1
|
Panjikar S, Weiss MS. Peptide bonds revisited. IUCRJ 2025; 12:307-321. [PMID: 40162645 PMCID: PMC12044857 DOI: 10.1107/s2052252525002106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/05/2025] [Indexed: 04/02/2025]
Abstract
Understanding the structural and chemical properties of peptide bonds within protein secondary structures is vital for elucidating their roles in protein folding, stability and function. This study examines the distinct characteristics of peptide bonds in α-helices and β-strands using a nonredundant data set comprising 1024 high-resolution protein crystal structures from the Protein Data Bank (PDB). The analysis reveals surprising and intriguing insights into bond lengths, angles, dihedral angles, electron-density distributions and hydrogen bonding within α-helices and β-strands. While the respective bond lengths (CN and CO) do not differ much between helices and strands, the bond angles (∠CNCα and ∠OCN) are significantly larger in strands compared with helices. Furthermore, the peptide dihedral angle (ω) in helices clusters around 180° and follows a sharp Gaussian distribution with a standard deviation of 4.1°. In contrast, the distribution of dihedral angles in strands spans a much wider range, with a more flattened Gaussian peak around 180°. This distinct difference in the distribution of dihedral angles reflects the unique structural characteristics of helices and strands, highlighting their respective conformational preferences. Additionally, if the ratio of the electron-density values (2mFo - DFc) at the midpoint of the CO bond and of the CN bond is calculated, a skewed distribution is observed, with the ratio being lower for helices than for strands. Moreover, higher normalized mean atomic displacement parameters (ADPs) for peptide atoms in helices relative to strands suggest increased flexibility or a more dynamic structure within helical regions. Analysis of hydrogen-bond distances between O and N atoms of the main chain reveals larger distances in helices compared with strands, indicative of distinct hydrogen-bonding patterns associated with different secondary structures. All of these observations taken together led us to conclude that peptide bonds in α-helices are different from peptide bonds in β-strands. Overall, α-helical peptide bonds seem to display a more enol-like character. This suggests that peptide oxygen atoms in helices are more likely to be protonated. These findings have several important implications for refining protein structures, particularly in regions susceptible to enol-like transitions or protonation. By recognizing the distinct bond-angle and bond-length variations associated with protonated carbonyl oxygen atoms, current refinement protocols can be adapted to apply more flexible restraints in these regions. This could improve the accuracy of modelling local geometries, where protonation or enol forms lead to subtle structural deviations from the canonical bond parameters typically enforced in refinement strategies.
Collapse
Affiliation(s)
- Santosh Panjikar
- ANSTOAustralian Synchrotron800 Blackburn RoadClaytonVictoria3168Australia
- Department of Biochemistry and Molecular BiologyMonash UniversityMelbourneVictoriaAustralia
| | - Manfred S. Weiss
- Macromolecular CrystallographyHelmholtz-Zentrum BerlinAlbert-Einstein-Strasse 1512489BerlinGermany
| |
Collapse
|
2
|
Pacoste L, Ignat’ev VM, Dominiak PM, Zou X. On the structure refinement of metal complexes against 3D electron diffraction data using multipolar scattering factors. IUCRJ 2024; 11:878-890. [PMID: 39146197 PMCID: PMC11364031 DOI: 10.1107/s2052252524006730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 07/09/2024] [Indexed: 08/17/2024]
Abstract
This study examines various methods for modelling the electron density and, thus, the electrostatic potential of an organometallic complex for use in crystal structure refinement against 3D electron diffraction (ED) data. It focuses on modelling the scattering factors of iron(III), considering the electron density distribution specific for coordination with organic linkers. We refined the structural model of the metal-organic complex, iron(III) acetylacetonate (FeAcAc), using both the independent atom model (IAM) and the transferable aspherical atom model (TAAM). TAAM refinement initially employed multipolar parameters from the MATTS databank for acetylacetonate, while iron was modelled with a spherical and neutral approach (TAAM ligand). Later, custom-made TAAM scattering factors for Fe-O coordination were derived from DFT calculations [TAAM-ligand-Fe(III)]. Our findings show that, in this compound, the TAAM scattering factor corresponding to Fe3+ has a lower scattering amplitude than the Fe3+ charged scattering factor described by IAM. When using scattering factors corresponding to the oxidation state of iron, IAM inaccurately represents electrostatic potential maps and overestimates the scattering potential of the iron. In addition, TAAM significantly improved the fitting of the model to the data, shown by improved R1 values, goodness-of-fit (GooF) and reduced noise in the Fourier difference map (based on the residual distribution analysis). For 3D ED, R1 values improved from 19.36% (IAM) to 17.44% (TAAM-ligand) and 17.49% (TAAM-ligand-Fe3+), and for single-crystal X-ray diffraction (SCXRD) from 3.82 to 2.03% and 1.98%, respectively. For 3D ED, the most significant R1 reductions occurred in the low-resolution region (8.65-2.00 Å), dropping from 20.19% (IAM) to 14.67% and 14.89% for TAAM-ligand and TAAM-ligand-Fe(III), respectively, with less improvement in high-resolution ranges (2.00-0.85 Å). This indicates that the major enhancements are due to better scattering modelling in low-resolution zones. Furthermore, when using TAAM instead of IAM, there was a noticeable improvement in the shape of the thermal ellipsoids, which more closely resembled those of an SCXRD-refined model. This study demonstrates the applicability of more sophisticated scattering factors to improve the refinement of metal-organic complexes against 3D ED data, suggesting the need for more accurate modelling methods and highlighting the potential of TAAM in examining the charge distribution of large molecular structures using 3D ED.
Collapse
Affiliation(s)
- Laura Pacoste
- Department of Materials and Environmental ChemistryStockholm UniversityStockholmSweden
| | | | - Paulina Maria Dominiak
- Biological and Chemical Research Center, Faculty of ChemistryUniversity of WarsawWarsawPoland
| | - Xiaodong Zou
- Department of Materials and Environmental ChemistryStockholm UniversityStockholmSweden
| |
Collapse
|
3
|
Xu Y, Nam KH. Xylitol binding to the M1 site of glucose isomerase induces a conformational change in the substrate binding channel. Biochem Biophys Res Commun 2023; 682:21-26. [PMID: 37793321 DOI: 10.1016/j.bbrc.2023.09.087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/06/2023]
Abstract
Glucose isomerase (GI) is extensively used in the food industry for production of high-fructose corn syrup and for the production of biofuels and other renewable chemicals. Structure-based studies on GI inhibitors are important for improving its efficiency in industrial applications. Here, we report the subatomic crystal structure of Streptomyces rubiginosus GI (SruGI) complexed with its inhibitor, xylitol, at 0.99 Å resolution. Electron density map and temperature factor analysis showed partial binding of xylitol to the M1 metal binding site of SruGI, providing two different conformations of the metal binding site and the substrate binding channel. The xylitol molecule induced a conformational change in the M2 metal ion-interacting Asp255 residue, which subsequently led to a conformational change in the side chain of Asp181 residue. This led to the positional shift of Pro25 by 1.71 Å and side chain rotation of Phe26 by 21°, where located on the neighboring protomer in tetrameric SruGI. The conformation change of these two residues affect the size of the substrate-binding channel of GI. Therefore, xylitol binding to M1 site of SruGI induces not only a conformational changes of the metal-binding site, but also conformational change of substrate-binding channel of the tetrameric SruGI. These results expand our knowledge about the mechanism underlying the inhibitory effect of xylitol on GI.
Collapse
Affiliation(s)
- Yongbin Xu
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, 116600, China; Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, 116600, China
| | - Ki Hyun Nam
- College of General Education, Kookmin University, Seoul, 02707, South Korea.
| |
Collapse
|
4
|
Nessler AJ, Okada O, Hermon MJ, Nagata H, Schnieders MJ. Progressive alignment of crystals: reproducible and efficient assessment of crystal structure similarity. J Appl Crystallogr 2022; 55:1528-1537. [PMID: 36570662 PMCID: PMC9721330 DOI: 10.1107/s1600576722009670] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/02/2022] [Indexed: 11/22/2022] Open
Abstract
During in silico crystal structure prediction of organic molecules, millions of candidate structures are often generated. These candidates must be compared to remove duplicates prior to further analysis (e.g. optimization with electronic structure methods) and ultimately compared with structures determined experimentally. The agreement of predicted and experimental structures forms the basis of evaluating the results from the Cambridge Crystallographic Data Centre (CCDC) blind assessment of crystal structure prediction, which further motivates the pursuit of rigorous alignments. Evaluating crystal structure packings using coordinate root-mean-square deviation (RMSD) for N molecules (or N asymmetric units) in a reproducible manner requires metrics to describe the shape of the compared molecular clusters to account for alternative approaches used to prioritize selection of molecules. Described here is a flexible algorithm called Progressive Alignment of Crystals (PAC) to evaluate crystal packing similarity using coordinate RMSD and introducing the radius of gyration (R g) as a metric to quantify the shape of the superimposed clusters. It is shown that the absence of metrics to describe cluster shape adds ambiguity to the results of the CCDC blind assessments because it is not possible to determine whether the superposition algorithm has prioritized tightly packed molecular clusters (i.e. to minimize R g) or prioritized reduced RMSD (i.e. via possibly elongated clusters with relatively larger R g). For example, it is shown that when the PAC algorithm described here uses single linkage to prioritize molecules for inclusion in the superimposed clusters, the results are nearly identical to those calculated by the widely used program COMPACK. However, the lower R g values obtained by the use of average linkage are favored for molecule prioritization because the resulting RMSDs more equally reflect the importance of packing along each dimension. It is shown that the PAC algorithm is faster than COMPACK when using a single process and its utility for biomolecular crystals is demonstrated. Finally, parallel scaling up to 64 processes in the open-source code Force Field X is presented.
Collapse
Affiliation(s)
- Aaron J. Nessler
- Computational Biomolecular Engineering Laboratory, University of Iowa, Iowa City, Iowa, USA
| | - Okimasa Okada
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Japan
| | - Mitchell J. Hermon
- Computational Biomolecular Engineering Laboratory, University of Iowa, Iowa City, Iowa, USA
| | - Hiroomi Nagata
- CMC Modality Technology Laboratories, Production Technology and Supply Chain Management Division, Mitsubishi Tanabe Pharma Corporation, Japan
| | - Michael J. Schnieders
- Computational Biomolecular Engineering Laboratory, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
5
|
Mandal SK, Guillot B, Munshi P. Electron density based analysis of N–H⋯OC hydrogen bonds and electrostatic interaction energies in high-resolution secondary protein structures: insights from quantum crystallographic approaches. CrystEngComm 2020. [DOI: 10.1039/d0ce00577k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Limiting values of the topological parameters and the electrostatic interaction energies to establish the presence of true N–H⋯OC H-bonds in protein main-chain have been identified using quantitative and qualitative analyses of electron densities.
Collapse
Affiliation(s)
- Suman K. Mandal
- Chemical and Biological Crystallography Laboratory
- Department of Chemistry
- School of Natural Sciences
- Shiv Nadar University
- Dadri
| | - Benoît Guillot
- Laboratoire de Cristallographie
- Institut Jean Barriol
- Université de Lorraine
- Nancy 54000
- France
| | - Parthapratim Munshi
- Chemical and Biological Crystallography Laboratory
- Department of Chemistry
- School of Natural Sciences
- Shiv Nadar University
- Dadri
| |
Collapse
|
6
|
Fazaeli A, Golestani A, Lakzaei M, Rasi Varaei SS, Aminian M. Expression optimization, purification, and functional characterization of cholesterol oxidase from Chromobacterium sp. DS1. PLoS One 2019; 14:e0212217. [PMID: 30759160 PMCID: PMC6373949 DOI: 10.1371/journal.pone.0212217] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/29/2019] [Indexed: 12/17/2022] Open
Abstract
Cholesterol oxidase is a bifunctional bacterial flavoenzyme which catalyzes oxidation and isomerization of cholesterol. This valuable enzyme has attracted a great deal of attention because of its wide application in the clinical laboratory, synthesis of steroid derived drugs, food industries, and its potentially insecticidal activity. Therefore, development of an efficient protocol for overproduction of cholesterol oxidase could be valuable and beneficial in this regard. The present study examined the role of various parameters (host strain, culture media, induction time, isopropyl ß-D-1-thiogalactopyranoside concentration, as well as post-induction incubation time and temperature) on over-expression of cholesterol oxidase from Chromobacterium sp. DS1. Applying the optimized protocol, the yield of recombinant cholesterol oxidase significantly increased from 92 U/L to 2115 U/L. Under the optimized conditions, the enzyme was produced on a large-scale, and overexpressed cholesterol oxidase was purified from cell lysate by column nickel affinity chromatography. Km and Vmax values of the purified enzyme for cholesterol were estimated using Lineweaver-Burk plot. Further, the optimum pH and optimum temperature for the enzyme activity were determined. This study reports a straightforward protocol for cholesterol oxidase production which can be performed in any laboratory.
Collapse
Affiliation(s)
- Aliakbar Fazaeli
- Department of Clinical Biochemistry, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Abolfazl Golestani
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Ardabil, Iran
| | - Mostafa Lakzaei
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Ardabil, Iran
| | - Samaneh Sadat Rasi Varaei
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Ardabil, Iran
| | - Mahdi Aminian
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Ardabil, Iran
- Recombinant Vaccine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- * E-mail:
| |
Collapse
|
7
|
Ashkar R, Bilheux HZ, Bordallo H, Briber R, Callaway DJE, Cheng X, Chu XQ, Curtis JE, Dadmun M, Fenimore P, Fushman D, Gabel F, Gupta K, Herberle F, Heinrich F, Hong L, Katsaras J, Kelman Z, Kharlampieva E, Kneller GR, Kovalevsky A, Krueger S, Langan P, Lieberman R, Liu Y, Losche M, Lyman E, Mao Y, Marino J, Mattos C, Meilleur F, Moody P, Nickels JD, O'Dell WB, O'Neill H, Perez-Salas U, Peters J, Petridis L, Sokolov AP, Stanley C, Wagner N, Weinrich M, Weiss K, Wymore T, Zhang Y, Smith JC. Neutron scattering in the biological sciences: progress and prospects. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2018; 74:1129-1168. [PMID: 30605130 DOI: 10.1107/s2059798318017503] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/12/2018] [Indexed: 12/11/2022]
Abstract
The scattering of neutrons can be used to provide information on the structure and dynamics of biological systems on multiple length and time scales. Pursuant to a National Science Foundation-funded workshop in February 2018, recent developments in this field are reviewed here, as well as future prospects that can be expected given recent advances in sources, instrumentation and computational power and methods. Crystallography, solution scattering, dynamics, membranes, labeling and imaging are examined. For the extraction of maximum information, the incorporation of judicious specific deuterium labeling, the integration of several types of experiment, and interpretation using high-performance computer simulation models are often found to be particularly powerful.
Collapse
Affiliation(s)
- Rana Ashkar
- Department of Physics, Virginia Polytechnic Institute and State University, 850 West Campus Drive, Blacksburg, VA 24061, USA
| | - Hassina Z Bilheux
- Neutron Sciences Directorate, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | | | - Robert Briber
- Materials Science and Engineeering, University of Maryland, 1109 Chemical and Nuclear Engineering Building, College Park, MD 20742, USA
| | - David J E Callaway
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA
| | - Xiaolin Cheng
- Department of Medicinal Chemistry and Pharmacognosy, Ohio State University College of Pharmacy, 642 Riffe Building, Columbus, OH 43210, USA
| | - Xiang Qiang Chu
- Graduate School of China Academy of Engineering Physics, Beijing, 100193, People's Republic of China
| | - Joseph E Curtis
- NIST Center for Neutron Research, National Institutes of Standard and Technology, 100 Bureau Drive, Mail Stop 6102, Gaithersburg, MD 20899, USA
| | - Mark Dadmun
- Department of Chemistry, University of Tennessee Knoxville, Knoxville, TN 37996, USA
| | - Paul Fenimore
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - David Fushman
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD 20742, USA
| | - Frank Gabel
- Institut Laue-Langevin, Université Grenoble Alpes, CEA, CNRS, IBS, 38042 Grenoble, France
| | - Kushol Gupta
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Frederick Herberle
- Neutron Sciences Directorate, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Frank Heinrich
- NIST Center for Neutron Research, National Institutes of Standard and Technology, 100 Bureau Drive, Mail Stop 6102, Gaithersburg, MD 20899, USA
| | - Liang Hong
- Department of Physics and Astronomy, Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - John Katsaras
- Neutron Scattering Science Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Zvi Kelman
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and the University of Maryland, Rockville, MD 20850, USA
| | - Eugenia Kharlampieva
- Department of Chemistry, University of Alabama at Birmingham, 901 14th Street South, Birmingham, AL 35294, USA
| | - Gerald R Kneller
- Centre de Biophysique Moléculaire, CNRS, Université d'Orléans, Chateau de la Source, Avenue du Parc Floral, Orléans, France
| | - Andrey Kovalevsky
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Susan Krueger
- NIST Center for Neutron Research, National Institutes of Standard and Technology, 100 Bureau Drive, Mail Stop 6102, Gaithersburg, MD 20899, USA
| | - Paul Langan
- Neutron Sciences Directorate, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Raquel Lieberman
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Yun Liu
- NIST Center for Neutron Research, National Institutes of Standard and Technology, 100 Bureau Drive, Mail Stop 6102, Gaithersburg, MD 20899, USA
| | - Mathias Losche
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Edward Lyman
- Department of Physics and Astrophysics, University of Delaware, Newark, DE 19716, USA
| | - Yimin Mao
- NIST Center for Neutron Research, National Institutes of Standard and Technology, 100 Bureau Drive, Mail Stop 6102, Gaithersburg, MD 20899, USA
| | - John Marino
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and the University of Maryland, Rockville, MD 20850, USA
| | - Carla Mattos
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, USA
| | - Flora Meilleur
- Neutron Sciences Directorate, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Peter Moody
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 9HN, England
| | - Jonathan D Nickels
- Department of Physics, Virginia Polytechnic Institute and State University, 850 West Campus Drive, Blacksburg, VA 24061, USA
| | - William B O'Dell
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and the University of Maryland, Rockville, MD 20850, USA
| | - Hugh O'Neill
- Neutron Sciences Directorate, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Ursula Perez-Salas
- Neutron Sciences Directorate, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | | | - Loukas Petridis
- Materials Science and Engineeering, University of Maryland, 1109 Chemical and Nuclear Engineering Building, College Park, MD 20742, USA
| | - Alexei P Sokolov
- Department of Chemistry, University of Tennessee Knoxville, Knoxville, TN 37996, USA
| | - Christopher Stanley
- Neutron Sciences Directorate, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Norman Wagner
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA
| | - Michael Weinrich
- NIST Center for Neutron Research, National Institutes of Standard and Technology, 100 Bureau Drive, Mail Stop 6102, Gaithersburg, MD 20899, USA
| | - Kevin Weiss
- Neutron Sciences Directorate, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Troy Wymore
- Graduate School of China Academy of Engineering Physics, Beijing, 100193, People's Republic of China
| | - Yang Zhang
- NIST Center for Neutron Research, National Institutes of Standard and Technology, 100 Bureau Drive, Mail Stop 6102, Gaithersburg, MD 20899, USA
| | - Jeremy C Smith
- Department of Medicinal Chemistry and Pharmacognosy, Ohio State University College of Pharmacy, 642 Riffe Building, Columbus, OH 43210, USA
| |
Collapse
|
8
|
Gadbery JE, Sampson NS. Use of an Isotope-Coded Mass Tag (ICMT) Method To Determine the Orientation of Cholesterol Oxidase on Model Membranes. Biochemistry 2018; 57:5370-5378. [PMID: 30125103 PMCID: PMC6171977 DOI: 10.1021/acs.biochem.8b00788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Although the interfacial membrane protein cholesterol oxidase is structurally and kinetically well-characterized, its orientation in and mode of interaction with cholesterol-containing membranes have not been established. Cholesterol oxidase can alter the structure of the cell membrane in pathogenic bacteria and is thus a potential antimicrobial drug target. We recently developed a mass spectrometry-based isotope-coded mass tag (ICMT) labeling method to monitor the real-time solvent-accessible surface of peripheral membrane proteins, such as cholesterol oxidase. The ICMT strategy utilizes maleimide-based isotope tags that covalently react with cysteine residues. In this study, by comparing the ICMT labeling rates of cysteine variants of cholesterol oxidase, we determined which residues of the protein were engaged with the protein-lipid interface. We found that upon addition of cholesterol-containing lipid vesicles, four cysteine residues in a cluster near the substrate entrance channel are labeled more slowly with ICMT probes than in the absence of vesicles, indicating that these four residues were in contact with the membrane surface. From these data, we generated a model of how cholesterol oxidase is oriented when bound to the membrane. In conclusion, this straightforward method, which requires only microgram quantities of protein, offers several advantages over existing methods for the investigation of interfacial membrane proteins and can be applied to a number of different systems.
Collapse
Affiliation(s)
- John E Gadbery
- Biochemistry and Structural Biology Graduate Program , Stony Brook University , Stony Brook , New York 11794-5215 , United States
| | - Nicole S Sampson
- Biochemistry and Structural Biology Graduate Program , Stony Brook University , Stony Brook , New York 11794-5215 , United States.,Department of Chemistry , Stony Brook University , Stony Brook , New York 11794-3400 , United States
| |
Collapse
|
9
|
Hübschle CB, van Smaalen S. The electrostatic potential of dynamic charge densities. J Appl Crystallogr 2017; 50:1627-1636. [PMID: 29217990 PMCID: PMC5713142 DOI: 10.1107/s1600576717013802] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 09/25/2017] [Indexed: 11/10/2022] Open
Abstract
A procedure to derive the electrostatic potential (ESP) for dynamic charge densities obtained from structure models or maximum-entropy densities is introduced. The ESP essentially is obtained by inverse Fourier transform of the dynamic structure factors of the total charge density corresponding to the independent atom model, the multipole model or maximum-entropy densities, employing dedicated software that will be part of the BayMEM software package. Our approach is also discussed with respect to the Ewald summation method. It is argued that a meaningful ESP can only be obtained if identical thermal smearing is applied to the nuclear (positive) and electronic (negative) parts of the dynamic charge densities. The method is applied to structure models of dl-serine at three different temperatures of 20, 100 and 298 K. The ESP at locations near the atomic nuclei exhibits a drastic reduction with increasing temperature, the largest difference between the ESP from the static charge density and the ESP of the dynamic charge density being at T = 20 K. These features demonstrate that zero-point vibrations are sufficient for changing the spiky nature of the ESP at the nuclei into finite values. On 0.5 e Å-3 isosurfaces of the electron densities (taken as the molecular surface relevant to intermolecular interactions), the dynamic ESP is surprisingly similar at all temperatures, while the static ESP of a single molecule has a slightly larger range and is shifted towards positive potential values.
Collapse
Affiliation(s)
| | - Sander van Smaalen
- Laboratory of Crystallography, University of Bayreuth, 95440 Bayreuth, Germany
| |
Collapse
|
10
|
Woińska M, Jayatilaka D, Dittrich B, Flaig R, Luger P, Woźniak K, Dominiak PM, Grabowsky S. Validation of X-ray Wavefunction Refinement. Chemphyschem 2017; 18:3334-3351. [PMID: 29168318 DOI: 10.1002/cphc.201700810] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/22/2017] [Indexed: 11/10/2022]
Abstract
In this work, the quality of the electron density in crystals reconstructed by the multipolar model (MM) and by X-ray wavefunction refinement (XWR) is tested on a set of high-resolution X-ray diffraction data sets of four amino acids and six tripeptides. It results in the first thorough validation of XWR. Agreement statistics, figures of merit, residual- and deformation-density maps, as well as atomic displacement parameters are used to measure the quality of the reconstruction relative to the measured structure factors. Topological analysis of the reconstructed density is carried out to obtain atomic and bond-topological properties, which are subsequently compared to the values derived from benchmarking periodic DFT geometry optimizations. XWR is simultaneously in better agreement than the MM with both benchmarking theory and the measured diffraction pattern. In particular, the obvious problems with the description of polar bonds in the MM are significantly reduced by using XWR. Similarly, modeling of electron density in the vicinity of hydrogen atoms with XWR is visibly improved.
Collapse
Affiliation(s)
- Magdalena Woińska
- Biological and Chemical Research Centre, Chemistry Department, University of Warsaw, Zwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Dylan Jayatilaka
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Birger Dittrich
- Heinrich-Heine-Universität Düsseldorf, Anorganische Chemie und Strukturchemie, Gebäude 26.42.01.21, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Ralf Flaig
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxon, OX11 0DE, UK
| | - Peter Luger
- Freie Universität Berlin, Institut für Chemie und Biochemie, Fabeckstraße 36a, 14195, Berlin, Germany
| | - Krzysztof Woźniak
- Biological and Chemical Research Centre, Chemistry Department, University of Warsaw, Zwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Paulina M Dominiak
- Biological and Chemical Research Centre, Chemistry Department, University of Warsaw, Zwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Simon Grabowsky
- Institut für Anorganische Chemie und Kristallographie, Fachbereich 2-Biologie/Chemie, Universität Bremen, Leobener Straße NW2, 28359, Bremen, Germany
| |
Collapse
|
11
|
Nassour A, Domagala S, Guillot B, Leduc T, Lecomte C, Jelsch C. A theoretical-electron-density databank using a model of real and virtual spherical atoms. ACTA CRYSTALLOGRAPHICA SECTION B, STRUCTURAL SCIENCE, CRYSTAL ENGINEERING AND MATERIALS 2017; 73:610-625. [PMID: 28762971 DOI: 10.1107/s2052520617008204] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/02/2017] [Indexed: 06/07/2023]
Abstract
A database describing the electron density of common chemical groups using combinations of real and virtual spherical atoms is proposed, as an alternative to the multipolar atom modelling of the molecular charge density. Theoretical structure factors were computed from periodic density functional theory calculations on 38 crystal structures of small molecules and the charge density was subsequently refined using a density model based on real spherical atoms and additional dummy charges on the covalent bonds and on electron lone-pair sites. The electron-density parameters of real and dummy atoms present in a similar chemical environment were averaged on all the molecules studied to build a database of transferable spherical atoms. Compared with the now-popular databases of transferable multipolar parameters, the spherical charge modelling needs fewer parameters to describe the molecular electron density and can be more easily incorporated in molecular modelling software for the computation of electrostatic properties. The construction method of the database is described. In order to analyse to what extent this modelling method can be used to derive meaningful molecular properties, it has been applied to the urea molecule and to biotin/streptavidin, a protein/ligand complex.
Collapse
Affiliation(s)
- Ayoub Nassour
- Laboratoire de Cristallographie, Résonance Magnétique et Modélisations (CRM2), CNRS, UMR 7036, Institut Jean Barriol, Faculté des Sciences et Technologies, Université de Lorraine, BP 70239, 54506 Vandoeuvre-lès-Nancy Cedex, France
| | - Slawomir Domagala
- Department of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093 Warsaw, Poland
| | - Benoit Guillot
- Laboratoire de Cristallographie, Résonance Magnétique et Modélisations (CRM2), CNRS, UMR 7036, Institut Jean Barriol, Faculté des Sciences et Technologies, Université de Lorraine, BP 70239, 54506 Vandoeuvre-lès-Nancy Cedex, France
| | - Theo Leduc
- Laboratoire de Cristallographie, Résonance Magnétique et Modélisations (CRM2), CNRS, UMR 7036, Institut Jean Barriol, Faculté des Sciences et Technologies, Université de Lorraine, BP 70239, 54506 Vandoeuvre-lès-Nancy Cedex, France
| | - Claude Lecomte
- Laboratoire de Cristallographie, Résonance Magnétique et Modélisations (CRM2), CNRS, UMR 7036, Institut Jean Barriol, Faculté des Sciences et Technologies, Université de Lorraine, BP 70239, 54506 Vandoeuvre-lès-Nancy Cedex, France
| | - Christian Jelsch
- Laboratoire de Cristallographie, Résonance Magnétique et Modélisations (CRM2), CNRS, UMR 7036, Institut Jean Barriol, Faculté des Sciences et Technologies, Université de Lorraine, BP 70239, 54506 Vandoeuvre-lès-Nancy Cedex, France
| |
Collapse
|
12
|
|
13
|
On the Charge Density Refinement of Odd-Order Multipoles Invariant under Crystal Point Group Symmetry. Symmetry (Basel) 2017. [DOI: 10.3390/sym9050063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
14
|
Takaba K, Takeda K, Kosugi M, Tamada T, Miki K. Distribution of valence electrons of the flavin cofactor in NADH-cytochrome b 5 reductase. Sci Rep 2017; 7:43162. [PMID: 28225078 PMCID: PMC5320556 DOI: 10.1038/srep43162] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 01/11/2017] [Indexed: 12/03/2022] Open
Abstract
Flavin compounds such as flavin adenine dinucleotide (FAD), flavin mononucleotide and riboflavin make up the active centers in flavoproteins that facilitate various oxidoreductive processes. The fine structural features of the hydrogens and valence electrons of the flavin molecules in the protein environment are critical to the functions of the flavoproteins. However, information on these features cannot be obtained from conventional protein X-ray analyses at ordinary resolution. Here we report the charge density analysis of a flavoenzyme, NADH-cytochrome b5 reductase (b5R), at an ultra-high resolution of 0.78 Å. Valence electrons on the FAD cofactor as well as the peptide portion, which are clearly visualized even after the conventional refinement, are analyzed by the multipolar atomic model refinement. The topological analysis for the determined electron density reveals the valence electronic structure of the isoalloxazine ring of FAD and hydrogen-bonding interactions with the protein environment. The tetrahedral electronic distribution around the N5 atom of FAD in b5R is stabilized by hydrogen bonding with CαH of Tyr65 and amide-H of Thr66. The hydrogen bonding network leads to His49 composing the cytochrome b5-binding site via non-classical hydrogen bonds between N5 of FAD and CαH of Tyr65 and O of Tyr65 and CβH of His49.
Collapse
Affiliation(s)
- Kiyofumi Takaba
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kazuki Takeda
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Masayuki Kosugi
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Taro Tamada
- Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, Tokai-mura, Ibaraki 319-1106, Japan
| | - Kunio Miki
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
15
|
O'Dell WB, Bodenheimer AM, Meilleur F. Neutron protein crystallography: A complementary tool for locating hydrogens in proteins. Arch Biochem Biophys 2016; 602:48-60. [DOI: 10.1016/j.abb.2015.11.033] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/12/2015] [Accepted: 11/16/2015] [Indexed: 10/22/2022]
|
16
|
Malinska M, Dauter Z. Transferable aspherical atom model refinement of protein and DNA structures against ultrahigh-resolution X-ray data. Acta Crystallogr D Struct Biol 2016; 72:770-9. [PMID: 27303797 PMCID: PMC4908868 DOI: 10.1107/s2059798316006355] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 04/14/2016] [Indexed: 11/10/2022] Open
Abstract
In contrast to the independent-atom model (IAM), in which all atoms are assumed to be spherical and neutral, the transferable aspherical atom model (TAAM) takes into account the deformed valence charge density resulting from chemical bond formation and the presence of lone electron pairs. Both models can be used to refine small and large molecules, e.g. proteins and nucleic acids, against ultrahigh-resolution X-ray diffraction data. The University at Buffalo theoretical databank of aspherical pseudo-atoms has been used in the refinement of an oligopeptide, of Z-DNA hexamer and dodecamer duplexes, and of bovine trypsin. The application of the TAAM to these data improves the quality of the electron-density maps and the visibility of H atoms. It also lowers the conventional R factors and improves the atomic displacement parameters and the results of the Hirshfeld rigid-bond test. An additional advantage is that the transferred charge density allows the estimation of Coulombic interaction energy and electrostatic potential.
Collapse
Affiliation(s)
- Maura Malinska
- Synchrotron Radiation Research Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Argonne National Laboratory, Argonne, IL 60439, USA
- Faculty of Chemistry, University of Warsaw, 02-093 Warsaw, Poland
| | - Zbigniew Dauter
- Synchrotron Radiation Research Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Argonne National Laboratory, Argonne, IL 60439, USA
| |
Collapse
|
17
|
Charge-density analysis of an iron-sulfur protein at an ultra-high resolution of 0.48 Å. Nature 2016; 534:281-4. [PMID: 27279229 DOI: 10.1038/nature18001] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 04/12/2016] [Indexed: 11/08/2022]
Abstract
The fine structures of proteins, such as the positions of hydrogen atoms, distributions of valence electrons and orientations of bound waters, are critical factors for determining the dynamic and chemical properties of proteins. Such information cannot be obtained by conventional protein X-ray analyses at 3.0-1.5 Å resolution, in which amino acids are fitted into atomically unresolved electron-density maps and refinement calculations are performed under strong restraints. Therefore, we usually supplement the information on hydrogen atoms and valence electrons in proteins with pre-existing common knowledge obtained by chemistry in small molecules. However, even now, computational calculation of such information with quantum chemistry also tends to be difficult, especially for polynuclear metalloproteins. Here we report a charge-density analysis of the high-potential iron-sulfur protein from the thermophilic purple bacterium Thermochromatium tepidum using X-ray data at an ultra-high resolution of 0.48 Å. Residual electron densities in the conventional refinement are assigned as valence electrons in the multipolar refinement. Iron 3d and sulfur 3p electron densities of the Fe4S4 cluster are visualized around the atoms. Such information provides the most detailed view of the valence electrons of the metal complex in the protein. The asymmetry of the iron-sulfur cluster and the protein environment suggests the structural basis of charge storing on electron transfer. Our charge-density analysis reveals many fine features around the metal complex for the first time, and will enable further theoretical and experimental studies of metalloproteins.
Collapse
|
18
|
Blakeley MP, Hasnain SS, Antonyuk SV. Sub-atomic resolution X-ray crystallography and neutron crystallography: promise, challenges and potential. IUCRJ 2015; 2:464-74. [PMID: 26175905 PMCID: PMC4491318 DOI: 10.1107/s2052252515011239] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 06/09/2015] [Indexed: 05/20/2023]
Abstract
The International Year of Crystallography saw the number of macromolecular structures deposited in the Protein Data Bank cross the 100000 mark, with more than 90000 of these provided by X-ray crystallography. The number of X-ray structures determined to sub-atomic resolution (i.e. ≤1 Å) has passed 600 and this is likely to continue to grow rapidly with diffraction-limited synchrotron radiation sources such as MAX-IV (Sweden) and Sirius (Brazil) under construction. A dozen X-ray structures have been deposited to ultra-high resolution (i.e. ≤0.7 Å), for which precise electron density can be exploited to obtain charge density and provide information on the bonding character of catalytic or electron transfer sites. Although the development of neutron macromolecular crystallography over the years has been far less pronounced, and its application much less widespread, the availability of new and improved instrumentation, combined with dedicated deuteration facilities, are beginning to transform the field. Of the 83 macromolecular structures deposited with neutron diffraction data, more than half (49/83, 59%) were released since 2010. Sub-mm(3) crystals are now regularly being used for data collection, structures have been determined to atomic resolution for a few small proteins, and much larger unit-cell systems (cell edges >100 Å) are being successfully studied. While some details relating to H-atom positions are tractable with X-ray crystallography at sub-atomic resolution, the mobility of certain H atoms precludes them from being located. In addition, highly polarized H atoms and protons (H(+)) remain invisible with X-rays. Moreover, the majority of X-ray structures are determined from cryo-cooled crystals at 100 K, and, although radiation damage can be strongly controlled, especially since the advent of shutterless fast detectors, and by using limited doses and crystal translation at micro-focus beams, radiation damage can still take place. Neutron crystallography therefore remains the only approach where diffraction data can be collected at room temperature without radiation damage issues and the only approach to locate mobile or highly polarized H atoms and protons. Here a review of the current status of sub-atomic X-ray and neutron macromolecular crystallography is given and future prospects for combined approaches are outlined. New results from two metalloproteins, copper nitrite reductase and cytochrome c', are also included, which illustrate the type of information that can be obtained from sub-atomic-resolution (∼0.8 Å) X-ray structures, while also highlighting the need for complementary neutron studies that can provide details of H atoms not provided by X-ray crystallography.
Collapse
Affiliation(s)
- Matthew P. Blakeley
- Large-Scale Structures Group, Institut Laue-Langevin, 71 Avenue des Martyrs, Grenoble 38000, France
| | - Samar S. Hasnain
- Molecular Biophysics Group, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZX, UK
| | - Svetlana V. Antonyuk
- Molecular Biophysics Group, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZX, UK
| |
Collapse
|