1
|
Zhang L, Guo X, Sun X, Liao J, Liu Q, Ye Y, Yang Z, Cressey R, He Q, Yuan Q. Analysis of tumor-infiltrating exhausted T cells highlights IL-6 and PD1 blockade as a combined immunotherapy strategy for non-small cell lung cancer. Front Immunol 2025; 16:1486329. [PMID: 40040705 PMCID: PMC11876966 DOI: 10.3389/fimmu.2025.1486329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 01/20/2025] [Indexed: 03/06/2025] Open
Abstract
OBJECTIVE Given the limitations of immunotherapy for treating non-small cell lung cancer (NSCLC), we investigated the phenotype and function of exhausted CD8+T cells and analyzed a novel combination immunotherapy to restore the effector killing function of tumor-infiltrating CD8+T lymphocyte (TIL). METHODS We examined the expression and function of immunosuppressive molecules on CD8+T cells of peripheral blood mononuclear cells (PBMCs) and TILs by using prospectively collected peripheral blood, pleural effusions, and tumor tissues from patients with NSCLC and correlated the results with clinical data. We then evaluated the effect of interleukin 6 (IL-6) stimulation on CD8+T cells. Finally, we assessed the effects of combined blockade of PD1 and IL-6 on macrophage recruitment in a zebrafish macrophage model and CD8+ T cell function and tumor growth in PBMC humanized mouse model. RESULTS The expression of exhaustion markers on CD8+ T cells was found to be notably higher in both tumor and paraneoplastic tissues compared to peripheral blood. Furthermore, the degree of CD8+ T cell exhaustion exhibited a progressive increase with proximity to the tumor. When CD8+ T cells from peripheral blood and tumor tissues of NSCLC patients were stimulated with IL-6, the expression level of exhaustion markers, especially PD1, was further elevated. In the in vitro experiment, the combined inhibition of IL-6 and PD1 substantially enhanced the effector killing function of CD8+ T cells in NSCLC pleural effusion samples. In a macrophage-labeled zebrafish model, combined blockade of IL-6 and PD1 enhanced the recruitment of macrophages. In PBMC humanized mouse model, combined blockade of IL-6 and PD1 enhanced the inhibition of tumor growth. CONCLUSION Our data suggest that CD8+ T cells in NSCLC patients were in a state of exhaustion and combined blockade of IL-6 and PD1 to restore CD8+ T cell function to inhibit tumor growth may be an effective clinical strategy for the treatment of NSCLC.
Collapse
Affiliation(s)
- Lulu Zhang
- Public Center of Experimental Technology, The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
- Blood Distribution Department Nanjing Red Cross Blood Center, Nanjing, Jiangsu, China
| | - Xiyuan Guo
- Public Center of Experimental Technology, The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
- Division of Clinical Chemistry, Department of Medical Technology, Faculty of Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Xiaoke Sun
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Jue Liao
- Public Center of Experimental Technology, The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Qin Liu
- Public Center of Experimental Technology, The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Yingchun Ye
- Public Center of Experimental Technology, The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Zhihui Yang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Ratchada Cressey
- Division of Clinical Chemistry, Department of Medical Technology, Faculty of Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Qing He
- Department of Head and Neck Oncology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Qing Yuan
- Public Center of Experimental Technology, The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
- Institute of Nuclear Medicine, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
2
|
Garbers C, Lokau J. Cytokines of the interleukin-6 family as emerging targets in inflammatory bowel disease. Expert Opin Ther Targets 2024; 28:57-65. [PMID: 38217849 DOI: 10.1080/14728222.2024.2306341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/12/2024] [Indexed: 01/15/2024]
Abstract
INTRODUCTION Inflammatory bowel disease (IBD) is an umbrella term that includes different chronic inflammatory diseases of the gastrointestinal tract, most commonly Crohn's disease and ulcerative colitis. IBD affects more than 6 million people worldwide and constitutes not only a debilitating disease for the patients, but also a significant factor for society due to costs for health care and reduced working capacity. Despite the introduction of biologicals for the treatment of IBD, the identification of novel targets that could lead to novel therapeutics is still needed. AREAS COVERED In this review, we summarize current knowledge about the interleukin-6 family of cytokines as potential therapeutic targets for improving the therapy of patients with IBD. We discuss cytokines like IL-6 itself for which therapeutics such as inhibitory monoclonal antibodies have already entered the clinics, but also focus on other family members whose therapeutic potential has not been explored yet. EXPERT OPINION The different cytokines of the IL-6 family offer multiple therapeutic targets that can potentially be used to treat patients with inflammatory bowel disease, but unwanted side effects like inhibition of epithelial regeneration have to be considered.
Collapse
Affiliation(s)
- Christoph Garbers
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Juliane Lokau
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| |
Collapse
|
3
|
O’Reilly S. Interleukin-11 and its eminent role in tissue fibrosis: a possible therapeutic target. Clin Exp Immunol 2023; 214:154-161. [PMID: 37724596 PMCID: PMC10714194 DOI: 10.1093/cei/uxad108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/31/2023] [Accepted: 09/15/2023] [Indexed: 09/21/2023] Open
Abstract
Interleukin-11 is a cytokine from the IL-6 family of cytokines that includes IL-6 and oncostatin-M. Initially described for its role in platelet generation, it is now appreciated that this cytokine has multiple functions. Recently it has been found that IL-11 is critical in fibrosis in multiple different organ systems and systemically as in the autoimmune disease systemic sclerosis. Animal models of fibrosis have determined that animals with IL-11 receptor deletions have retarded fibrosis and that in wild-type animals IL-11 is found at the organ of fibrosis. Recent evidence suggests that IL-11 may be a master regulator of fibrosis regardless of end target organ. With the development of neutralizing antibodies targeting the cytokine in pre-clinical models this could be a possible therapeutic, in a disease in which no specific therapies exist. This review appraises the evidence of the role of IL-11 in tissue fibrosis, its signalling properties, and therapeutic targeting. The review ends with an appraisal of indications for which IL-11 modulation is targeted.
Collapse
|
4
|
Metcalfe RD, Hanssen E, Fung KY, Aizel K, Kosasih CC, Zlatic CO, Doughty L, Morton CJ, Leis AP, Parker MW, Gooley PR, Putoczki TL, Griffin MDW. Structures of the interleukin 11 signalling complex reveal gp130 dynamics and the inhibitory mechanism of a cytokine variant. Nat Commun 2023; 14:7543. [PMID: 37985757 PMCID: PMC10662374 DOI: 10.1038/s41467-023-42754-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 10/20/2023] [Indexed: 11/22/2023] Open
Abstract
Interleukin (IL-)11, an IL-6 family cytokine, has pivotal roles in autoimmune diseases, fibrotic complications, and solid cancers. Despite intense therapeutic targeting efforts, structural understanding of IL-11 signalling and mechanistic insights into current inhibitors are lacking. Here we present cryo-EM and crystal structures of the human IL-11 signalling complex, including the complex containing the complete extracellular domains of the shared IL-6 family β-receptor, gp130. We show that complex formation requires conformational reorganisation of IL-11 and that the membrane-proximal domains of gp130 are dynamic. We demonstrate that the cytokine mutant, IL-11 Mutein, competitively inhibits signalling in human cell lines. Structural shifts in IL-11 Mutein underlie inhibition by altering cytokine binding interactions at all three receptor-engaging sites and abrogating the final gp130 binding step. Our results reveal the structural basis of IL-11 signalling, define the molecular mechanisms of an inhibitor, and advance understanding of gp130-containing receptor complexes, with potential applications in therapeutic development.
Collapse
Affiliation(s)
- Riley D Metcalfe
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, 21702, USA
| | - Eric Hanssen
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
- Ian Holmes Imaging Centre, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Ka Yee Fung
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Kaheina Aizel
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Clara C Kosasih
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Courtney O Zlatic
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Larissa Doughty
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Craig J Morton
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
- CSIRO Biomedical Manufacturing Program, Clayton, Victoria, 3168, Australia
| | - Andrew P Leis
- Ian Holmes Imaging Centre, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Michael W Parker
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
- St Vincent's Institute of Medical Research, Fitzroy, Victoria, 3065, Australia
| | - Paul R Gooley
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Tracy L Putoczki
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Michael D W Griffin
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia.
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
5
|
McIntosh BJ, Hartmann GG, Yamada‐Hunter SA, Liu P, Williams CF, Sage J, Cochran JR. An engineered interleukin-11 decoy cytokine inhibits receptor signaling and proliferation in lung adenocarcinoma. Bioeng Transl Med 2023; 8:e10573. [PMID: 38023717 PMCID: PMC10658506 DOI: 10.1002/btm2.10573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 12/01/2023] Open
Abstract
The cytokine interleukin (IL)-11 has been shown to play a role in promoting fibrosis and cancer, including lung adenocarcinoma, garnering interest as an attractive target for therapeutic intervention. We used combinatorial methods to engineer an IL-11 variant that binds with higher affinity to the IL-11 receptor and stimulates enhanced receptor-mediated cell signaling. Introduction of two additional point mutations ablates IL-11 ligand/receptor association with the gp130 coreceptor signaling complex, resulting in a high-affinity receptor antagonist. Unlike wild-type IL-11, this engineered variant potently blocks IL-11-mediated cell signaling and slows tumor growth in a mouse model of lung cancer. Our approach highlights a strategy where native ligands can be engineered and exploited to create potent receptor antagonists.
Collapse
Affiliation(s)
| | | | - Sean A. Yamada‐Hunter
- Center for Cancer Cell Therapy, Stanford Cancer InstituteStanford University School of MedicineStanfordCaliforniaUSA
| | - Phillip Liu
- Biophysics ProgramStanford UniversityStanfordCaliforniaUSA
| | | | - Julien Sage
- Department of PediatricsStanford UniversityStanfordCaliforniaUSA
- Department of GeneticsStanford UniversityStanfordCaliforniaUSA
- Stanford Cancer InstituteStanford UniversityStanfordCaliforniaUSA
| | - Jennifer R. Cochran
- Cancer Biology ProgramStanford UniversityStanfordCaliforniaUSA
- Stanford Cancer InstituteStanford UniversityStanfordCaliforniaUSA
- Department of BioengineeringStanford UniversityStanfordCaliforniaUSA
| |
Collapse
|
6
|
Chen J, Zheng Y, Wang L, Pang X, Gao F, Xiao H, Huo N. Expression, purification, and biological characterization of recombinant human interleukin-31 protein. Biotechnol Appl Biochem 2023; 70:1731-1740. [PMID: 37096330 DOI: 10.1002/bab.2470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 04/21/2023] [Indexed: 04/26/2023]
Abstract
Interleukin-31 (IL-31), belonging to the IL-6 cytokine family, is involved in skin inflammation and pruritus, as well as some tumors' progression. Here, we reported the expression and purification of recombinant human IL-31 (rhIL-31) using a prokaryotic system. This recombinant protein was expressed in the form of inclusion bodies, refolded and purified by size-exclusion chromatography. Circular dichroism analysis revealed that the secondary structure of rhIL-31 was mainly composed of alpha-helix, which is in consistence with the 3D model structure built by AlphaFold server. In vitro studies showed that rhIL-31 exhibited a good binding ability to the recombinant hIL-31 receptor alpha fused with human Fc fragment (rhIL-31RA-hFc) with EC50 value of 16.36 µg/mL in ELISA assay. Meanwhile, flow cytometry demonstrated that rhIL-31 was able to bind to hIL-31RA or hOSMRβ expressed on the cell surface, independently. Furthermore, rhIL-31 could induce the phosphorylation of STAT3 in A549 cells. In conclusion, the prepared rhIL-31 in this study possesses the binding ability to its receptors, and can activate the signal pathway of JAK/STAT. Thus, it can be applied in further studies, including investigation of hIL-31-related diseases, structural analysis, and development of therapeutic drugs, and monoclonal antibodies targeting hIL-31.
Collapse
Affiliation(s)
- Jing Chen
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
- Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Yuxin Zheng
- Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Lixian Wang
- Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Xuefei Pang
- Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Feng Gao
- Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Haixia Xiao
- Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Nairui Huo
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
7
|
Zheng Y, Zhang J, Guo T, Cao J, Wang L, Zhang J, Pang X, Gao F, Sun H, Xiao H. Canine interleukin-31 binds directly to OSMRβ with higher binding affinity than to IL-31RA. 3 Biotech 2023; 13:302. [PMID: 37588794 PMCID: PMC10425310 DOI: 10.1007/s13205-023-03724-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 08/01/2023] [Indexed: 08/18/2023] Open
Abstract
Interleukin-31 (IL-31) is a pro-inflammatory cytokine involved in skin inflammation and tumor progression. The IL-31 signaling cascade is initiated by its binding to two receptors, IL-31 receptor alpha (IL-31RA) and oncostatin M receptor subunit beta (OSMRβ). The previous study suggested that human IL-31 (hIL-31) directly interacts with IL-31RA and OSMRβ, independently, but the binding ability of hIL-31 to IL-31RA is stronger than to OSMRβ. In different to its human ortholog, feline IL-31 (fIL-31) has a higher binding affinity for feline OSMRβ. However, the binding pattern of canine IL-31 to its receptors remains to be elucidated. In this study, we purified the recombinant canine IL-31 (rcIL-31) protein and revealed its secondary structure to be mainly composed of alpha-helices. Moreover, in vitro studies show that rcIL-31 has the ability to induce the phosphorylation of signal transducer activator of transcription 3 (STAT3) and STAT5 in DH-82 cells. In the following, the binding efficacies of bioactive rcIL-31 for its individual receptor components have been measured using a flow cytometry assay. The result demonstrates that correctly refolded rcIL-31 binds independently with cIL-31RA and cOSMRβ which were expressed on the cell surface. Of note, rcIL-31 has a greater than tenfold higher affinity to OSMRβ than to IL-31RA. Additionally, we demonstrated that D1-D4, especially D4 of cOSMRβ, is crucial for its binding to cIL-31. Furthermore, this study proved that rcIL-31 has a high binding affinity to the soluble cOSMRβ with a KD value of 3.59 × 10-8 M. The results presented in the current study will have a significant implication in the development of drugs or antibodies against diseases induced by cIL-31 signaling.
Collapse
Affiliation(s)
- Yuxin Zheng
- College of Biological Engineering, Tianjin University of Science and Technology, Tianjin, 300457 China
- Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
| | - Jing Zhang
- Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
| | - Tianling Guo
- Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
| | - Jin Cao
- College of Biological Engineering, Tianjin University of Science and Technology, Tianjin, 300457 China
- Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
| | - Lixian Wang
- Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
| | - Jie Zhang
- Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
| | - Xuefei Pang
- Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
| | - Feng Gao
- Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
| | - Hua Sun
- College of Biological Engineering, Tianjin University of Science and Technology, Tianjin, 300457 China
| | - Haixia Xiao
- Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
| |
Collapse
|
8
|
Wu J, Ma W, Qiu Z, Zhou Z. Roles and mechanism of IL-11 in vascular diseases. Front Cardiovasc Med 2023; 10:1171697. [PMID: 37304948 PMCID: PMC10250654 DOI: 10.3389/fcvm.2023.1171697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/28/2023] [Indexed: 06/13/2023] Open
Abstract
Vascular diseases are the leading cause of morbidity and mortality worldwide. Therefore, effective treatment strategies that can reduce the risk of vascular diseases are urgently needed. The relationship between Interleukin-11 (IL-11) and development of vascular diseases has gained increasing attention. IL-11, a target for therapeutic research, was initially thought to participate in stimulating platelet production. Additional research concluded that IL-11 is effective in treating several vascular diseases. However, the function and mechanism of IL-11 in these diseases remain unknown. This review summarizes IL-11 expression, function, and signal transduction mechanism. This study also focuses on the role of IL-11 in coronary artery disease, hypertension, pulmonary hypertension, cerebrovascular disease, aortic disease, and other vascular diseases and its potential as a therapeutic target. Consequently, this study provides new insight into the clinical diagnosis and treatment of vascular diseases.
Collapse
Affiliation(s)
- Jiacheng Wu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenrui Ma
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Radiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Wuhan, China
| | - Zhihua Qiu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zihua Zhou
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Zhou Y, Stevis PE, Cao J, Saotome K, Wu J, Glatman Zaretsky A, Haxhinasto S, Yancopoulos GD, Murphy AJ, Sleeman MW, Olson WC, Franklin MC. Structural insights into the assembly of gp130 family cytokine signaling complexes. SCIENCE ADVANCES 2023; 9:eade4395. [PMID: 36930708 PMCID: PMC10022904 DOI: 10.1126/sciadv.ade4395] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
The interleukin-6 (IL-6) family cytokines signal through gp130 receptor homodimerization or heterodimerization with a second signaling receptor and play crucial roles in various cellular processes. We determined cryo-electron microscopy structures of five signaling complexes of this family, containing full receptor ectodomains bound to their respective ligands ciliary neurotrophic factor, cardiotrophin-like cytokine factor 1 (CLCF1), leukemia inhibitory factor, IL-27, and IL-6. Our structures collectively reveal similarities and differences in the assembly of these complexes. The acute bends at both signaling receptors in all complexes bring the membrane-proximal domains to a ~30 angstrom range but with distinct distances and orientations. We also reveal how CLCF1 engages its secretion chaperone cytokine receptor-like factor 1. Our data provide valuable insights for therapeutically targeting gp130-mediated signaling.
Collapse
Affiliation(s)
- Yi Zhou
- Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA
| | | | - Jing Cao
- Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA
| | - Kei Saotome
- Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA
| | - Jiaxi Wu
- Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Interleukin 11 confers resistance to dextran sulfate sodium-induced colitis in mice. iScience 2023; 26:105934. [PMID: 36685040 PMCID: PMC9852934 DOI: 10.1016/j.isci.2023.105934] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 11/30/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023] Open
Abstract
Intestinal homeostasis is tightly regulated by epithelial cells, leukocytes, and stromal cells, and its dysregulation is associated with inflammatory bowel diseases. Interleukin (IL)-11, a member of the IL-6 family of cytokines, is produced by inflammatory fibroblasts during acute colitis. However, the role of IL-11 in the development of colitis is still unclear. Herein, we showed that IL-11 ameliorated DSS-induced acute colitis in mouse models. We found that deletion of Il11ra1 or Il11 rendered mice highly susceptible to DSS-induced colitis compared to the respective control mice. The number of apoptotic epithelial cells was increased in DSS-treated Il11ra1- or Il11-deficient mice. Moreover, we showed that IL-11 production was regulated by reactive oxygen species (ROS) produced by lysozyme M-positive myeloid cells. These findings indicate that fibroblast-produced IL-11 plays an important role in protecting the mucosal epithelium in acute colitis. Myeloid cell-derived ROS contribute to the attenuation of colitis through the production of IL-11.
Collapse
|
11
|
Ben Boubaker R, Tiss A, Henrion D, Chabbert M. Homology Modeling in the Twilight Zone: Improved Accuracy by Sequence Space Analysis. Methods Mol Biol 2023; 2627:1-23. [PMID: 36959439 DOI: 10.1007/978-1-0716-2974-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
The analysis of the relationship between sequence and structure similarities during the evolution of a protein family has revealed a limit of sequence divergence for which structural conservation can be confidently assumed and homology modeling is reliable. Below this limit, the twilight zone corresponds to sequence divergence for which homology modeling becomes increasingly difficult and requires specific methods. Either with conventional threading methods or with recent deep learning methods, such as AlphaFold, the challenge relies on the identification of a template that shares not only a common ancestor (homology) but also a conserved structure with the query. As both homology and structural conservation are transitive properties, mining of sequence databases followed by multidimensional scaling (MDS) of the query sequence space can reveal intermediary sequences to infer homology and structural conservation between the query and the template. Here, as a case study, we studied the plethodontid receptivity factor isoform 1 (PRF1) from Plethodon jordani, a member of a pheromone protein family present only in lungless salamanders and weakly related to cytokines of the IL6 family. A variety of conventional threading methods led to the cytokine CNTF as a template. Sequence mining, followed by phylogenetic and MDS analysis, provided missing links between PRF1 and CNTF and allowed reliable homology modeling. In addition, we compared automated models obtained from web servers to a customized model to show how modeling can be improved by expert information.
Collapse
Affiliation(s)
- Rym Ben Boubaker
- UMR CNRS 6015 - INSERM 1083, Laboratoire MITOVASC, Université d'Angers, Angers, France
| | - Asma Tiss
- UMR CNRS 6015 - INSERM 1083, Laboratoire MITOVASC, Université d'Angers, Angers, France
| | - Daniel Henrion
- UMR CNRS 6015 - INSERM 1083, Laboratoire MITOVASC, Université d'Angers, Angers, France
| | - Marie Chabbert
- UMR CNRS 6015 - INSERM 1083, Laboratoire MITOVASC, Université d'Angers, Angers, France.
| |
Collapse
|
12
|
Su Y, Zheng Y, Wang S, Zhang S, Yu R, Zhang C. Facile production of tag-free recombinant human interleukin-11 by transforming into soluble expression in Escherichia coli. Protein Expr Purif 2022; 197:106107. [DOI: 10.1016/j.pep.2022.106107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 02/06/2023]
|
13
|
Lokau J, Garbers Y, Grötzinger J, Garbers C. A single aromatic residue in sgp130Fc/olamkicept allows the discrimination between interleukin-6 and interleukin-11 trans-signaling. iScience 2021; 24:103309. [PMID: 34765926 PMCID: PMC8571719 DOI: 10.1016/j.isci.2021.103309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/16/2021] [Accepted: 10/15/2021] [Indexed: 02/07/2023] Open
Abstract
Blocking the activity of cytokines is an efficient strategy to combat inflammatory diseases. Interleukin-6 (IL-6) fulfills its pro-inflammatory properties via its soluble receptor (IL-6 trans-signaling). The selective trans-signaling inhibitor olamkicept (sgp130Fc) is currently in clinical development. We have previously shown that sgp130Fc can also efficiently block trans-signaling of the closely related cytokine IL-11, which elicits the question how selectivity for one of the two cytokines can be achieved. Using structural information, we show that the interfaces between IL-6R-gp130 and IL-11R-gp130, respectively, within the so-called site III are different between the two cytokines. Modification of an aromatic cluster around Q113 of gp130 within these interfaces allows the discrimination between IL-6 and IL-11 trans-signaling. Using recombinant sgp130Fc variants, we demonstrate that these differences can indeed be exploited to generate a truly selective IL-6 trans-signaling inhibitor. Our data highlight how the selectivity of a clinically relevant designer protein can be further improved.
Collapse
Affiliation(s)
- Juliane Lokau
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, 39120 Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, 39120 Magdeburg, Germany
| | - Yvonne Garbers
- Institute of Psychology, Kiel University, 24118 Kiel, Germany
| | | | - Christoph Garbers
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, 39120 Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, 39120 Magdeburg, Germany
| |
Collapse
|
14
|
Fung KY, Louis C, Metcalfe RD, Kosasih CC, Wicks IP, Griffin MDW, Putoczki TL. Emerging roles for IL-11 in inflammatory diseases. Cytokine 2021; 149:155750. [PMID: 34689057 DOI: 10.1016/j.cyto.2021.155750] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/16/2022]
Abstract
Interleukin-11 (IL-11) is a cytokine that has been strongly implicated in the pathogenesis of fibrotic diseases and solid malignancies. Elevated IL-11 expression is also associated with several non-malignant inflammatory diseases where its function remains less well-characterized. Here, we summarize current literature surrounding the contribution of IL-11 to the pathogenesis of autoimmune inflammatory diseases, including rheumatoid arthritis, multiple sclerosis, diabetes and systemic sclerosis, as well as other chronic inflammatory conditions such as periodontitis, asthma, chronic obstructive pulmonary disease, psoriasis and colitis.
Collapse
Affiliation(s)
- Ka Yee Fung
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Victoria 3053, Australia.
| | - Cynthia Louis
- Department of Medical Biology, University of Melbourne, Victoria 3053, Australia; Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Victoria 3052, Australia
| | - Riley D Metcalfe
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Technology Institute, University of Melbourne, Victoria 3010, Australia
| | - Clara C Kosasih
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Technology Institute, University of Melbourne, Victoria 3010, Australia
| | - Ian P Wicks
- Department of Medical Biology, University of Melbourne, Victoria 3053, Australia; Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Victoria 3052, Australia; Rheumatology Unit, The Royal Melbourne Hospital, Victoria 3050, Australia
| | - Michael D W Griffin
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Technology Institute, University of Melbourne, Victoria 3010, Australia
| | - Tracy L Putoczki
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Victoria 3053, Australia.
| |
Collapse
|
15
|
Lokau J, Kespohl B, Kirschke S, Garbers C. The role of proteolysis in interleukin-11 signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1869:119135. [PMID: 34624437 DOI: 10.1016/j.bbamcr.2021.119135] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/26/2021] [Accepted: 09/06/2021] [Indexed: 12/14/2022]
Abstract
Although interleukin-11 (IL-11) was discovered more than 30 years ago, it remains an understudied member of the IL-6 family of cytokines. While it was originally discovered as a secreted factor that could foster megakaryocyte maturation and was therefore used as a recombinant protein to increase platelet production in patients with thrombocytopenia, recent research has established important roles for IL-11 in inflammation, fibrosis and cancer. In order to initiate signal transduction, IL-11 binds first to a non-signaling membrane-bound IL-11 receptor (IL-11R, classic signaling), which subsequently induces the formation of a heterodimer of the signal-transducing receptor gp130 that is shared with the other family members. Complex formation initiates several intracellular signaling cascades, most notably the Janus kinase/Signal Transducer and Activator of Transcription (Jak/STAT) pathway. We have recently identified a trans-signaling mechanism, in which IL-11 binds to soluble forms of the IL-11R (sIL-11R) and the agonistic IL-11/sIL-11R complex can activate cells that do not express the IL-11R and would usually not respond to IL-11. The generation of sIL-11R and thus the initiation of IL-11 trans-signaling is mediated by proteolytic cleavage. In this review, we summarize the current state of knowledge regarding IL-11R cleavage, highlight recent developments in IL-11 biology and discuss therapeutic opportunities and challenges in the light of IL-11 classic and trans-signaling.
Collapse
Affiliation(s)
- Juliane Lokau
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany
| | - Birte Kespohl
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany
| | - Sophia Kirschke
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany
| | - Christoph Garbers
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany.
| |
Collapse
|
16
|
Cook SA, Schafer S. Hiding in Plain Sight: Interleukin-11 Emerges as a Master Regulator of Fibrosis, Tissue Integrity, and Stromal Inflammation. Annu Rev Med 2020; 71:263-276. [PMID: 31986085 DOI: 10.1146/annurev-med-041818-011649] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Interleukin (IL)-11 is upregulated in a wide variety of fibro-inflammatory diseases such as systemic sclerosis, rheumatoid arthritis, pulmonary fibrosis, inflammatory bowel disease, kidney disease, drug-induced liver injury, and nonalcoholic steatohepatitis. IL-11 is a member of the IL-6 cytokine family and has several distinct properties that define its unique and nonredundant roles in disease. The IL-11 receptor is highly expressed on stromal, epithelial and polarized cells, where noncanonical IL-11 signaling drives the three pathologies common to all fibro-inflammatory diseases-myofibroblast activation, parenchymal cell dysfunction, and inflammation-while also inhibiting tissue regeneration. This cytokine has been little studied, and publications on IL-11 peaked in the early 1990s, when it was largely misunderstood. Here we describe recent advances in our understanding of IL-11 biology, outline how misconceptions as to its function came about, and highlight the large potential of therapies targeting IL-11 signaling for treating human disease.
Collapse
Affiliation(s)
- Stuart A Cook
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, 169857 Singapore, Singapore; , .,National Heart Research Institute Singapore, National Heart Centre Singapore, 169609 Singapore, Singapore.,National Heart and Lung Institute, Imperial College London, London SW3 6LY, United Kingdom.,MRC-London Institute of Medical Sciences, Hammersmith Hospital Campus, London W12 0NN, United Kingdom
| | - Sebastian Schafer
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, 169857 Singapore, Singapore; , .,National Heart Research Institute Singapore, National Heart Centre Singapore, 169609 Singapore, Singapore
| |
Collapse
|
17
|
Widjaja AA, Chothani SP, Cook SA. Different roles of interleukin 6 and interleukin 11 in the liver: implications for therapy. Hum Vaccin Immunother 2020; 16:2357-2362. [PMID: 32530750 PMCID: PMC7644218 DOI: 10.1080/21645515.2020.1761203] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/21/2020] [Indexed: 02/07/2023] Open
Abstract
The interleukin 6 (IL6) family of proteins regulate important cellular processes and act through a variety of signaling pathways via a shared gp130 receptor. In the liver, there is a large body of evidence showing a protective and pro-regenerative role for IL6 cis and trans signaling. While a few studies suggest a pathological role for IL6 trans-signaling in the liver. IL11 is often thought of as similar to IL6 and redundancy has been inferred. However, recent studies reveal that IL6R and IL11RA are expressed on dissimilar cell types and these cytokines actually have very different roles in biology and pathology. In the liver, IL6R is mostly expressed on immune cells, whereas IL11RA is highly expressed on hepatocytes and hepatic stellate cells, both of which exhibit autocrine IL11 activity. In contrast to the beneficial effects of IL6 in the liver, IL11 causes liver disease and its expression in stromal and parenchymal cells leads to fibrosis, inflammation, steatosis and hepatic failure. In this review, we address IL6 and IL11 in the context of liver function. We end by discussing the possibility of IL6 gain-of-function versus IL11 inhibition as therapeutic approaches to treat liver disease. 1,2.
Collapse
Affiliation(s)
- Anissa A. Widjaja
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore
| | - Sonia P. Chothani
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore
| | - Stuart A. Cook
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
- National Heart and Lung Institute, Imperial College London, London, UK
- MRC-London Institute of Medical Sciences, Hammersmith Hospital Campus, London, UK
| |
Collapse
|
18
|
Zhao M, Wang J, Yuan M, Ma Z, Bao Y, Hui Z. Multivariate gene expression-based survival predictor model in esophageal adenocarcinoma. Thorac Cancer 2020; 11:2896-2908. [PMID: 32869505 PMCID: PMC7529573 DOI: 10.1111/1759-7714.13626] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/15/2022] Open
Abstract
Background Despite the recent development of molecular‐targeted treatment and immunotherapy, survival of patients with esophageal adenocarcinoma (EAC) with poor prognosis is still poor due to lack of an effective biomarker. In this study, we aimed to explore the ceRNA and construct a multivariate gene expression predictor model using data from The Cancer Genome Atlas (TCGA) to predict the prognosis of EAC patients. Methods We conducted differential expression analysis using mRNA, miRNA and lncRNA transciptome data from EAC and normal patients as well as corresponding clinical information from TCGA database, and gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of those unique differentially expressed mRNAs using the Integrate Discovery Database (DAVID) database. We then constructed the lncRNA‐miRNA‐mRNA competing endogenous RNA (ceRNA) network of EAC and used Cox proportional hazard analysis to generate a multivariate gene expression predictor model. We finally performed survival analysis to determine the effect of differentially expressed mRNA on patients' overall survival and discover the hub gene. Results We identified a total of 488 lncRNAs, 33 miRNAs, and 1207 mRNAs with differentially expressed profiles. Cox proportional hazard analysis and survival analysis using the ceRNA network revealed four genes (IL‐11, PDGFD, NPTX1, ITPR1) as potential biomarkers of EAC prognosis in our predictor model, and IL‐11 was identified as an independent prognostic factor. Conclusions In conclusion, we identified differences in the ceRNA regulatory networks and constructed a four–gene expression‐based survival predictor model, which could be referential for future clinical research.
Collapse
Affiliation(s)
- Maoyuan Zhao
- Department of Radiation Oncology, National Cancer Center/ National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jingsong Wang
- State Key Laboratory of Molecular Oncology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Meng Yuan
- Department of Radiation Oncology, National Cancer Center/ National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zeliang Ma
- Department of Radiation Oncology, National Cancer Center/ National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yongxin Bao
- Department of Radiation Oncology, National Cancer Center/ National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhouguang Hui
- Department of Radiation Oncology, National Cancer Center/ National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Department of VIP Medical Services, National Cancer Center/ National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
19
|
Metcalfe RD, Putoczki TL, Griffin MDW. Structural Understanding of Interleukin 6 Family Cytokine Signaling and Targeted Therapies: Focus on Interleukin 11. Front Immunol 2020; 11:1424. [PMID: 32765502 PMCID: PMC7378365 DOI: 10.3389/fimmu.2020.01424] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/02/2020] [Indexed: 12/12/2022] Open
Abstract
Cytokines are small signaling proteins that have central roles in inflammation and cell survival. In the half-century since the discovery of the first cytokines, the interferons, over fifty cytokines have been identified. Amongst these is interleukin (IL)-6, the first and prototypical member of the IL-6 family of cytokines, nearly all of which utilize the common signaling receptor, gp130. In the last decade, there have been numerous advances in our understanding of the structural mechanisms of IL-6 family signaling, particularly for IL-6 itself. However, our understanding of the detailed structural mechanisms underlying signaling by most IL-6 family members remains limited. With the emergence of new roles for IL-6 family cytokines in disease and, in particular, roles of IL-11 in cardiovascular disease, lung disease, and cancer, there is an emerging need to develop therapeutics that can progress to clinical use. Here we outline our current knowledge of the structural mechanism of signaling by the IL-6 family of cytokines. We discuss how this knowledge allows us to understand the mechanism of action of currently available inhibitors targeting IL-6 family cytokine signaling, and most importantly how it allows for improved opportunities to pharmacologically disrupt cytokine signaling. We focus specifically on the need to develop and understand inhibitors that disrupt IL-11 signaling.
Collapse
Affiliation(s)
- Riley D Metcalfe
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Technology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Tracy L Putoczki
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Michael D W Griffin
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Technology Institute, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
20
|
Metcalfe RD, Aizel K, Zlatic CO, Nguyen PM, Morton CJ, Lio DSS, Cheng HC, Dobson RCJ, Parker MW, Gooley PR, Putoczki TL, Griffin MDW. The structure of the extracellular domains of human interleukin 11α receptor reveals mechanisms of cytokine engagement. J Biol Chem 2020; 295:8285-8301. [PMID: 32332100 DOI: 10.1074/jbc.ra119.012351] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/23/2020] [Indexed: 12/27/2022] Open
Abstract
Interleukin (IL) 11 activates multiple intracellular signaling pathways by forming a complex with its cell surface α-receptor, IL-11Rα, and the β-subunit receptor, gp130. Dysregulated IL-11 signaling has been implicated in several diseases, including some cancers and fibrosis. Mutations in IL-11Rα that reduce signaling are also associated with hereditary cranial malformations. Here we present the first crystal structure of the extracellular domains of human IL-11Rα and a structure of human IL-11 that reveals previously unresolved detail. Disease-associated mutations in IL-11Rα are generally distal to putative ligand-binding sites. Molecular dynamics simulations showed that specific mutations destabilize IL-11Rα and may have indirect effects on the cytokine-binding region. We show that IL-11 and IL-11Rα form a 1:1 complex with nanomolar affinity and present a model of the complex. Our results suggest that the thermodynamic and structural mechanisms of complex formation between IL-11 and IL-11Rα differ substantially from those previously reported for similar cytokines. This work reveals key determinants of the engagement of IL-11 by IL-11Rα that may be exploited in the development of strategies to modulate formation of the IL-11-IL-11Rα complex.
Collapse
Affiliation(s)
- Riley D Metcalfe
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute
| | - Kaheina Aizel
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute.,Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Courtney O Zlatic
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute
| | - Paul M Nguyen
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Personalised Oncology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Craig J Morton
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute
| | - Daisy Sio-Seng Lio
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute.,Structural Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Heung-Chin Cheng
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute
| | - Renwick C J Dobson
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute.,Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Michael W Parker
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute.,Australian Cancer Research Foundation Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Paul R Gooley
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute
| | - Tracy L Putoczki
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Personalised Oncology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology and Department of Surgery, University of Melbourne, Parkville, Victoria, Australia
| | - Michael D W Griffin
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute
| |
Collapse
|
21
|
Thilakasiri P, Huynh J, Poh AR, Tan CW, Nero TL, Tran K, Parslow AC, Afshar-Sterle S, Baloyan D, Hannan NJ, Buchert M, Scott AM, Griffin MD, Hollande F, Parker MW, Putoczki TL, Ernst M, Chand AL. Repurposing the selective estrogen receptor modulator bazedoxifene to suppress gastrointestinal cancer growth. EMBO Mol Med 2020; 11:emmm.201809539. [PMID: 30885958 PMCID: PMC6460354 DOI: 10.15252/emmm.201809539] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Excessive signaling through gp130, the shared receptor for the interleukin (IL)6 family of cytokines, is a common hallmark in solid malignancies and promotes their progression. Here, we established the in vivo utility of bazedoxifene, a steroid analog clinically approved for the treatment of osteoporosis, to suppress gp130‐dependent tumor growth of the gastrointestinal epithelium. Bazedoxifene administration reduced gastric tumor burden in gp130Y757F mice, where tumors arise exclusively through excessive gp130/STAT3 signaling in response to the IL6 family cytokine IL11. Likewise, in mouse models of sporadic colon and intestinal cancers, which arise from oncogenic mutations in the tumor suppressor gene Apc and the associated β‐catenin/canonical WNT pathway, bazedoxifene treatment reduces tumor burden. Consistent with the proposed orthogonal tumor‐promoting activity of IL11‐dependent gp130/STAT3 signaling, tumors of bazedoxifene‐treated Apc‐mutant mice retain excessive nuclear accumulation of β‐catenin and aberrant WNT pathway activation. Likewise, bazedoxifene treatment of human colon cancer cells harboring mutant APC did not reduce aberrant canonical WNT signaling, but suppressed IL11‐dependent STAT3 signaling. Our findings provide compelling proof of concept to support the repurposing of bazedoxifene for the treatment of gastrointestinal cancers in which IL11 plays a tumor‐promoting role.
Collapse
Affiliation(s)
- Pathum Thilakasiri
- Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Heidelberg, Vic., Australia
| | - Jennifer Huynh
- Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Heidelberg, Vic., Australia
| | - Ashleigh R Poh
- Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Heidelberg, Vic., Australia
| | - Chin Wee Tan
- The Walter and Eliza Hall Institute, Melbourne, Vic., Australia
| | - Tracy L Nero
- ACRF Rational Drug Discovery Centre, St Vincent's Institute, Melbourne, Vic., Australia.,Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Melbourne, Vic., Australia
| | - Kelly Tran
- Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Heidelberg, Vic., Australia
| | - Adam C Parslow
- Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Heidelberg, Vic., Australia.,Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Vic., Australia
| | - Shoukat Afshar-Sterle
- Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Heidelberg, Vic., Australia
| | - David Baloyan
- Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Heidelberg, Vic., Australia
| | - Natalie J Hannan
- Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Vic., Australia
| | - Michael Buchert
- Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Heidelberg, Vic., Australia
| | - Andrew Mark Scott
- Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Heidelberg, Vic., Australia.,Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Vic., Australia.,Department of Medicine, University of Melbourne, Melbourne, Vic., Australia
| | - Michael Dw Griffin
- Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Melbourne, Vic., Australia
| | - Frederic Hollande
- Department of Clinical Pathology, University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, University of Melbourne, Melbourne, Vic., Australia
| | - Michael W Parker
- ACRF Rational Drug Discovery Centre, St Vincent's Institute, Melbourne, Vic., Australia.,Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Melbourne, Vic., Australia
| | | | - Matthias Ernst
- Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Heidelberg, Vic., Australia
| | - Ashwini L Chand
- Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Heidelberg, Vic., Australia
| |
Collapse
|
22
|
Lokau J, Garbers C. Biological functions and therapeutic opportunities of soluble cytokine receptors. Cytokine Growth Factor Rev 2020; 55:94-108. [PMID: 32386776 DOI: 10.1016/j.cytogfr.2020.04.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 04/09/2020] [Indexed: 12/28/2022]
Abstract
Cytokines control the immune system by regulating the proliferation, differentiation and function of immune cells. They activate their target cells through binding to specific receptors, which either are transmembrane proteins or attached to the cell-surface via a GPI-anchor. Different tissues and individual cell types have unique expression profiles of cytokine receptors, and consequently this expression pattern dictates to which cytokines a given cell can respond. Furthermore, soluble variants of several cytokine receptors exist, which are generated by different molecular mechanisms, namely differential mRNA splicing, proteolytic cleavage of the membrane-tethered precursors, and release on extracellular vesicles. These soluble receptors shape the function of cytokines in different ways: they can serve as antagonistic decoy receptors which compete with their membrane-bound counterparts for the ligand, or they can form functional receptor/cytokine complexes which act as agonists and can even activate cells that would usually not respond to the ligand alone. In this review, we focus on the IL-2 and IL-6 families of cytokines and the so-called Th2 cytokines. We summarize for each cytokine which soluble receptors exist, were they originate from, how they are generated, and what their biological functions are. Furthermore, we give an outlook on how these soluble receptors can be exploited for therapeutic purposes.
Collapse
Affiliation(s)
- Juliane Lokau
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany
| | - Christoph Garbers
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany.
| |
Collapse
|
23
|
Yang W, Zhang S, Ou T, Jiang H, Jia D, Qi Z, Zou Y, Qian J, Sun A, Ge J. Interleukin-11 regulates the fate of adipose-derived mesenchymal stem cells via STAT3 signalling pathways. Cell Prolif 2020; 53:e12771. [PMID: 32270546 PMCID: PMC7260062 DOI: 10.1111/cpr.12771] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/10/2020] [Accepted: 01/15/2020] [Indexed: 02/06/2023] Open
Abstract
Objective Adipose‐derived mesenchymal stem cells (ADSCs) offer great promise as cell therapy for ischaemic diseases. Due to their poor survival in the ischaemic environment, the therapeutic efficacy of ADSCs is still relatively low. Interleukin‐11 (IL‐11) has been shown to play a key role in promoting cell proliferation and protecting cells from oxidative stress injury. The aim of this study was to determine whether IL‐11 could improve therapeutic efficacy of ADSCs in ischaemic diseases. Methods and Results ADSCs were prepared from inguinal subcutaneous adipose tissue and exposed to hypoxic environment. The protein expression of IL‐11 was decreased after hypoxic treatment. In addition, ADSCs viability was increased after IL‐11 treatment under hypoxia. Moreover, IL‐11 enhanced ADSCs viability in a dose‐dependent manner under normoxia. Importantly, IL‐11 promoted ADSCs proliferation and migration and protected ADSCs against hydrogen peroxide‐induced cellular death. Notably, IL‐11 enhanced ADSCs proliferation and migration, also promoted cell survival and apoptosis resistance by STAT3 signalling. In vivo, mice were subjected to limb ischaemia and treated with IL‐11 overexpression ADSCs and control ADSCs. IL‐11 overexpression ADSCs improved perfusion recovery in the ischaemic muscles. Conclusions We provide the evidence that IL‐11 promoted ADSCs proliferation, stimulated ADSCs migration and attenuated ADSCs apoptosis by activation of STAT3 signalling. These results suggest that IL‐11 facilitated ADSCs engraftment in ischaemic tissue, thereby enhanced ADSCs therapeutic efficacy.
Collapse
Affiliation(s)
- Wenlong Yang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai Cardiovascular Medical Center, Institute of Pan-vascular Medicine, Fudan University, Shanghai, China
| | - Shuning Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai Cardiovascular Medical Center, Institute of Pan-vascular Medicine, Fudan University, Shanghai, China
| | - Tiantong Ou
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai Cardiovascular Medical Center, Institute of Pan-vascular Medicine, Fudan University, Shanghai, China
| | - Hao Jiang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai Cardiovascular Medical Center, Institute of Pan-vascular Medicine, Fudan University, Shanghai, China
| | - Daile Jia
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai Cardiovascular Medical Center, Institute of Pan-vascular Medicine, Fudan University, Shanghai, China
| | - Zhiyong Qi
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai Cardiovascular Medical Center, Institute of Pan-vascular Medicine, Fudan University, Shanghai, China
| | - Yunzeng Zou
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai Cardiovascular Medical Center, Institute of Pan-vascular Medicine, Fudan University, Shanghai, China.,Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Juying Qian
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai Cardiovascular Medical Center, Institute of Pan-vascular Medicine, Fudan University, Shanghai, China.,Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Aijun Sun
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai Cardiovascular Medical Center, Institute of Pan-vascular Medicine, Fudan University, Shanghai, China.,Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai Cardiovascular Medical Center, Institute of Pan-vascular Medicine, Fudan University, Shanghai, China.,Institute of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
24
|
Corden B, Adami E, Sweeney M, Schafer S, Cook SA. IL-11 in cardiac and renal fibrosis: Late to the party but a central player. Br J Pharmacol 2020; 177:1695-1708. [PMID: 32022251 PMCID: PMC7070163 DOI: 10.1111/bph.15013] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 02/06/2023] Open
Abstract
Fibrosis is a pathophysiological hallmark of cardiorenal disease. In the heart, fibrosis leads to contractile dysfunction and arrhythmias; in the kidney, it is the final common pathway for many diseases and predicts end-stage renal failure. Despite this, there are currently no specific anti-fibrotic treatments available for cardiac or renal disease. Recently and unexpectedly, IL-11 was found to be of major importance for cardiorenal fibroblast activation and fibrosis. In mouse models, IL-11 overexpression caused fibrosis of the heart and kidney while genetic deletion of Il11ra1 protected against fibrosis and preserved organ function. Neutralizing antibodies against IL-11 or IL-11RA have been developed that have anti-fibrotic activity in human fibroblasts and protect against fibrosis in murine models of disease. While IL-11 biology has been little studied and, we suggest, largely misunderstood, its autocrine activity in myofibroblasts appears non-redundant for fibrosis, which offers new opportunities to better understand and potentially target cardiorenal fibrosis.
Collapse
Affiliation(s)
- Benjamin Corden
- National Heart Research Institute SingaporeNational Heart Centre SingaporeSingapore
- Cardiovascular and Metabolic Disorders ProgramDuke‐National University of Singapore Medical SchoolSingapore
- MRC‐London Institute of Medical SciencesHammersmith Hospital CampusLondonUK
- National Heart and Lung InstituteImperial College LondonLondonUK
| | - Eleonora Adami
- Cardiovascular and Metabolic Disorders ProgramDuke‐National University of Singapore Medical SchoolSingapore
| | - Mark Sweeney
- MRC‐London Institute of Medical SciencesHammersmith Hospital CampusLondonUK
- National Heart and Lung InstituteImperial College LondonLondonUK
| | - Sebastian Schafer
- National Heart Research Institute SingaporeNational Heart Centre SingaporeSingapore
- Cardiovascular and Metabolic Disorders ProgramDuke‐National University of Singapore Medical SchoolSingapore
| | - Stuart A. Cook
- National Heart Research Institute SingaporeNational Heart Centre SingaporeSingapore
- Cardiovascular and Metabolic Disorders ProgramDuke‐National University of Singapore Medical SchoolSingapore
- MRC‐London Institute of Medical SciencesHammersmith Hospital CampusLondonUK
- National Heart and Lung InstituteImperial College LondonLondonUK
| |
Collapse
|
25
|
Residual Participation and Thermodynamic Stability Due to Molecular Interactions in IL11, IL11Rα and Gp130 from Homo sapiens: An In Silico Outlook for IL11 as a Therapeutic Remedy. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09996-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
26
|
Thilakasiri PS, Dmello RS, Nero TL, Parker MW, Ernst M, Chand AL. Repurposing of drugs as STAT3 inhibitors for cancer therapy. Semin Cancer Biol 2019; 68:31-46. [PMID: 31711994 DOI: 10.1016/j.semcancer.2019.09.022] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/20/2019] [Accepted: 09/24/2019] [Indexed: 02/06/2023]
Abstract
Drug repurposing is a valuable approach in delivering new cancer therapeutics rapidly into the clinic. Existing safety and patient tolerability data for drugs already in clinical use represent an untapped resource in terms of identifying therapeutic agents for off-label protein targets. The multicellular effects of STAT3 mediated by a range of various upstream signaling pathways make it an attractive therapeutic target with utility in a range of diseases including cancer, and has led to the development of a variety of STAT3 inhibitors. Moreover, heightened STAT3 transcriptional activation in tumor cells and within the cells of the tumor microenvironment contribute to disease progression. Consequently, there are many STAT3 inhibitors in preclinical development or under evaluation in clinical trials for their therapeutic efficacy predominantly in inflammatory diseases and cancer. Despite these advances, many challenges remain in ultimately providing STAT3 inhibitors to patients as cancer treatments, highlighting the need not only for a better understanding of the mechanisms associated with STAT3 activation, but also how various pharmaceutical agents suppress STAT3 activity in various cancers. In this review we discuss the importance of STAT3-dependent functions in cancer, review the status of compounds designed as direct-acting STAT3 inhibitors, and describe some of the strategies for repurposing of drugs as STAT3 inhibitors for cancer therapy.
Collapse
Affiliation(s)
- Pathum S Thilakasiri
- Cancer and Inflammation Program, Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Heidelberg, Vic., Australia
| | - Rhynelle S Dmello
- Cancer and Inflammation Program, Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Heidelberg, Vic., Australia
| | - Tracy L Nero
- ACRF Rational Drug Discovery Centre, St Vincent's Institute, Melbourne, Vic., Australia; Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Melbourne, Vic., Australia
| | - Michael W Parker
- ACRF Rational Drug Discovery Centre, St Vincent's Institute, Melbourne, Vic., Australia; Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Melbourne, Vic., Australia
| | - Matthias Ernst
- Cancer and Inflammation Program, Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Heidelberg, Vic., Australia
| | - Ashwini L Chand
- Cancer and Inflammation Program, Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Heidelberg, Vic., Australia.
| |
Collapse
|
27
|
Aryappalli P, Shabbiri K, Masad RJ, Al-Marri RH, Haneefa SM, Mohamed YA, Arafat K, Attoub S, Cabral-Marques O, Ramadi KB, Fernandez-Cabezudo MJ, Al-Ramadi BK. Inhibition of Tyrosine-Phosphorylated STAT3 in Human Breast and Lung Cancer Cells by Manuka Honey is Mediated by Selective Antagonism of the IL-6 Receptor. Int J Mol Sci 2019; 20:E4340. [PMID: 31491838 PMCID: PMC6769459 DOI: 10.3390/ijms20184340] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/26/2019] [Accepted: 09/01/2019] [Indexed: 12/30/2022] Open
Abstract
Aberrantly high levels of tyrosine-phosphorylated signal transducer and activator of transcription 3 (p-STAT3) are found constitutively in ~50% of human lung and breast cancers, acting as an oncogenic transcription factor. We previously demonstrated that Manuka honey (MH) inhibits p-STAT3 in breast cancer cells, but the exact mechanism remained unknown. Herein, we show that MH-mediated inhibition of p-STAT3 in breast (MDA-MB-231) and lung (A549) cancer cell lines is accompanied by decreased levels of gp130 and p-JAK2, two upstream components of the IL-6 receptor (IL-6R) signaling pathway. Using an ELISA-based assay, we demonstrate that MH binds directly to IL-6Rα, significantly inhibiting (~60%) its binding to the IL-6 ligand. Importantly, no evidence of MH binding to two other cytokine receptors, IL-11Rα and IL-8R, was found. Moreover, MH did not alter the levels of tyrosine-phosphorylated or total Src family kinases, which are also constitutively activated in cancer cells, suggesting that signaling via other growth factor receptors is unaffected by MH. Binding of five major MH flavonoids (luteolin, quercetin, galangin, pinocembrin, and chrysin) was also tested, and all but pinocembrin could demonstrably bind IL-6Rα, partially (30-35%) blocking IL-6 binding at the highest concentration (50 μM) used. In agreement, each flavonoid inhibited p-STAT3 in a dose-dependent manner, with estimated IC50 values in the 3.5-70 μM range. Finally, docking analysis confirmed the capacity of each flavonoid to bind in an energetically favorable configuration to IL-6Rα at a site predicted to interfere with ligand binding. Taken together, our findings identify IL-6Rα as a direct target of MH and its flavonoids, highlighting IL-6R blockade as a mechanism for the anti-tumor activity of MH, as well as a viable therapeutic target in IL-6-dependent cancers.
Collapse
Affiliation(s)
- Priyanka Aryappalli
- Department of Medical Microbiology & Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Khadija Shabbiri
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Razan J Masad
- Department of Medical Microbiology & Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Roadha H Al-Marri
- Department of Medical Microbiology & Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Shoja M Haneefa
- Department of Medical Microbiology & Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Yassir A Mohamed
- Department of Medical Microbiology & Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Kholoud Arafat
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Samir Attoub
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Otavio Cabral-Marques
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Khalil B Ramadi
- Harvard-MIT Health Sciences and Technology Division, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Maria J Fernandez-Cabezudo
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
| | - Basel K Al-Ramadi
- Department of Medical Microbiology & Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
| |
Collapse
|
28
|
Banerjee A, Bhattacharya S, Dasgupta R, Ray S. Mutational, functional and evolutionary analysis of interleukin-11 in Homo sapiens: A detailed in silico exploration for platelet recovery due to chemotherapy induced thrombocytopenia. Meta Gene 2019. [DOI: 10.1016/j.mgene.2019.100591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
29
|
Murakami M, Kamimura D, Hirano T. Pleiotropy and Specificity: Insights from the Interleukin 6 Family of Cytokines. Immunity 2019; 50:812-831. [DOI: 10.1016/j.immuni.2019.03.027] [Citation(s) in RCA: 231] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 02/08/2023]
|
30
|
Abstract
Interleukin (IL)-11 belongs to the IL-6 family of cytokines, discovered over 30 years ago. While early studies focused on the ability of IL-11 to stimulate megakaryocytopoiesis, the importance of this cytokine to inflammatory disease and cancers is only just beginning to be uncovered. This review outlines recent advances in our understanding of IL-11 biology, and highlights the development of novel therapeutics with the potential for clinical targeting of signaling by this cytokine in multiple diseases.
Collapse
Affiliation(s)
- Paul M Nguyen
- a The Walter and Eliza Hall Institute of Medical Research , Victoria , Australia
- b The Department of Medical Biology, The University of Melbourne , Victoria , Australia
| | - Suad M Abdirahman
- a The Walter and Eliza Hall Institute of Medical Research , Victoria , Australia
- b The Department of Medical Biology, The University of Melbourne , Victoria , Australia
| | - Tracy L Putoczki
- a The Walter and Eliza Hall Institute of Medical Research , Victoria , Australia
- b The Department of Medical Biology, The University of Melbourne , Victoria , Australia
| |
Collapse
|
31
|
Mukai K, Tsai M, Saito H, Galli SJ. Mast cells as sources of cytokines, chemokines, and growth factors. Immunol Rev 2019; 282:121-150. [PMID: 29431212 DOI: 10.1111/imr.12634] [Citation(s) in RCA: 486] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mast cells are hematopoietic cells that reside in virtually all vascularized tissues and that represent potential sources of a wide variety of biologically active secreted products, including diverse cytokines and growth factors. There is strong evidence for important non-redundant roles of mast cells in many types of innate or adaptive immune responses, including making important contributions to immediate and chronic IgE-associated allergic disorders and enhancing host resistance to certain venoms and parasites. However, mast cells have been proposed to influence many other biological processes, including responses to bacteria and virus, angiogenesis, wound healing, fibrosis, autoimmune and metabolic disorders, and cancer. The potential functions of mast cells in many of these settings is thought to reflect their ability to secrete, upon appropriate activation by a range of immune or non-immune stimuli, a broad spectrum of cytokines (including many chemokines) and growth factors, with potential autocrine, paracrine, local, and systemic effects. In this review, we summarize the evidence indicating which cytokines and growth factors can be produced by various populations of rodent and human mast cells in response to particular immune or non-immune stimuli, and comment on the proven or potential roles of such mast cell products in health and disease.
Collapse
Affiliation(s)
- Kaori Mukai
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.,Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, USA
| | - Mindy Tsai
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.,Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, USA
| | - Hirohisa Saito
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health & Development, Tokyo, Japan
| | - Stephen J Galli
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.,Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, USA.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
32
|
Yu KM, Yiu-Nam Lau J, Fok M, Yeung YK, Fok SP, Hu TL, Tsai YJ, Choo QL. Pharmacokinetic and Pharmacodynamic Evaluation of Different PEGylated Human Interleukin-11 Preparations in Animal Models. J Pharm Sci 2018; 107:2755-2763. [PMID: 30005986 DOI: 10.1016/j.xphs.2018.06.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 06/21/2018] [Accepted: 06/22/2018] [Indexed: 11/26/2022]
Abstract
Treating thrombocytopenia induced by chemotherapy remains an unmet-medical need. The use of recombinant human interleukin-11 (rhIL-11) requires repeated injections and induces significant fluid retention in some patients. Modification of human interleukin-11 with chemically inert polyethylene glycol polymer (PEG) may extend the peripheral circulation half-life leading to an improved pharmacokinetic and pharmadynamic profile. In this study, a number of rhIL-11 PEG conjugates were created to determine the optimal approach to prolong circulating half-life with the most robust pharmacological effect. The lead candidate was found to be a single 40-kDa Y-shaped PEG linked to the N-terminus, which produced a long-lasting circulating half-life, enhanced efficacy and alleviated side effect of dilutional anemia in healthy rat models. This candidate was also shown to be effective in myelosuppressive rats in preventing the occurrence of severe thrombocytopenia while ameliorating dilutional anemia, compared to rats receiving daily administration of unmodified rhIL-11 at the same dose. These data indicated that a single injection of the selected modified rhIL-11 for each cycle of chemotherapy regimen is potentially feasible. This approach may also be useful in treating patients of acute radiation syndrome when frequent administration is not feasible in a widespread event of a major radiation exposure.
Collapse
Affiliation(s)
- Kuo-Ming Yu
- Nansha Biologics (Hong Kong) Ltd, Unit 608-613, IC Development Centre, No. 6 Science Park West Avenue, Hong Kong Science Park, Shatin, Hong Kong.
| | - Johnson Yiu-Nam Lau
- Nansha Biologics (Hong Kong) Ltd, Unit 608-613, IC Development Centre, No. 6 Science Park West Avenue, Hong Kong Science Park, Shatin, Hong Kong
| | - Manson Fok
- Nansha Biologics (Hong Kong) Ltd, Unit 608-613, IC Development Centre, No. 6 Science Park West Avenue, Hong Kong Science Park, Shatin, Hong Kong; Faculty of Health Sciences, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau
| | - Yuk-Keung Yeung
- Nansha Biologics (Hong Kong) Ltd, Unit 608-613, IC Development Centre, No. 6 Science Park West Avenue, Hong Kong Science Park, Shatin, Hong Kong
| | - Siu-Ping Fok
- Nansha Biologics (Hong Kong) Ltd, Unit 608-613, IC Development Centre, No. 6 Science Park West Avenue, Hong Kong Science Park, Shatin, Hong Kong
| | - Tsan-Lin Hu
- Biomedical Technology and Device Research Labs, Industrial Technology and Research Institute, 195, Sec. 4, Chung Hsing Rd., Chutung, Hsinchu, Taiwan 31040
| | - Yuan-Jang Tsai
- Biomedical Technology and Device Research Labs, Industrial Technology and Research Institute, 195, Sec. 4, Chung Hsing Rd., Chutung, Hsinchu, Taiwan 31040
| | - Qui-Lim Choo
- Nansha Biologics (Hong Kong) Ltd, Unit 608-613, IC Development Centre, No. 6 Science Park West Avenue, Hong Kong Science Park, Shatin, Hong Kong
| |
Collapse
|
33
|
Lokau J, Garbers C. The length of the interleukin-11 receptor stalk determines its capacity for classic signaling. J Biol Chem 2018; 293:6398-6409. [PMID: 29523682 PMCID: PMC5925790 DOI: 10.1074/jbc.ra118.001879] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/14/2018] [Indexed: 12/30/2022] Open
Abstract
Interleukin (IL)-11 is a multifunctional cytokine that was traditionally recognized for its hematopoietic and anti-inflammatory functions, but has recently been shown also to be involved in tumorigenesis. IL-11 signaling is initiated by binding of the cytokine to the IL-11 receptor (IL-11R), which is not directly involved in signaling but required for IL-11 binding to the signal-transducing receptor glycoprotein (gp) 130. In classic signaling, IL-11 binds to the membrane-bound IL-11R to initiate signal transduction. Additionally, IL-11 signaling can be initiated via soluble IL-11R, known as trans-signaling, and this pathway only requires the three extracellular domains of the IL-11R, but not stalk, transmembrane, or intracellular region. Here, we analyzed the role of the IL-11R stalk region, a 55 amino acid stretch connecting the extracellular domains with the transmembrane helix, in classic IL-11 signaling with the help of cytokine-dependent cell lines. We showed that the stalk region is crucial for IL-11 signaling via the membrane-bound IL-11R. Using different deletion variants, we found that a minimal length of 23 amino acid residues is required for efficient signal transduction. We further found that classic IL-11 signaling depended solely on the length, but not the sequence, of the IL-11R stalk region, suggesting that the stalk functions as a spacer in the signaling complex. We previously described the IL-11R stalk region as determinant of proteolysis and regulator of IL-11 trans-signaling. The results presented here reveal an additional function in classic IL-11 signaling, highlighting the importance of the IL-11R stalk in IL-11 signaling.
Collapse
Affiliation(s)
- Juliane Lokau
- From the Institute of Biochemistry, Kiel University, 24118 Kiel, Germany
| | - Christoph Garbers
- From the Institute of Biochemistry, Kiel University, 24118 Kiel, Germany
| |
Collapse
|
34
|
The SNP rs4252548 (R112H) which is associated with reduced human height compromises the stability of IL-11. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:496-506. [DOI: 10.1016/j.bbamcr.2017.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 12/04/2017] [Accepted: 12/08/2017] [Indexed: 12/15/2022]
|
35
|
Haddad JF, Yang Y, Yeung S, Couture JF. Recognizing asymmetry in pseudo-symmetry; structural insights into the interaction between amphipathic α-helices and X-bundle proteins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1605-1612. [PMID: 28652208 DOI: 10.1016/j.bbapap.2017.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 05/14/2017] [Accepted: 06/21/2017] [Indexed: 11/27/2022]
Abstract
An α-helix bundle is a small and compact protein fold always composed of more than 2 α-helices that typically run nearly parallel or antiparallel to each other. The repertoire of arrangements of α-helix bundle is such that these domains bind to a myriad of molecular entities including DNA, RNA, proteins and small molecules. A special instance of α-helical bundle is the X-type in which the arrangement of two α-helices interact at 45° to form an X. Among those, some X-helix bundle proteins bind to the hydrophobic section of an amphipathic α-helix in a seemingly orientation and sequence specific manner. In this review, we will compare the binding mode of amphipathic α-helices to X-helix bundle and α-helical bundle proteins. From these structures, we will highlight potential regulatory paradigms that may control the specific interactions of X-helix bundle proteins to amphipathic α-helices. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman.
Collapse
Affiliation(s)
- John Faissal Haddad
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Yidai Yang
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Sylvain Yeung
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Jean-François Couture
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada.
| |
Collapse
|
36
|
Expression, Purification, and Characterization of Interleukin-11 Orthologues. Molecules 2016; 21:molecules21121632. [PMID: 27916836 PMCID: PMC6274577 DOI: 10.3390/molecules21121632] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 11/22/2016] [Accepted: 11/24/2016] [Indexed: 11/17/2022] Open
Abstract
Interleukin-11 (IL-11) is a multifunctional cytokine implicated in several normal and pathological processes. The decoding of IL-11 function and development of IL-11-targeted drugs dictate the use of laboratory animals and need of the better understanding of species specificity of IL-11 signaling. Here, we present a method for the recombinant interleukin-11 (rIL-11) production from the important model animals, mouse and macaque. The purified mouse and macaque rIL-11 interact with extracellular domain of human IL-11 receptor subunit α and activate STAT3 signaling in HEK293 cells co-expressing human IL-11 receptors with efficacies resembling those of human rIL-11. Hence, the evolutionary divergence does not impair IL-11 signaling. Furthermore, compared to human rIL-11 its macaque orthologue is 8-fold more effective STAT3 activator, which favors its use for treatment of thrombocytopenia as a potent substitute for human rIL-11. Compared to IL-6, IL-11 signaling exhibits lower species specificity, likely due to less conserved intrinsic disorder propensity within IL-6 orthologues. The developed express method for preparation of functionally active macaque/mouse rIL-11 samples is suited for exploration of the molecular mechanisms underlying IL-11 action and for development of the drug candidates for therapy of oncologic/hematologic/inflammatory diseases related to IL-11 signaling.
Collapse
|
37
|
Production and characterization of genetically modified human IL-11 variants. Biochim Biophys Acta Gen Subj 2016; 1861:205-217. [PMID: 27884519 DOI: 10.1016/j.bbagen.2016.11.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 11/02/2016] [Accepted: 11/16/2016] [Indexed: 11/23/2022]
Abstract
Interleukin-11 (IL-11) has been expected as a drug on severe thrombocytopenia caused by myelo-suppressive chemotherapy. Whereas, development of IL-11 inhibitor is also expected for a treatment against IL-11 related cancer progression. Here, we will demonstrate the creation of various kinds of genetically modified hIL-11s. Modified vectors were constructed by introducing N- or O-glycosylation site on the region of hIL-11 that does not belong to the core α-helical motif based on the predicted secondary structure. N-terminal (N: between 22 to 23 aa), the first loop (M1:70 to 71 aa), the second loop (M2:114-115 aa), the third loop (M3:160-161 aa) and C-terminal (C: 200- aa) were selected for modification. A large scale production system was established and the characteristics of modified hIL-11s were evaluated. The structure was analyzed by amino acid sequence and composition analysis and CD-spectra. Glycan was assessed by monosaccharide composition analysis. Growth promoting activity and biological stability were analyzed by proliferation of T1165 cells. N-terminal modified proteins were well glycosylated and produced. Growth activity of 3NN with NASNASNAS sequence on N-terminal was about tenfold higher than wild type (WT). Structural and biological stabilities of 3NN were also better than WT and residence time in mouse blood was longer than WT. M1 variants lacked growth activity though they are well glycosylated and secondary structure is very stable. Both of 3NN and OM1 with AAATPAPG on M1 associated with hIL-11R strongly. These results indicate N-terminal and M1 variants will be expected for practical use as potent agonists or antagonists of hIL-11.
Collapse
|
38
|
Dams-Kozlowska H, Kwiatkowska-Borowczyk E, Gryska K, Lewandowska A, Marszalek A, Adamczyk S, Kowalik A, Leporowska E, Mackiewicz A. Effects of Designer Hyper-Interleukin 11 (H11) on Hematopoiesis in Myelosuppressed Mice. PLoS One 2016; 11:e0154520. [PMID: 27144685 PMCID: PMC4856347 DOI: 10.1371/journal.pone.0154520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/14/2016] [Indexed: 11/23/2022] Open
Abstract
The incidence of cancer is constantly increasing. Chemo/radiotherapy is one of major methods of treating cancer. Although adverse chemo/radiotherapy events, such as anemia and neutropenia, can be successfully cured, thrombocytopenia is still problematic. We constructed the Hyper-IL11 (H11) cytokine by linking soluble interleukin 11 receptor alpha (sIL-11Ralpha) with IL-11. In vivo H11 activity was examined in myelosuppressed mice. Myelosuppression was induced by either i) sublethal irradiation and carboplatin administration or ii) sublethal irradiation. A dose of 100 μg/kg of H11 or IL-11 was administered subcutaneously for 7 days. IL-11 and H11 accelerated leukocyte, hematocrit and platelet recovery. The effect on the attenuation of thrombocytopenia was significant. Moreover, both cytokines increased the cellularity and numbers of megakaryocyte, erythroid, and granulocyte/macrophage progenitors in the bone morrow and spleen compared with the control. Although H11 was administered at a molar concentration that was three times lower, its effects were comparable with or better than those of IL-11; thus, the activity of H11 was superior to that of IL-11. Because no toxicity was observed after the intravenous administration of H11, this hyper-cytokine may be potentially useful for treatment of thrombocytopenia and other IL-11-dependent disorders.
Collapse
Affiliation(s)
- Hanna Dams-Kozlowska
- Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, Poznan, Poland
- * E-mail:
| | - Eliza Kwiatkowska-Borowczyk
- Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, Poznan, Poland
| | - Katarzyna Gryska
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, Poznan, Poland
| | - Anna Lewandowska
- Department of Oncologic Pathology and Prophylactics, Poznan University of Medical Sciences, Poznan, Poland
- Department of Oncologic Pathology, Greater Poland Cancer Centre, Poznan, Poland
| | - Andrzej Marszalek
- Department of Oncologic Pathology and Prophylactics, Poznan University of Medical Sciences, Poznan, Poland
- Department of Oncologic Pathology, Greater Poland Cancer Centre, Poznan, Poland
| | - Sebastian Adamczyk
- Department of Medical Physics, Greater Poland Cancer Centre, Poznan, Poland
| | - Anna Kowalik
- Department of Medical Physics, Greater Poland Cancer Centre, Poznan, Poland
| | - Ewa Leporowska
- Department of Laboratory Diagnostics, Greater Poland Cancer Centre, Poznan, Poland
| | - Andrzej Mackiewicz
- Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, Poznan, Poland
| |
Collapse
|
39
|
Kazakov AS, Sokolov AS, Vologzhannikova AA, Permyakova ME, Khorn PA, Ismailov RG, Denessiouk KA, Denesyuk AI, Rastrygina VA, Baksheeva VE, Zernii EY, Zinchenko DV, Glazatov VV, Uversky VN, Mirzabekov TA, Permyakov EA, Permyakov SE. Interleukin-11 binds specific EF-hand proteins via their conserved structural motifs. J Biomol Struct Dyn 2016; 35:78-91. [PMID: 26726132 DOI: 10.1080/07391102.2015.1132392] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Interleukin-11 (IL-11) is a hematopoietic cytokine engaged in numerous biological processes and validated as a target for treatment of various cancers. IL-11 contains intrinsically disordered regions that might recognize multiple targets. Recently we found that aside from IL-11RA and gp130 receptors, IL-11 interacts with calcium sensor protein S100P. Strict calcium dependence of this interaction suggests a possibility of IL-11 interaction with other calcium sensor proteins. Here we probed specificity of IL-11 to calcium-binding proteins of various types: calcium sensors of the EF-hand family (calmodulin, S100B and neuronal calcium sensors: recoverin, NCS-1, GCAP-1, GCAP-2), calcium buffers of the EF-hand family (S100G, oncomodulin), and a non-EF-hand calcium buffer (α-lactalbumin). A specific subset of the calcium sensor proteins (calmodulin, S100B, NCS-1, GCAP-1/2) exhibits metal-dependent binding of IL-11 with dissociation constants of 1-19 μM. These proteins share several amino acid residues belonging to conservative structural motifs of the EF-hand proteins, 'black' and 'gray' clusters. Replacements of the respective S100P residues by alanine drastically decrease its affinity to IL-11, suggesting their involvement into the association process. Secondary structure and accessibility of the hinge region of the EF-hand proteins studied are predicted to control specificity and selectivity of their binding to IL-11. The IL-11 interaction with the EF-hand proteins is expected to occur under numerous pathological conditions, accompanied by disintegration of plasma membrane and efflux of cellular components into the extracellular milieu.
Collapse
Affiliation(s)
- Alexei S Kazakov
- a Institute for Biological Instrumentation of the Russian Academy of Sciences , Institutskaya str., 7, Pushchino, Moscow Region 142290 , Russia
| | - Andrei S Sokolov
- a Institute for Biological Instrumentation of the Russian Academy of Sciences , Institutskaya str., 7, Pushchino, Moscow Region 142290 , Russia
| | - Alisa A Vologzhannikova
- a Institute for Biological Instrumentation of the Russian Academy of Sciences , Institutskaya str., 7, Pushchino, Moscow Region 142290 , Russia
| | - Maria E Permyakova
- a Institute for Biological Instrumentation of the Russian Academy of Sciences , Institutskaya str., 7, Pushchino, Moscow Region 142290 , Russia
| | - Polina A Khorn
- a Institute for Biological Instrumentation of the Russian Academy of Sciences , Institutskaya str., 7, Pushchino, Moscow Region 142290 , Russia
| | - Ramis G Ismailov
- a Institute for Biological Instrumentation of the Russian Academy of Sciences , Institutskaya str., 7, Pushchino, Moscow Region 142290 , Russia
| | - Konstantin A Denessiouk
- b Faculty of Science and Engineering , Åbo Akademi University , Biskopsgatan 8, Åbo 20500 , Finland
| | - Alexander I Denesyuk
- a Institute for Biological Instrumentation of the Russian Academy of Sciences , Institutskaya str., 7, Pushchino, Moscow Region 142290 , Russia.,b Faculty of Science and Engineering , Åbo Akademi University , Biskopsgatan 8, Åbo 20500 , Finland
| | - Victoria A Rastrygina
- a Institute for Biological Instrumentation of the Russian Academy of Sciences , Institutskaya str., 7, Pushchino, Moscow Region 142290 , Russia
| | - Viktoriia E Baksheeva
- c Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University , Leninskye Gory, House 1, Building 40, Moscow 119992 , Russia
| | - Evgeni Yu Zernii
- c Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University , Leninskye Gory, House 1, Building 40, Moscow 119992 , Russia
| | - Dmitry V Zinchenko
- d Branch of Shemyakin and Ovchinnikov , Institute of Bioorganic Chemistry of the Russian Academy of Sciences , Institutskaya str. 6, Pushchino, Moscow Region 142290 , Russia
| | | | - Vladimir N Uversky
- a Institute for Biological Instrumentation of the Russian Academy of Sciences , Institutskaya str., 7, Pushchino, Moscow Region 142290 , Russia.,f Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine , University of South Florida , Tampa , FL 33612 , USA
| | - Tajib A Mirzabekov
- g Antherix , Institutskaya str. 7, Pushchino, Moscow Region 142290 , Russia.,h Biomirex Inc. , 304 Pleasant Street, Watertown , MA 02472 , USA
| | - Eugene A Permyakov
- a Institute for Biological Instrumentation of the Russian Academy of Sciences , Institutskaya str., 7, Pushchino, Moscow Region 142290 , Russia
| | - Sergei E Permyakov
- a Institute for Biological Instrumentation of the Russian Academy of Sciences , Institutskaya str., 7, Pushchino, Moscow Region 142290 , Russia
| |
Collapse
|
40
|
Abstract
IL-11 is a member of the IL-6 family of cytokines. While it was discovered over 20 years ago, we have very little understanding of the role of IL-11 during normal homeostasis and disease. Recently, IL-11 has gained interest for its newly recognized role in the pathogenesis of diseases that are attributed to deregulated mucosal homeostasis, including gastrointestinal cancers. IL-11 can increase the tumorigenic capacity of cells, including survival of the cell or origin, proliferation of cancerous cells and survival of metastatic cells at distant organs. Here we outline our current understanding of IL-11 biology and recent advances in our understanding of its role in cancer. We advocate that inhibition of IL-11 signaling may represent an emerging therapeutic opportunity for numerous cancers.
Collapse
Affiliation(s)
- Tracy L Putoczki
- The Walter & Eliza Hall Institute of Medical Research & Department of Medical Biology, University of Melbourne, Parkville Victoria 3052, Australia
| | | |
Collapse
|
41
|
Modular organization of Interleukin-6 and Interleukin-11 α-receptors. Biochimie 2015; 119:175-82. [DOI: 10.1016/j.biochi.2015.11.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 11/04/2015] [Indexed: 01/30/2023]
|
42
|
Kazakov AS, Sokolov AS, Rastrygina VA, Solovyev VV, Ismailov RG, Mikhailov RV, Ulitin AB, Yakovenko AR, Mirzabekov TA, Permyakov EA, Permyakov SE. High-affinity interaction between interleukin-11 and S100P protein. Biochem Biophys Res Commun 2015; 468:733-8. [DOI: 10.1016/j.bbrc.2015.11.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 11/03/2015] [Indexed: 12/31/2022]
|
43
|
Johnstone CN, Chand A, Putoczki TL, Ernst M. Emerging roles for IL-11 signaling in cancer development and progression: Focus on breast cancer. Cytokine Growth Factor Rev 2015. [PMID: 26209885 DOI: 10.1016/j.cytogfr.2015.07.015] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Interleukin (IL)-11 is a member of the IL-6 family of cytokines that is defined by the shared use of the GP130 signal transducing receptor subunit. In addition of its long recognized activities as a hemopoietic growth factor, IL-11 has an emerging role in epithelial cancer biology. Through the activation of the GP130-Janus kinase signaling cascade and associated transcription factor STAT3, IL-11 can confer many of the tumor intrinsic 'hallmark' capabilities to neoplastic cells, if they express the ligand-specific IL-11Rα receptor subunit. Accordingly, IL-11 signaling has recently been identified as a rate-limiting step for the growth tumors arising from the mucosa of the gastrointestinal tract. However, there is less appreciation for a potential role of IL-11 to support breast cancer progression, apart from its well documented capacity to facilitate bone metastasis. Here we review evidence that IL-11 expression in breast cancer correlates with poor disease outcome and discuss some of the molecular mechanisms that are likely to underpin these observations. These include the capacity of IL-11 to stimulate survival and proliferation of cancer cells alongside angiogenesis of the primary tumor and of metastatic progenies at distant organs. We review current strategies to interfere with IL-11 signaling and advocate that inhibition of IL-11 signaling may represent an emerging therapeutic opportunity for numerous cancers.
Collapse
Affiliation(s)
- Cameron N Johnstone
- Cancer & Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Level 5, Olivia Newton-John Cancer & Wellness Centre, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, LaTrobe University, Heidelberg, VIC 3084, Australia; Cancer Metastasis Laboratory, Cancer Research Division, Peter MacCallum Cancer Centre, East Melbourne, VIC 3002, Australia
| | - Ashwini Chand
- Cancer & Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Level 5, Olivia Newton-John Cancer & Wellness Centre, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, LaTrobe University, Heidelberg, VIC 3084, Australia
| | - Tracy L Putoczki
- Inflammation Division, Walter & Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, Melbourne University, Parkville, VIC 3052, Australia
| | - Matthias Ernst
- Cancer & Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Level 5, Olivia Newton-John Cancer & Wellness Centre, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, LaTrobe University, Heidelberg, VIC 3084, Australia.
| |
Collapse
|