp). Abp, a GH27 enzyme, was shown to remove β-L-arabinopyranose residues from synthetic substrates and from the native substrates sugar beet arabinan and larch arabinogalactan. The Abp monomer is made up of 448 amino acids, and based on sequence homology it was suggested that Asp197 is the catalytic nucleophile and Asp255 is the catalytic acid/base. In the current study, the detailed three-dimensional structure of wild-type Abp (at 2.28 Å resolution) and its catalytic mutant Abp-D197A with (at 2.20 Å resolution) and without (at 2.30 Å resolution) a bound L-arabinose product are reported as determined by X-ray crystallography. These structures demonstrate that the three-dimensional structure of the Abp monomer correlates with the general fold observed for GH27 proteins, consisting of two main domains: an N-terminal TIM-barrel domain and a C-terminal all-β domain. The two catalytic residues are located in the TIM-barrel domain, such that their carboxylic functional groups are about 5.9 Å from each other, consistent with a retaining mechanism. An isoleucine residue (Ile67) located at a key position in the active site is shown to play a critical role in the substrate specificity of Abp, providing a structural basis for the high preference of the enzyme towards arabinopyranoside over galactopyranoside substrates. The crystal structure demonstrates that Abp is a tetramer made up of two `open-pincers' dimers, which clamp around each other to form a central cavity. The four active sites of the Abp tetramer are situated on the inner surface of this cavity, all opening into the central space of the cavity. The biological relevance of this tetrameric structure is supported by independent results obtained from size-exclusion chromatography (SEC), dynamic light-scattering (DLS) and small-angle X-ray scattering (SAXS) experiments. These data and their comparison to the structural data of related GH27 enzymes are used for a more general discussion concerning structure-selectivity aspects in this glycoside hydrolase (GH) family.
Collapse
Affiliation(s)
- Shifra Lansky
- Institute of Chemistry and the Laboratory for Structural Chemistry and Biology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Rachel Salama
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Hodaya V Solomon
- Institute of Chemistry and the Laboratory for Structural Chemistry and Biology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Hadar Feinberg
- Institute of Chemistry and the Laboratory for Structural Chemistry and Biology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Hassan Belrhali
- European Molecular Biology Laboratory, Grenoble Outstation and the Unit for Virus Host-Cell Interactions, Université Grenoble Alpes-EMBL-CNRS, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Yuval Shoham
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Gil Shoham
- Institute of Chemistry and the Laboratory for Structural Chemistry and Biology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
23
|
Lansky S, Salama R, Dann R, Shner I, Manjasetty BA, Belrhali H, Shoham Y, Shoham G. Cloning, purification and preliminary crystallographic analysis of Ara127N, a GH127 β-L-arabinofuranosidase from Geobacillus stearothermophilus T6. Acta Crystallogr F Struct Biol Commun 2014; 70:1038-45. [PMID: 25084377 PMCID: PMC4118799 DOI: 10.1107/s2053230x14012680] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 05/31/2014] [Indexed: 12/27/2022] Open
Abstract
The L-arabinan utilization system of Geobacillus stearothermophilus T6 is composed of five transcriptional units that are clustered within a 38 kb DNA segment. One of the transcriptional units contains 11 genes, the last gene of which (araN) encodes a protein, Ara127N, that belongs to the newly established GH127 family. Ara127N shares 44% sequence identity with the recently characterized HypBA1 protein from Bifidobacterium longum and thus is likely to function similarly as a β-L-arabinofuranosidase. β-L-Arabinofuranosidases are enzymes that hydrolyze β-L-arabinofuranoside linkages, the less common form of such linkages, a unique enzymatic activity that has been identified only recently. The interest in the structure and mode of action of Ara127N therefore stems from its special catalytic activity as well as its membership of the new GH127 family, the structure and mechanism of which are only starting to be resolved. Ara127N has recently been cloned, overexpressed, purified and crystallized. Two suitable crystal forms have been obtained: one (CTP form) belongs to the monoclinic space group P21, with unit-cell parameters a = 104.0, b = 131.2, c = 107.6 Å, β = 112.0°, and the other (RB form) belongs to the orthorhombic space group P212121, with unit-cell parameters a = 65.5, b = 118.1, c = 175.0 Å. A complete X-ray diffraction data set has been collected to 2.3 Å resolution from flash-cooled crystals of the wild-type enzyme (RB form) at -173°C using synchrotron radiation. A selenomethionine derivative of Ara127N has also been prepared and crystallized for multi-wavelength anomalous diffraction (MAD) experiments. Crystals of selenomethionine Ara127N appeared to be isomorphous to those of the wild type (CTP form) and enabled the measurement of a three-wavelength MAD diffraction data set at the selenium absorption edge. These data are currently being used for detailed three-dimensional structure determination of the Ara127N protein.
Collapse
Affiliation(s)
- Shifra Lansky
- Institute of Chemistry and the Laboratory for Structural Chemistry and Biology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Rachel Salama
- Department of Biotechnology and Food Engineering, Technion–Israel Institute of Technology, Haifa 32000, Israel
| | - Roie Dann
- Institute of Chemistry and the Laboratory for Structural Chemistry and Biology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Izhak Shner
- Department of Biotechnology and Food Engineering, Technion–Israel Institute of Technology, Haifa 32000, Israel
| | - Babu A. Manjasetty
- European Molecular Biology Laboratory, Grenoble Outstation, 38000 Grenoble, France
- Unit for Virus Host-Cell Interactions, Université Grenoble Alpes–EMBL–CNRS, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Hassan Belrhali
- European Molecular Biology Laboratory, Grenoble Outstation, 38000 Grenoble, France
- Unit for Virus Host-Cell Interactions, Université Grenoble Alpes–EMBL–CNRS, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Yuval Shoham
- Department of Biotechnology and Food Engineering, Technion–Israel Institute of Technology, Haifa 32000, Israel
| | - Gil Shoham
- Institute of Chemistry and the Laboratory for Structural Chemistry and Biology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
24
|
Shulami S, Shenker O, Langut Y, Lavid N, Gat O, Zaide G, Zehavi A, Sonenshein AL, Shoham Y. Multiple regulatory mechanisms control the expression of the Geobacillus stearothermophilus gene for extracellular xylanase. J Biol Chem 2014; 289:25957-75. [PMID: 25070894 DOI: 10.1074/jbc.m114.592873] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Geobacillus stearothermophilus T-6 produces a single extracellular xylanase (Xyn10A) capable of producing short, decorated xylo-oligosaccharides from the naturally branched polysaccharide, xylan. Gel retardation assays indicated that the master negative regulator, XylR, binds specifically to xylR operators in the promoters of xylose and xylan-utilization genes. This binding is efficiently prevented in vitro by xylose, the most likely molecular inducer. Expression of the extracellular xylanase is repressed in medium containing either glucose or casamino acids, suggesting that carbon catabolite repression plays a role in regulating xynA. The global transcriptional regulator CodY was shown to bind specifically to the xynA promoter region in vitro, suggesting that CodY is a repressor of xynA. The xynA gene is located next to an uncharacterized gene, xynX, that has similarity to the NIF3 (Ngg1p interacting factor 3)-like protein family. XynX binds specifically to a 72-bp fragment in the promoter region of xynA, and the expression of xynA in a xynX null mutant appeared to be higher, indicating that XynX regulates xynA. The specific activity of the extracellular xylanase increases over 50-fold during early exponential growth, suggesting cell density regulation (quorum sensing). Addition of conditioned medium to fresh and low cell density cultures resulted in high expression of xynA, indicating that a diffusible extracellular xynA density factor is present in the medium. The xynA density factor is heat-stable, sensitive to proteases, and was partially purified using reverse phase liquid chromatography. Taken together, these results suggest that xynA is regulated by quorum-sensing at low cell densities.
Collapse
Affiliation(s)
- Smadar Shulami
- From the Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel and
| | - Ofer Shenker
- From the Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel and
| | - Yael Langut
- From the Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel and
| | - Noa Lavid
- From the Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel and
| | - Orit Gat
- From the Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel and
| | - Galia Zaide
- From the Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel and
| | - Arie Zehavi
- From the Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel and
| | - Abraham L Sonenshein
- the Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Yuval Shoham
- From the Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel and
| |
Collapse
|
25
|
Lansky S, Alalouf O, Salama R, Dvir H, Shoham Y, Shoham G. Preliminary crystallographic analysis of a double mutant of the acetyl xylo-oligosaccharide esterase Axe2 in its dimeric form. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2014; 70:476-81. [PMID: 24699743 DOI: 10.1107/s2053230x14004129] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 02/22/2014] [Indexed: 11/11/2022]
Abstract
Xylans are polymeric sugars constituting a significant part of the plant cell wall. They are usually substituted with acetyl side groups attached at positions 2 or 3 of the xylose backbone units. Acetylxylan esterases are part of the hemicellulolytic system of many microorganisms which utilize plant biomass for growth. These enzymes hydrolyze the ester linkages of the xylan acetyl groups and thus improve the accessibility of main-chain-hydrolyzing enzymes and their ability to break down the sugar backbone units. The acetylxylan esterases are therefore critically important for those microorganisms and as such could be used for a wide range of biotechnological applications. The structure of an acetylxylan esterase (Axe2) isolated from the thermophilic bacterium Geobacillus stearothermophilus T6 has been determined, and it has been demonstrated that the wild-type enzyme is present as a unique torus-shaped octamer in the crystal and in solution. In order to understand the functional origin of this unique oligomeric structure, a series of rational noncatalytic, site-specific mutations have been made on Axe2. Some of these mutations led to a different dimeric form of the protein, which showed a significant reduction in catalytic activity. One of these double mutants, Axe2-Y184F-W190P, has recently been overexpressed, purified and crystallized. The best crystals obtained belonged to the orthorhombic space group P212121, with unit-cell parameters a = 71.1, b = 106.0, c = 378.6 Å. A full diffraction data set to 2.3 Å resolution has been collected from a flash-cooled crystal of this type at 100 K using synchrotron radiation. This data set is currently being used for the three-dimensional structure analysis of the Axe2-Y184F-W190P mutant in its dimeric form.
Collapse
Affiliation(s)
- Shifra Lansky
- Institute of Chemistry and the Laboratory for Structural Chemistry and Biology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Onit Alalouf
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Rachel Salama
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Hay Dvir
- Technion Center for Structural Biology, Lorry I. Lokey Center for Life Sciences and Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Yuval Shoham
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Gil Shoham
- Institute of Chemistry and the Laboratory for Structural Chemistry and Biology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|