1
|
Chodkiewicz M, Woźniak K. Towards improved accuracy of Hirshfeld atom refinement with an alternative electron density partition. IUCRJ 2025; 12:74-87. [PMID: 39699305 PMCID: PMC11707693 DOI: 10.1107/s2052252524011242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 11/19/2024] [Indexed: 12/20/2024]
Abstract
Hirshfeld atom refinement (HAR) is generally the chosen method for obtaining accurate hydrogen atom parameters from X-ray diffraction data. Still, determination can prove challenging, especially in the case of atomic displacement parameters (ADPs). We demonstrate that such a situation can occur when the ADP values of the bonding partner of the hydrogen atom are not determined accurately. Atomic electron densities partially overlap and inaccuracies in the bonding neighbour ADPs can be partially compensated for with modifications to the hydrogen ADPs. We introduce a modified version of the original Hirshfeld partition: the exponential Hirshfeld partition, parameterized with an adjustable parameter (n) to allow control of the overlap level of the atomic electron densities which, for n = 1, is equivalent to the Hirshfeld partition. The accuracy of the HAR-like procedure using the new partition (expHAR) was tested on a set of organic structures using B3LYP and MP2 electron densities. Applying expHAR improved the hydrogen atom parameters in the majority of the structures (compared with HAR), especially in cases with the highest deviations from the reference neutron values. X-H bond lengths and hydrogen ADPs improved for 9/10 of the structures for B3LYP-based refinement and 8/9 for MP2-based refinement when the ADPs were compared with a newly introduced scale-independent similarity measure.
Collapse
Affiliation(s)
- Michał Chodkiewicz
- Biological and Chemical Research Centre, Department of ChemistryUniversity of WarsawŻwirki i Wigury 101Warszawa02-089Poland
| | - Krzysztof Woźniak
- Biological and Chemical Research Centre, Department of ChemistryUniversity of WarsawŻwirki i Wigury 101Warszawa02-089Poland
| |
Collapse
|
2
|
Jha KK, Gruza B, Kumar P, Chodkiewicz ML, Dominiak PM. TAAM: a reliable and user friendly tool for hydrogen-atom location using routine X-ray diffraction data. ACTA CRYSTALLOGRAPHICA SECTION B, STRUCTURAL SCIENCE, CRYSTAL ENGINEERING AND MATERIALS 2020; 76:296-306. [PMID: 32831250 DOI: 10.1107/s2052520620002917] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/02/2020] [Indexed: 06/11/2023]
Abstract
Hydrogen is present in almost all of the molecules in living things. It is very reactive and forms bonds with most of the elements, terminating their valences and enhancing their chemistry. X-ray diffraction is the most common method for structure determination. It depends on scattering of X-rays from electron density, which means the single electron of hydrogen is difficult to detect. Generally, neutron diffraction data are used to determine the accurate position of hydrogen atoms. However, the requirement for good quality single crystals, costly maintenance and the limited number of neutron diffraction facilities means that these kind of results are rarely available. Here it is shown that the use of Transferable Aspherical Atom Model (TAAM) instead of Independent Atom Model (IAM) in routine structure refinement with X-ray data is another possible solution which largely improves the precision and accuracy of X-H bond lengths and makes them comparable to averaged neutron bond lengths. TAAM, built from a pseudoatom databank, was used to determine the X-H bond lengths on 75 data sets for organic molecule crystals. TAAM parametrizations available in the modified University of Buffalo Databank (UBDB) of pseudoatoms applied through the DiSCaMB software library were used. The averaged bond lengths determined by TAAM refinements with X-ray diffraction data of atomic resolution (dmin ≤ 0.83 Å) showed very good agreement with neutron data, mostly within one single sample standard deviation, much like Hirshfeld atom refinement (HAR). Atomic displacements for both hydrogen and non-hydrogen atoms obtained from the refinements systematically differed from IAM results. Overall TAAM gave better fits to experimental data of standard resolution compared to IAM. The research was accompanied with development of software aimed at providing user-friendly tools to use aspherical atom models in refinement of organic molecules at speeds comparable to routine refinements based on spherical atom model.
Collapse
Affiliation(s)
- Kunal Kumar Jha
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, ul. Żwirki i Wigury 101, Warszawa, 02-089, Poland
| | - Barbara Gruza
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, ul. Żwirki i Wigury 101, Warszawa, 02-089, Poland
| | - Prashant Kumar
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, ul. Żwirki i Wigury 101, Warszawa, 02-089, Poland
| | - Michal Leszek Chodkiewicz
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, ul. Żwirki i Wigury 101, Warszawa, 02-089, Poland
| | - Paulina Maria Dominiak
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, ul. Żwirki i Wigury 101, Warszawa, 02-089, Poland
| |
Collapse
|
3
|
Grabowsky S, Genoni A, Thomas SP, Jayatilaka D. The Advent of Quantum Crystallography: Form and Structure Factors from Quantum Mechanics for Advanced Structure Refinement and Wavefunction Fitting. 21ST CENTURY CHALLENGES IN CHEMICAL CRYSTALLOGRAPHY II 2020. [DOI: 10.1007/430_2020_62] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
4
|
Korlyukov AA, Nelyubina YV. Quantum chemical methods in charge density studies from X-ray diffraction data. RUSSIAN CHEMICAL REVIEWS 2019. [DOI: 10.1070/rcr4866] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
5
|
Köhler C, Lübben J, Krause L, Hoffmann C, Herbst-Irmer R, Stalke D. Comparison of different strategies for modelling hydrogen atoms in charge density analyses. ACTA CRYSTALLOGRAPHICA SECTION B, STRUCTURAL SCIENCE, CRYSTAL ENGINEERING AND MATERIALS 2019; 75:434-441. [PMID: 32830665 DOI: 10.1107/s2052520619004517] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/03/2019] [Indexed: 06/11/2023]
Abstract
The quality of various approximation methods for modelling anisotropic displacement parameters (ADPs) for hydrogen atoms was investigated in a comparative study. A multipole refinement was performed against high-resolution single crystal X-ray data of 9-diphenylthiophosphoranylanthracene (SPAnH) and 9,10-bis-diphenylthiophosphoranylanthracene·toluene (SPAnPS). Hydrogen-atom parameters and structural properties derived from our collected neutron data sets were compared with those obtained from the SHADE-server, the software APD-Toolkit based on the invariom database, the results from Hirshfeld atom refinement conducted in the OLEX2 GUI (HARt), and the results of anisotropic hydrogen refinement within XD2016. Additionally, a free refinement of H-atom positions against X-ray data was performed with fixed ADPs from various methods. The resulting C-H bond distances were compared with distances from neutron diffraction experiments and the HARt results. Surprisingly, the refinement of anisotropic hydrogen displacement parameters against the X-ray data yielded the smallest deviations from the neutron values. However, the refinement of bond-directed quadrupole parameters turned out to be vital for the quality of the resulting ADPs. In both model structures, SHADE and, to a lesser extent, APD-Toolkit showed problems in dealing with atoms bonded to carbon atoms with refined Gram-Charlier parameters for anharmonic motion. The HARt method yields the most accurate C-H bond distances compared to neutron data results. Unconstrained refinement of hydrogen atom positions using ADPs derived from all other used approximation methods showed that even with well approximated hydrogen ADPs, the resulting distances were still significantly underestimated.
Collapse
Affiliation(s)
- Christian Köhler
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany
| | - Jens Lübben
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany
| | - Lennard Krause
- Department of Chemistry, Aarhus University, Langelandsgade 140, Aarhus, 8000, Denmark
| | - Christina Hoffmann
- Neutron Sciences Directorate, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN 37831, USA
| | - Regine Herbst-Irmer
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany
| | - Dietmar Stalke
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany
| |
Collapse
|
6
|
Herbst-Irmer R, Stalke D. Experimental charge-density studies: data reduction and model quality: the more the better? ACTA CRYSTALLOGRAPHICA SECTION B, STRUCTURAL SCIENCE, CRYSTAL ENGINEERING AND MATERIALS 2017; 73:531-543. [PMID: 28762965 DOI: 10.1107/s2052520617007016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/10/2017] [Indexed: 06/07/2023]
Abstract
In this review, recent developments concerning data and model quality in experimental charge-density investigations from a personal view-point are described. Data quality is not only achieved by the high resolution, high I/σ(I) values, low merging R values and high multiplicity. The quality of the innermost reflections especially is crucial for mapping the density distribution of the outermost valence electrons and can be monitored by (I/σ)asymptotic. New detector technologies seem to be promising improvements. Empirical corrections to correct for low-energy contamination of mirror-focused X-ray data and for resolution- and temperature-dependent errors caused by factors such as thermal diffuse scattering are described. Shashlik-like residual density patterns can indicate the need for an anharmonic description of the thermal motion of individual atoms. The physical reliability of the derived model must be thoroughly analysed. The derived probability density functions for the mean-squared atomic vibrational displacements especially should have only small negative values. The treatment of H atoms has been improved by methods to estimate anisotropic thermal motion. For very high resolution data, the polarization of the core density cannot be neglected. Several tools to detect systematic errors are described. A validation tool is presented that easily detects when the refinement of additional parameters yields a real improvement in the model or simply overfits the given data. In all investigated structures, it is proved that the multipole parameters of atoms with a comparable chemical environment should be constrained to be identical. The use of restraints could be a promising alternative.
Collapse
Affiliation(s)
- Regine Herbst-Irmer
- Institut für Anorganische Chemie, Georg-August Universität, Tammannstr. 4, 37077 Göttingen, Germany
| | - Dietmar Stalke
- Institut für Anorganische Chemie, Georg-August Universität, Tammannstr. 4, 37077 Göttingen, Germany
| |
Collapse
|
7
|
Dittrich B, Lübben J, Mebs S, Wagner A, Luger P, Flaig R. Accurate Bond Lengths to Hydrogen Atoms from Single-Crystal X-ray Diffraction by Including Estimated Hydrogen ADPs and Comparison to Neutron and QM/MM Benchmarks. Chemistry 2017; 23:4605-4614. [PMID: 28295691 PMCID: PMC5434951 DOI: 10.1002/chem.201604705] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/21/2016] [Indexed: 11/21/2022]
Abstract
Amino acid structures are an ideal test set for method-development studies in crystallography. High-resolution X-ray diffraction data for eight previously studied genetically encoding amino acids are provided, complemented by a non-standard amino acid. Structures were re-investigated to study a widely applicable treatment that permits accurate X-H bond lengths to hydrogen atoms to be obtained: this treatment combines refinement of positional hydrogen-atom parameters with aspherical scattering factors with constrained "TLS+INV" estimated hydrogen anisotropic displacement parameters (H-ADPs). Tabulated invariom scattering factors allow rapid modeling without further computations, and unconstrained Hirshfeld atom refinement provides a computationally demanding alternative when database entries are missing. Both should incorporate estimated H-ADPs, as free refinement frequently leads to over-parameterization and non-positive definite H-ADPs irrespective of the aspherical scattering model used. Using estimated H-ADPs, both methods yield accurate and precise X-H distances in best quantitative agreement with neutron diffraction data (available for five of the test-set molecules). This work thus solves the last remaining problem to obtain such results more frequently. Density functional theoretical QM/MM computations are able to play the role of an alternative benchmark to neutron diffraction.
Collapse
Affiliation(s)
- Birger Dittrich
- Heinrich-Heine Universität DüsseldorfInstitut für Anorganische Chemie und Strukturchemie, Material- und Strukturforschung, Gebäude: 26.42Universitätsstraße 140225DüsseldorfGermany
| | - Jens Lübben
- Heinrich-Heine Universität DüsseldorfInstitut für Anorganische Chemie und Strukturchemie, Material- und Strukturforschung, Gebäude: 26.42Universitätsstraße 140225DüsseldorfGermany
| | - Stefan Mebs
- Institut für Chemie und Biochemie–Anorganische Chemie derFreien Universität Berlin14195BerlinGermany
| | - Armin Wagner
- Diamond Light SourceHarwell Science and Innovation CampusDidcotOX11 0DEUK
| | - Peter Luger
- Institut für Chemie und Biochemie–Anorganische Chemie derFreien Universität Berlin14195BerlinGermany
| | - Ralf Flaig
- Diamond Light SourceHarwell Science and Innovation CampusDidcotOX11 0DEUK
| |
Collapse
|
8
|
Dittrich B, Schürmann C, Hübschle CB. Invariom modeling of disordered structures: case studies on a dipeptide, an amino acid, and cefaclor, a cephalosporin antibiotic. Z KRIST-CRYST MATER 2016. [DOI: 10.1515/zkri-2016-1955] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Routines to facilitate the treatment of disorder in invariom modeling have been implemented in the open-source program MolecoolQt, a visualization program for charge-density work, and InvariomTool, a pre-processor program. Two published structures of an amino acid and a dipeptide and the new structure of cefaclor, a cephalosporin antibiotic, provide examples with increasing amounts of disorder, which can now be successfully modeled with invarioms. Like for ordered structures, these non-spherical scattering factors predicted by density functional theory significantly improve the structural model (figures of merit and standard deviations) also in these cases. Furthermore, they allow rapid calculation and comparison of the electrostatic potential and the molecular dipole moment for the different conformers present in the crystal structures.
Collapse
Affiliation(s)
- Birger Dittrich
- Heinrich-Heine Universität Düsseldorf, Anorganische Chemie und Strukturchemie, Material- und Strukturforschung, Universitätsstraße, 1, D-40225 Düsseldorf, Germany , Tel.: +49-211-8113147
| | - Christian Schürmann
- Institut für Anorganische Chemie der Universität Göttingen, Tammannstr., 4, D-37077 Göttingen, Germany
| | - Christian B. Hübschle
- University of Bayreuth, Lehrstuhl für Kristallographie, Universitätsstraße 30, D-95440 Bayreuth, Germany
| |
Collapse
|
9
|
Wandtke CM, Lübben J, Dittrich B. Molecular Electrostatic Potentials from Invariom Point Charges. Chemphyschem 2016; 17:2238-46. [DOI: 10.1002/cphc.201600213] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Claudia M. Wandtke
- Institut für Anorganische Chemie; Georg-August-Universität; Tammannstr. 4 37077 Göttingen Germany
| | - Jens Lübben
- Anorganische Chemie und Strukturchemie; Heinrich-Heine Universität Düsseldorf; Universitätsstraße 1, Gebäude 26.42.01.21 40225 Düsseldorf Germany
- Institut für Anorganische Chemie; Georg-August-Universität; Tammannstr. 4 37077 Göttingen Germany
| | - Birger Dittrich
- Anorganische Chemie und Strukturchemie; Heinrich-Heine Universität Düsseldorf; Universitätsstraße 1, Gebäude 26.42.01.21 40225 Düsseldorf Germany
| |
Collapse
|