1
|
Razmus WO, Prlj A, Seifert NA, Bonanomi M, Callegari C, Danailov M, Decleva P, Demidovich A, De Ninno G, Devetta M, Faccialà D, Feifel R, Giannessi L, Piteša T, Powis I, Raimondi L, Reid KL, Ribič PR, Spezzani C, Squibb RJ, Thompson JOF, Plekan O, Vozzi C, Warne EM, Zangrando M, Prince KC, Di Fraia M, Holland DMP, Minns RS, Došlić N, Pratt ST. Time-resolved vacuum-ultraviolet photoelectron spectroscopy of the Ã1Au state of acetylene. J Chem Phys 2025; 162:054310. [PMID: 39907137 DOI: 10.1063/5.0241392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/09/2025] [Indexed: 02/06/2025] Open
Abstract
Ultrafast time-resolved photoelectron spectra are reported for the vacuum-ultraviolet (VUV) photoionization of acetylene following excitation to the Ã1Au state via UV absorption at 200 nm. The excitation energy lies above the lowest dissociation threshold to C2H X̃2Σ+ + H, as well as above the threshold for adiabatic dissociation of the Ã1Au state to form C2H (Ã2Π) + H. The time-dependent mass spectra and photoelectron spectra provide insight into the intramolecular decay processes of the Ã1Au state. In addition, photoelectron spectra of the Ã1Au state with VUV light access both the X̃2Πu and Ã2Σg+ states of the ion, as well as the predicted, but previously unobserved, 1 2Πg state, which corresponds to a two-hole, one-particle configuration that lies in close proximity to the Ã2Σg+ state. The 1 2Πg state is split into 2A2 + 2B2 and 2Ag + 2Bg states in the cis and trans configurations, respectively. Electronic structure calculations, along with trajectory calculations, reproduce the principal features of the experimental data and confirm the assignment of the 1 2Πg state.
Collapse
Affiliation(s)
- Weronika O Razmus
- University of Southampton, Chemistry Department, Southampton SO17 1BJ, Hants, England
| | - Antonio Prlj
- Ruđer Bošković Institute, Department of Physical Chemistry, Bijenička 54, 10000 Zagreb, Croatia
| | - Nathan A Seifert
- University of New Haven, Department of Chemistry and Chemical and Biomedical Engineering, 300 Boston Post Rd., West Haven, Connecticut 06516, USA
| | - Matteo Bonanomi
- Departimento di Fisica, Politechnico di Milano, I-20133 Milan, Italy
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Fotonica e Nanotecnologie, I-20133 Milan, Italy
| | | | | | - Piero Decleva
- University of Trieste, CNR IOM, Via Giorgieri 1, I-34127 Trieste, Italy
| | | | - Giovanni De Ninno
- Elettra Sincrotrone Trieste, I-34149 Trieste, Italy
- University of Nova Gorica, Vipavska 13, SI-5000 Nova Gorica, Slovenia
| | - Michele Devetta
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Fotonica e Nanotecnologie, I-20133 Milan, Italy
| | - Davide Faccialà
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Fotonica e Nanotecnologie, I-20133 Milan, Italy
| | - Raimund Feifel
- University of Gothenburg, Origovägen 6B, 41258 Gothenburg, Sweden
| | - Luca Giannessi
- University of Southampton, Chemistry Department, Southampton SO17 1BJ, Hants, England
- Elettra Sincrotrone Trieste, I-34149 Trieste, Italy
- INFN Laboratori Nazionali di Frascati, Via E. Fermi 54, 00044 Frascati, Roma, Italy
| | - Tomislav Piteša
- Ruđer Bošković Institute, Department of Physical Chemistry, Bijenička 54, 10000 Zagreb, Croatia
| | - Ivan Powis
- Department of Chemistry, University of Nottingham, Nottingham NG7 2RD, England
| | | | - Katharine L Reid
- Department of Chemistry, University of Nottingham, Nottingham NG7 2RD, England
| | - Primož Rebernik Ribič
- Elettra Sincrotrone Trieste, I-34149 Trieste, Italy
- University of Nova Gorica, Vipavska 13, SI-5000 Nova Gorica, Slovenia
| | | | - Richard J Squibb
- University of Gothenburg, Origovägen 6B, 41258 Gothenburg, Sweden
| | - James O F Thompson
- Department of Chemistry, University of Nottingham, Nottingham NG7 2RD, England
| | | | - Caterina Vozzi
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Fotonica e Nanotecnologie, I-20133 Milan, Italy
| | - Emily M Warne
- University of Southampton, Chemistry Department, Southampton SO17 1BJ, Hants, England
| | - Marco Zangrando
- University of Southampton, Chemistry Department, Southampton SO17 1BJ, Hants, England
- Elettra Sincrotrone Trieste, I-34149 Trieste, Italy
| | - Kevin C Prince
- University of Southampton, Chemistry Department, Southampton SO17 1BJ, Hants, England
- Elettra Sincrotrone Trieste, I-34149 Trieste, Italy
| | | | - David M P Holland
- STFC, Daresbury Laboratory, Daresbury, Warrington, Cheshire WA4 4AD, United Kingdom
| | - Russell S Minns
- University of Southampton, Chemistry Department, Southampton SO17 1BJ, Hants, England
| | - Nađa Došlić
- Ruđer Bošković Institute, Department of Physical Chemistry, Bijenička 54, 10000 Zagreb, Croatia
| | - Stephen T Pratt
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| |
Collapse
|
2
|
Nandi S, Stenquist A, Papoulia A, Olofsson E, Badano L, Bertolino M, Busto D, Callegari C, Carlström S, Danailov MB, Demekhin PV, Di Fraia M, Eng-Johnsson P, Feifel R, Gallician G, Giannessi L, Gisselbrecht M, Manfredda M, Meyer M, Miron C, Peschel J, Plekan O, Prince KC, Squibb RJ, Zangrando M, Zapata F, Zhong S, Dahlström JM. Generation of entanglement using a short-wavelength seeded free-electron laser. SCIENCE ADVANCES 2024; 10:eado0668. [PMID: 38630815 PMCID: PMC11023495 DOI: 10.1126/sciadv.ado0668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/14/2024] [Indexed: 04/19/2024]
Abstract
Quantum entanglement between the degrees of freedom encountered in the classical world is challenging to observe due to the surrounding environment. To elucidate this issue, we investigate the entanglement generated over ultrafast timescales in a bipartite quantum system comprising two massive particles: a free-moving photoelectron, which expands to a mesoscopic length scale, and a light-dressed atomic ion, which represents a hybrid state of light and matter. Although the photoelectron spectra are measured classically, the entanglement allows us to reveal information about the dressed-state dynamics of the ion and the femtosecond extreme ultraviolet pulses delivered by a seeded free-electron laser. The observed generation of entanglement is interpreted using the time-dependent von Neumann entropy. Our results unveil the potential for using short-wavelength coherent light pulses from free-electron lasers to generate entangled photoelectron and ion systems for studying spooky action at a distance.
Collapse
Affiliation(s)
- Saikat Nandi
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, 69622, Villeurbanne, France
| | - Axel Stenquist
- Department of Physics, Lund University, 22100 Lund, Sweden
| | | | - Edvin Olofsson
- Department of Physics, Lund University, 22100 Lund, Sweden
| | - Laura Badano
- Elettra-Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy
| | | | - David Busto
- Department of Physics, Lund University, 22100 Lund, Sweden
| | - Carlo Callegari
- Elettra-Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy
| | | | | | - Philipp V. Demekhin
- Institute of Physics and CINSaT, University of Kassel, 34132 Kassel, Germany
| | | | | | - Raimund Feifel
- Department of Physics, University of Gothenburg, 41258 Gothenburg, Sweden
| | | | - Luca Giannessi
- Elettra-Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy
- INFN, Laboratori Nazionali di Frascati, 00044 Frascati, Italy
| | | | | | | | - Catalin Miron
- Université Paris-Saclay, CEA, CNRS, LIDYL, 91191 Gif-sur-Yvette, France
- ELI-NP, “Horia Hulubei” National Institute for Physics and Nuclear Engineering, 077125 Mǎgurele, Romania
| | - Jasper Peschel
- Department of Physics, Lund University, 22100 Lund, Sweden
| | - Oksana Plekan
- Elettra-Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy
| | - Kevin C. Prince
- Elettra-Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy
| | - Richard J. Squibb
- Department of Physics, University of Gothenburg, 41258 Gothenburg, Sweden
| | - Marco Zangrando
- Elettra-Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy
- IOM-CNR, Istituto Officina dei Materiali, 34149 Basovizza, Trieste, Italy
| | - Felipe Zapata
- Department of Physics, Lund University, 22100 Lund, Sweden
| | - Shiyang Zhong
- Department of Physics, Lund University, 22100 Lund, Sweden
| | | |
Collapse
|
3
|
Borne KD, Cooper JC, Ashfold MNR, Bachmann J, Bhattacharyya S, Boll R, Bonanomi M, Bosch M, Callegari C, Centurion M, Coreno M, Curchod BFE, Danailov MB, Demidovich A, Di Fraia M, Erk B, Faccialà D, Feifel R, Forbes RJG, Hansen CS, Holland DMP, Ingle RA, Lindh R, Ma L, McGhee HG, Muvva SB, Nunes JPF, Odate A, Pathak S, Plekan O, Prince KC, Rebernik P, Rouzée A, Rudenko A, Simoncig A, Squibb RJ, Venkatachalam AS, Vozzi C, Weber PM, Kirrander A, Rolles D. Ultrafast electronic relaxation pathways of the molecular photoswitch quadricyclane. Nat Chem 2024; 16:499-505. [PMID: 38307994 PMCID: PMC10997510 DOI: 10.1038/s41557-023-01420-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 12/11/2023] [Indexed: 02/04/2024]
Abstract
The light-induced ultrafast switching between molecular isomers norbornadiene and quadricyclane can reversibly store and release a substantial amount of chemical energy. Prior work observed signatures of ultrafast molecular dynamics in both isomers upon ultraviolet excitation but could not follow the electronic relaxation all the way back to the ground state experimentally. Here we study the electronic relaxation of quadricyclane after exciting in the ultraviolet (201 nanometres) using time-resolved gas-phase extreme ultraviolet photoelectron spectroscopy combined with non-adiabatic molecular dynamics simulations. We identify two competing pathways by which electronically excited quadricyclane molecules relax to the electronic ground state. The fast pathway (<100 femtoseconds) is distinguished by effective coupling to valence electronic states, while the slow pathway involves initial motions across Rydberg states and takes several hundred femtoseconds. Both pathways facilitate interconversion between the two isomers, albeit on different timescales, and we predict that the branching ratio of norbornadiene/quadricyclane products immediately after returning to the electronic ground state is approximately 3:2.
Collapse
Affiliation(s)
- Kurtis D Borne
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS, USA
| | - Joseph C Cooper
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | | | - Julien Bachmann
- Chemistry of Thin Film Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Surjendu Bhattacharyya
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS, USA
| | | | - Matteo Bonanomi
- Istituto di Fotonica e Nanotecnologie (CNR-IFN), CNR, Milano, Italy
- Dipartimento di Fisica, Politecnico di Milano, Milano, Italy
| | - Michael Bosch
- Chemistry of Thin Film Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | - Martin Centurion
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Marcello Coreno
- Elettra - Sincrotrone Trieste S.C.p.A., Trieste, Italy
- Istituto di Struttura della Materia (ISM-CNR), CNR, Trieste, Italy
| | | | | | | | | | - Benjamin Erk
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Davide Faccialà
- Istituto di Fotonica e Nanotecnologie (CNR-IFN), CNR, Milano, Italy
| | - Raimund Feifel
- Department of Physics, University of Gothenburg, Gothenburg, Sweden
| | - Ruaridh J G Forbes
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Christopher S Hansen
- School of Chemistry, University of New South Wales, Sydney, New South Wales, Australia
| | | | - Rebecca A Ingle
- Department of Chemistry, University College London, London, UK
| | - Roland Lindh
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Lingyu Ma
- Department of Chemistry, Brown University, Providence, RI, USA
| | - Henry G McGhee
- Department of Chemistry, University College London, London, UK
| | - Sri Bhavya Muvva
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | - Asami Odate
- Department of Chemistry, Brown University, Providence, RI, USA
| | - Shashank Pathak
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS, USA
| | - Oksana Plekan
- Elettra - Sincrotrone Trieste S.C.p.A., Trieste, Italy
| | | | | | | | - Artem Rudenko
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS, USA
| | | | - Richard J Squibb
- Department of Physics, University of Gothenburg, Gothenburg, Sweden
| | | | - Caterina Vozzi
- Istituto di Fotonica e Nanotecnologie (CNR-IFN), CNR, Milano, Italy
| | - Peter M Weber
- Department of Chemistry, Brown University, Providence, RI, USA
| | - Adam Kirrander
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, UK.
| | - Daniel Rolles
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
4
|
Varvarezos L, Delgado-Guerrero J, Di Fraia M, Kelly TJ, Palacios A, Callegari C, Cavalieri AL, Coffee R, Danailov M, Decleva P, Demidovich A, DiMauro L, Düsterer S, Giannessi L, Helml W, Ilchen M, Kienberger R, Mazza T, Meyer M, Moshammer R, Pedersini C, Plekan O, Prince KC, Simoncig A, Schletter A, Ueda K, Wurzer M, Zangrando M, Martín F, Costello JT. Controlling Fragmentation of the Acetylene Cation in the Vacuum Ultraviolet via Transient Molecular Alignment. J Phys Chem Lett 2023; 14:24-31. [PMID: 36562987 PMCID: PMC9841558 DOI: 10.1021/acs.jpclett.2c03354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
An open-loop control scheme of molecular fragmentation based on transient molecular alignment combined with single-photon ionization induced by a short-wavelength free electron laser (FEL) is demonstrated for the acetylene cation. Photoelectron spectra are recorded, complementing the ion yield measurements, to demonstrate that such control is the consequence of changes in the electronic response with molecular orientation relative to the ionizing field. We show that stable C2H2+ cations are mainly produced when the molecules are parallel or nearly parallel to the FEL polarization, while the hydrogen fragmentation channel (C2H2+ → C2H+ + H) predominates when the molecule is perpendicular to that direction, thus allowing one to distinguish between the two photochemical processes. The experimental findings are supported by state-of-the art theoretical calculations.
Collapse
Affiliation(s)
- L. Varvarezos
- School
of Physical Sciences and National Centre for Plasma Science and Technology, Dublin City University, Dublin 9, Ireland
| | - J. Delgado-Guerrero
- Departamento
de Química, Módulo 13, Universidad
Autónoma de Madrid, 28049 Madrid, Spain
- Instituto
Madrileño de Estudios Advanzados en Nanociencia, Cantoblanco, 28049 Madrid, Spain
| | - M. Di Fraia
- Elettra-Sincrotrone
Trieste S.C.p.A., Basovizza, 34149 Trieste, Italy
| | - T. J. Kelly
- Department
of Computer Science and Applied Physics, Atlantic Technological University, T91 T8NW Galway, Ireland
| | - A. Palacios
- Departamento
de Química, Módulo 13, Universidad
Autónoma de Madrid, 28049 Madrid, Spain
- Institute
for Advanced Research in Chimical Sciences, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - C. Callegari
- Elettra-Sincrotrone
Trieste S.C.p.A., Basovizza, 34149 Trieste, Italy
| | - A. L. Cavalieri
- Institute
of Applied Physics, University of Bern, 3012 Bern, Switzerland
- Paul
Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - R. Coffee
- Linac
Coherent Light Source/SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - M. Danailov
- Elettra-Sincrotrone
Trieste S.C.p.A., Basovizza, 34149 Trieste, Italy
| | - P. Decleva
- Istituto
Officina dei Materiali IOM-CNR and Dipartimento di Scienze Chimiche
e Farmaceutiche, Università degli
Studi di Trieste, 34121 Trieste, Italy
| | - A. Demidovich
- Elettra-Sincrotrone
Trieste S.C.p.A., Basovizza, 34149 Trieste, Italy
| | - L. DiMauro
- Department
of Physics, The Ohio State University, Columbus, Ohio 43210, United States
| | - S. Düsterer
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - L. Giannessi
- Elettra-Sincrotrone
Trieste S.C.p.A., Basovizza, 34149 Trieste, Italy
| | - W. Helml
- Fakultät
Physik, Technische Universität Dortmund, Maria-Goeppert-Mayer-Str. 2, 44227 Dortmund, Germany
| | - M. Ilchen
- Institut
fur Physik und CINSaT, Universitat Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
- European XFEL, Holzkoppel
4, 22869 Schenefeld, Germany
| | - R. Kienberger
- Physics
Department, Technische Universität
München, 85748 Garching, Germany
| | - T. Mazza
- European XFEL, Holzkoppel
4, 22869 Schenefeld, Germany
| | - M. Meyer
- European XFEL, Holzkoppel
4, 22869 Schenefeld, Germany
| | - R. Moshammer
- Max-Planck Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - C. Pedersini
- Elettra-Sincrotrone
Trieste S.C.p.A., Basovizza, 34149 Trieste, Italy
| | - O. Plekan
- Elettra-Sincrotrone
Trieste S.C.p.A., Basovizza, 34149 Trieste, Italy
| | - K. C. Prince
- Elettra-Sincrotrone
Trieste S.C.p.A., Basovizza, 34149 Trieste, Italy
- Department
of Chemistry and Biotechnology, Swinburne
University of Technology, Melbourne, Victoria 3122, Australia
| | - A. Simoncig
- Elettra-Sincrotrone
Trieste S.C.p.A., Basovizza, 34149 Trieste, Italy
| | - A. Schletter
- Physics
Department, Technische Universität
München, 85748 Garching, Germany
| | - K. Ueda
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - M. Wurzer
- Physics
Department, Technische Universität
München, 85748 Garching, Germany
| | - M. Zangrando
- Elettra-Sincrotrone
Trieste S.C.p.A., Basovizza, 34149 Trieste, Italy
- Istituto
Officina dei Materiali, Consiglio Nazionale
delle Ricerche, 34149 Trieste, Italy
| | - F. Martín
- Departamento
de Química, Módulo 13, Universidad
Autónoma de Madrid, 28049 Madrid, Spain
- Instituto
Madrileño de Estudios Advanzados en Nanociencia, Cantoblanco, 28049 Madrid, Spain
- Condensed
Matter Physics Center, Universidad Autónoma
de Madrid, 28049 Madrid, Spain
| | - J. T. Costello
- School
of Physical Sciences and National Centre for Plasma Science and Technology, Dublin City University, Dublin 9, Ireland
| |
Collapse
|
5
|
Travnikova O, Piteša T, Ponzi A, Sapunar M, Squibb RJ, Richter R, Finetti P, Di Fraia M, De Fanis A, Mahne N, Manfredda M, Zhaunerchyk V, Marchenko T, Guillemin R, Journel L, Prince KC, Callegari C, Simon M, Feifel R, Decleva P, Došlić N, Piancastelli MN. Photochemical Ring-Opening Reaction of 1,3-Cyclohexadiene: Identifying the True Reactive State. J Am Chem Soc 2022; 144:21878-21886. [PMID: 36444673 PMCID: PMC9732879 DOI: 10.1021/jacs.2c06296] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The photochemically induced ring-opening isomerization reaction of 1,3-cyclohexadiene to 1,3,5-hexatriene is a textbook example of a pericyclic reaction and has been amply investigated with advanced spectroscopic techniques. The main open question has been the identification of the single reactive state which drives the process. The generally accepted description of the isomerization pathway starts with a valence excitation to the lowest lying bright state, followed by a passage through a conical intersection to the lowest lying doubly excited state, and finally a branching between either the return to the ground state of the cyclic molecule or the actual ring-opening reaction leading to the open-chain isomer. Here, in a joint experimental and computational effort, we demonstrate that the evolution of the excitation-deexcitation process is much more complex than that usually described. In particular, we show that an initially high-lying electronic state smoothly decreasing in energy along the reaction path plays a key role in the ring-opening reaction.
Collapse
Affiliation(s)
- Oksana Travnikova
- Sorbonne
Université, CNRS, Laboratoire de Chimie Physique-Matière
et Rayonnement, LCPMR, ParisF-75005, France
| | | | - Aurora Ponzi
- Institut
Rud̵er Bošković, ZagrebHR-10000, Croatia
| | | | | | | | | | | | | | - Nicola Mahne
- IOM-CNR, S.S. 14 km 163.5 in Area Science
Park, Trieste34149, Italy
| | | | - Vitali Zhaunerchyk
- Department
of Physics, University of Gothenburg, GothenburgSE-412 96, Sweden
| | - Tatiana Marchenko
- Sorbonne
Université, CNRS, Laboratoire de Chimie Physique-Matière
et Rayonnement, LCPMR, ParisF-75005, France
| | - Renaud Guillemin
- Sorbonne
Université, CNRS, Laboratoire de Chimie Physique-Matière
et Rayonnement, LCPMR, ParisF-75005, France
| | - Loic Journel
- Sorbonne
Université, CNRS, Laboratoire de Chimie Physique-Matière
et Rayonnement, LCPMR, ParisF-75005, France
| | | | | | - Marc Simon
- Sorbonne
Université, CNRS, Laboratoire de Chimie Physique-Matière
et Rayonnement, LCPMR, ParisF-75005, France
| | - Raimund Feifel
- Department
of Physics, University of Gothenburg, GothenburgSE-412 96, Sweden
| | - Piero Decleva
- Dipartimento
di Scienze Chimiche e Farmaceutiche, Universitá
di Trieste, TriesteI-34127, Italy
| | - Nad̵a Došlić
- Institut
Rud̵er Bošković, ZagrebHR-10000, Croatia,
| | - Maria Novella Piancastelli
- Sorbonne
Université, CNRS, Laboratoire de Chimie Physique-Matière
et Rayonnement, LCPMR, ParisF-75005, France,Department
of Physics and Astronomy, Uppsala University, UppsalaSE-751 20, Sweden,
| |
Collapse
|
6
|
Nandi S, Olofsson E, Bertolino M, Carlström S, Zapata F, Busto D, Callegari C, Di Fraia M, Eng-Johnsson P, Feifel R, Gallician G, Gisselbrecht M, Maclot S, Neoričić L, Peschel J, Plekan O, Prince KC, Squibb RJ, Zhong S, Demekhin PV, Meyer M, Miron C, Badano L, Danailov MB, Giannessi L, Manfredda M, Sottocorona F, Zangrando M, Dahlström JM. Observation of Rabi dynamics with a short-wavelength free-electron laser. Nature 2022; 608:488-493. [PMID: 35978126 PMCID: PMC9385478 DOI: 10.1038/s41586-022-04948-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 06/08/2022] [Indexed: 11/29/2022]
Abstract
Rabi oscillations are periodic modulations of populations in two-level systems interacting with a time-varying field1. They are ubiquitous in physics with applications in different areas such as photonics2, nano-electronics3, electron microscopy4 and quantum information5. While the theory developed by Rabi was intended for fermions in gyrating magnetic fields, Autler and Townes realized that it could also be used to describe coherent light-matter interactions within the rotating-wave approximation6. Although intense nanometre-wavelength light sources have been available for more than a decade7-9, Rabi dynamics at such short wavelengths has not been directly observed. Here we show that femtosecond extreme-ultraviolet pulses from a seeded free-electron laser10 can drive Rabi dynamics between the ground state and an excited state in helium atoms. The measured photoelectron signal reveals an Autler-Townes doublet and an avoided crossing, phenomena that are both fundamental to coherent atom-field interactions11. Using an analytical model derived from perturbation theory on top of the Rabi model, we find that the ultrafast build-up of the doublet structure carries the signature of a quantum interference effect between resonant and non-resonant photoionization pathways. Given the recent availability of intense attosecond12 and few-femtosecond13 extreme-ultraviolet pulses, our results unfold opportunities to carry out ultrafast manipulation of coherent processes at short wavelengths using free-electron lasers.
Collapse
Affiliation(s)
- Saikat Nandi
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, Villeurbanne, France.
| | | | | | | | - Felipe Zapata
- Department of Physics, Lund University, Lund, Sweden
| | - David Busto
- Department of Physics, Lund University, Lund, Sweden
| | | | | | | | - Raimund Feifel
- Department of Physics, University of Gothenburg, Gothenburg, Sweden
| | | | | | - Sylvain Maclot
- Department of Physics, Lund University, Lund, Sweden
- Department of Physics, University of Gothenburg, Gothenburg, Sweden
| | - Lana Neoričić
- Department of Physics, Lund University, Lund, Sweden
| | | | | | | | - Richard J Squibb
- Department of Physics, University of Gothenburg, Gothenburg, Sweden
| | - Shiyang Zhong
- Department of Physics, Lund University, Lund, Sweden
| | | | | | - Catalin Miron
- Université Paris-Saclay, CEA, CNRS, LIDYL, Gif-sur-Yvette, France
- ELI-NP, "Horia Hulubei" National Institute for Physics and Nuclear Engineering, Magurele, Romania
| | | | | | - Luca Giannessi
- Elettra-Sincrotrone Trieste, Trieste, Italy
- Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, Frascati, Italy
| | | | - Filippo Sottocorona
- Elettra-Sincrotrone Trieste, Trieste, Italy
- Università degli Studi di Trieste, Trieste, Italy
| | - Marco Zangrando
- Elettra-Sincrotrone Trieste, Trieste, Italy
- IOM-CNR, Istituto Officina dei Materiali, Trieste, Italy
| | | |
Collapse
|
7
|
Asmussen JD, Michiels R, Bangert U, Sisourat N, Binz M, Bruder L, Danailov M, Di Fraia M, Feifel R, Giannessi L, Plekan O, Prince KC, Squibb RJ, Uhl D, Wituschek A, Zangrando M, Callegari C, Stienkemeier F, Mudrich M. Time-Resolved Ultrafast Interatomic Coulombic Decay in Superexcited Sodium-Doped Helium Nanodroplets. J Phys Chem Lett 2022; 13:4470-4478. [PMID: 35561339 DOI: 10.1021/acs.jpclett.2c00645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The autoionization dynamics of superexcited superfluid He nanodroplets doped with Na atoms is studied by extreme-ultraviolet (XUV) time-resolved electron spectroscopy. Following excitation into the higher-lying droplet absorption band, the droplet relaxes into the lowest metastable atomic 1s2s 1,3S states from which interatomic Coulombic decay (ICD) takes place either between two excited He atoms or between an excited He atom and a Na atom attached to the droplet surface. Four main ICD channels are identified, and their decay times are determined by varying the delay between the XUV pulse and a UV pulse that ionizes the initial excited state and thereby quenches ICD. The decay times for the different channels all fall in the range of ∼1 ps, indicating that the ICD dynamics are mainly determined by the droplet environment. A periodic modulation of the transient ICD signals is tentatively attributed to the oscillation of the bubble forming around the localized He excitation.
Collapse
Affiliation(s)
- Jakob D Asmussen
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
| | - Rupert Michiels
- Institute of Physics, University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Ulrich Bangert
- Institute of Physics, University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Nicolas Sisourat
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique Matière et Rayonnement, 75005 Paris, France
| | - Marcel Binz
- Institute of Physics, University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Lukas Bruder
- Institute of Physics, University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | | | | | - Raimund Feifel
- Department of Physics, University of Gothenburg, 41133 Gothenburg, Sweden
| | - Luca Giannessi
- Elettra-Sincrotrone Trieste S.C.p.A., 34149 Basovizza TS, Italy
| | - Oksana Plekan
- Elettra-Sincrotrone Trieste S.C.p.A., 34149 Basovizza TS, Italy
| | - Kevin C Prince
- Elettra-Sincrotrone Trieste S.C.p.A., 34149 Basovizza TS, Italy
| | - Richard J Squibb
- Department of Physics, University of Gothenburg, 41133 Gothenburg, Sweden
| | - Daniel Uhl
- Institute of Physics, University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Andreas Wituschek
- Institute of Physics, University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Marco Zangrando
- Elettra-Sincrotrone Trieste S.C.p.A., 34149 Basovizza TS, Italy
| | - Carlo Callegari
- Elettra-Sincrotrone Trieste S.C.p.A., 34149 Basovizza TS, Italy
| | - Frank Stienkemeier
- Institute of Physics, University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Marcel Mudrich
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
8
|
Abstract
EuPRAXIA@SPARC_LAB is a new Free Electron Laser (FEL) facility that is currently under construction at the Laboratori Nazionali di Frascati of the INFN. The electron beam driving the FEL will be delivered by an X-band normal conducting LINAC followed by a plasma wakefield acceleration stage. It will be characterized by a small footprint and will deliver ultra-bright photon pulses for experiments in the water window to the user community. In addition to the soft-X-rays beamline already planned in the project, we propose the installation of a second photon beamline with seeded FEL pulses in the range between 50 and 180 nm. Here, we will present the FEL generation scheme, the layout of the dedicated beamline and the potential applications of the FEL radiation source in this low energy range.
Collapse
|
9
|
Asmussen JD, Michiels R, Dulitz K, Ngai A, Bangert U, Barranco M, Binz M, Bruder L, Danailov M, Di Fraia M, Eloranta J, Feifel R, Giannessi L, Pi M, Plekan O, Prince KC, Squibb RJ, Uhl D, Wituschek A, Zangrando M, Callegari C, Stienkemeier F, Mudrich M. Unravelling the full relaxation dynamics of superexcited helium nanodroplets. Phys Chem Chem Phys 2021; 23:15138-15149. [PMID: 34259254 DOI: 10.1039/d1cp01041g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The relaxation dynamics of superexcited superfluid He nanodroplets is thoroughly investigated by means of extreme-ultraviolet (XUV) femtosecond electron and ion spectroscopy complemented by time-dependent density functional theory (TDDFT). Three main paths leading to the emission of electrons and ions are identified: droplet autoionization, pump-probe photoionization, and autoionization induced by re-excitation of droplets relaxing into levels below the droplet ionization threshold. The most abundant product ions are He2+, generated by droplet autoionization and by photoionization of droplet-bound excited He atoms. He+ appear with some pump-probe delay as a result of the ejection He atoms in their lowest excited states from the droplets. The state-resolved time-dependent photoelectron spectra reveal that intermediate excited states of the droplets are populated in the course of the relaxation, terminating in the lowest-lying metastable singlet and triplet He atomic states. The slightly faster relaxation of the triplet state compared to the singlet state is in agreement with the simulation showing faster formation of a bubble around a He atom in the triplet state.
Collapse
Affiliation(s)
- Jakob D Asmussen
- Department of Physics and Astronomy, Aarhus University, Denmark.
| | | | - Katrin Dulitz
- Institute of Physics, University of Freiburg, Germany
| | - Aaron Ngai
- Institute of Physics, University of Freiburg, Germany
| | | | - Manuel Barranco
- Departament FQA, Facultat de Física, Universitat de Barcelona, Spain and Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Spain
| | - Marcel Binz
- Institute of Physics, University of Freiburg, Germany
| | - Lukas Bruder
- Institute of Physics, University of Freiburg, Germany
| | | | | | - Jussi Eloranta
- Department of Chemistry and Biochemistry, California State University at Northridge, Northridge, CA 91330, USA
| | | | - Luca Giannessi
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Spain
| | - Marti Pi
- Departament FQA, Facultat de Física, Universitat de Barcelona, Spain and Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Spain
| | - Oksana Plekan
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Spain
| | - Kevin C Prince
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Spain
| | | | - Daniel Uhl
- Institute of Physics, University of Freiburg, Germany
| | | | - Marco Zangrando
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Spain and CNR-IOM, Elettra-Sincrotrone Trieste S.C.p.A., Italy
| | - Carlo Callegari
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Spain
| | | | - Marcel Mudrich
- Department of Physics and Astronomy, Aarhus University, Denmark.
| |
Collapse
|
10
|
Fushitani M, Pratt ST, You D, Saito S, Luo Y, Ueda K, Fujise H, Hishikawa A, Ibrahim H, Légaré F, Johnsson P, Peschel J, Simpson ER, Olofsson A, Mauritsson J, Carpeggiani PA, Maroju PK, Moioli M, Ertel D, Shah R, Sansone G, Csizmadia T, Dumergue M, Harshitha NG, Kühn S, Callegari C, Plekan O, Di Fraia M, Danailov MB, Demidovich A, Giannessi L, Raimondi L, Zangrando M, De Ninno G, Ribič PR, Prince KC. Time-resolved photoelectron imaging of complex resonances in molecular nitrogen. J Chem Phys 2021; 154:144305. [PMID: 33858156 DOI: 10.1063/5.0046577] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We have used the FERMI free-electron laser to perform time-resolved photoelectron imaging experiments on a complex group of resonances near 15.38 eV in the absorption spectrum of molecular nitrogen, N2, under jet-cooled conditions. The new data complement and extend the earlier work of Fushitani et al. [Opt. Express 27, 19702-19711 (2019)], who recorded time-resolved photoelectron spectra for this same group of resonances. Time-dependent oscillations are observed in both the photoelectron yields and the photoelectron angular distributions, providing insight into the interactions among the resonant intermediate states. In addition, for most states, we observe an exponential decay of the photoelectron yield that depends on the ionic final state. This observation can be rationalized by the different lifetimes for the intermediate states contributing to a particular ionization channel. Although there are nine resonances within the group, we show that by detecting individual photoelectron final states and their angular dependence, we can identify and differentiate quantum pathways within this complex system.
Collapse
Affiliation(s)
- Mizuho Fushitani
- Department of Chemistry, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8602, Japan
| | - Stephen T Pratt
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Daehyun You
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Shu Saito
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Yu Luo
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Kiyoshi Ueda
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Hikaru Fujise
- Department of Chemistry, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8602, Japan
| | - Akiyoshi Hishikawa
- Department of Chemistry, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8602, Japan
| | - Heide Ibrahim
- Institut National de la Recherche Scientifique, Centre Énergie Matériaux Télécommunications, Varennes, Québec J3X 1S2, Canada
| | - François Légaré
- Institut National de la Recherche Scientifique, Centre Énergie Matériaux Télécommunications, Varennes, Québec J3X 1S2, Canada
| | - Per Johnsson
- Lund University, Department of Physics, Lund, Sweden
| | | | | | - Anna Olofsson
- Lund University, Department of Physics, Lund, Sweden
| | | | | | | | - Matteo Moioli
- Albert-Ludwigs-Universität, Stefan-Meier-Strasse 19, 79104 Freiburg, Germany
| | - Dominik Ertel
- Albert-Ludwigs-Universität, Stefan-Meier-Strasse 19, 79104 Freiburg, Germany
| | - Ronak Shah
- Albert-Ludwigs-Universität, Stefan-Meier-Strasse 19, 79104 Freiburg, Germany
| | - Giuseppe Sansone
- Albert-Ludwigs-Universität, Stefan-Meier-Strasse 19, 79104 Freiburg, Germany
| | - Tamás Csizmadia
- ELI-ALPS, ELI-HU Non-Profit, Ltd., Wolfgang Sandner utca 3, Szeged H-6728, Hungary
| | - Mathieu Dumergue
- ELI-ALPS, ELI-HU Non-Profit, Ltd., Wolfgang Sandner utca 3, Szeged H-6728, Hungary
| | - N G Harshitha
- ELI-ALPS, ELI-HU Non-Profit, Ltd., Wolfgang Sandner utca 3, Szeged H-6728, Hungary
| | - Sergei Kühn
- ELI-ALPS, ELI-HU Non-Profit, Ltd., Wolfgang Sandner utca 3, Szeged H-6728, Hungary
| | - Carlo Callegari
- Elettra-Sincrotrone Trieste, SS 14, km 163.5, in Area Science Park, 34149 Basovizza, Trieste, Italy
| | - Oksana Plekan
- Elettra-Sincrotrone Trieste, SS 14, km 163.5, in Area Science Park, 34149 Basovizza, Trieste, Italy
| | - Michele Di Fraia
- Elettra-Sincrotrone Trieste, SS 14, km 163.5, in Area Science Park, 34149 Basovizza, Trieste, Italy
| | - Miltcho B Danailov
- Elettra-Sincrotrone Trieste, SS 14, km 163.5, in Area Science Park, 34149 Basovizza, Trieste, Italy
| | - Alexander Demidovich
- Elettra-Sincrotrone Trieste, SS 14, km 163.5, in Area Science Park, 34149 Basovizza, Trieste, Italy
| | - Luca Giannessi
- Elettra-Sincrotrone Trieste, SS 14, km 163.5, in Area Science Park, 34149 Basovizza, Trieste, Italy
| | - Lorenzo Raimondi
- Elettra-Sincrotrone Trieste, SS 14, km 163.5, in Area Science Park, 34149 Basovizza, Trieste, Italy
| | - Marco Zangrando
- Elettra-Sincrotrone Trieste, SS 14, km 163.5, in Area Science Park, 34149 Basovizza, Trieste, Italy
| | - Giovanni De Ninno
- Elettra-Sincrotrone Trieste, SS 14, km 163.5, in Area Science Park, 34149 Basovizza, Trieste, Italy
| | - Primož Rebernik Ribič
- Elettra-Sincrotrone Trieste, SS 14, km 163.5, in Area Science Park, 34149 Basovizza, Trieste, Italy
| | - Kevin C Prince
- Elettra-Sincrotrone Trieste, SS 14, km 163.5, in Area Science Park, 34149 Basovizza, Trieste, Italy
| |
Collapse
|
11
|
Tracking the ultraviolet-induced photochemistry of thiophenone during and after ultrafast ring opening. Nat Chem 2020; 12:795-800. [PMID: 32690894 DOI: 10.1038/s41557-020-0507-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 06/11/2020] [Indexed: 11/08/2022]
Abstract
Photoinduced isomerization reactions lie at the heart of many chemical processes in nature. The mechanisms of such reactions are determined by a delicate interplay of coupled electronic and nuclear dynamics occurring on the femtosecond scale, followed by the slower redistribution of energy into different vibrational degrees of freedom. Here we apply time-resolved photoelectron spectroscopy with a seeded extreme ultraviolet free-electron laser to trace the ultrafast ring opening of gas-phase thiophenone molecules following ultraviolet photoexcitation. When combined with ab initio electronic structure and molecular dynamics calculations of the excited- and ground-state molecules, the results provide insights into both the electronic and nuclear dynamics of this fundamental class of reactions. The initial ring opening and non-adiabatic coupling to the electronic ground state are shown to be driven by ballistic S-C bond extension and to be complete within 350 fs. Theory and experiment also enable visualization of the rich ground-state dynamics that involve the formation of, and interconversion between, ring-opened isomers and the cyclic structure, as well as fragmentation over much longer timescales.
Collapse
|
12
|
Manfredda M, Raimondi L, Mahne N, Zangrando M. Focal shift induced by source displacements and optical figure errors. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:1503-1513. [PMID: 31490138 DOI: 10.1107/s1600577519010099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 07/14/2019] [Indexed: 06/10/2023]
Abstract
In this work the longitudinal shifts of the focal plane of an ellipsoidal mirror induced by longitudinal shifts of the source and by the optical figure error of the mirror itself are investigated. The case of an ideal mirror illuminated by a Gaussian beam is considered first, deriving an analytical formula predicting the source-to-focus shift. Then the realistic case of a mirror affected by surface shape defects is examined, by taking into account metrological data and numerically solving the Huygens-Fresnel integral. The analytical and numerical solutions in the ideal and real cases are compared. Finally, it is shown that an additional dependence of the focal shift is introduced on the wavelength and the pointing angle of the source. Both effects are investigated by numerical computations. We limit the treatment in the XUV spectral range, choosing as a test bench the Kirkpatrick-Baez mirror system of the DiProI and LDM end-stations and at the FERMI seeded free-electron laser (FEL). The work is primarily aimed at disentangling the different causes of focal shift at FEL light sources, where source position, wavelength and pointing angle are either tunable or rapidly fluctuating. The method can be easily extended to parabolic reflectors and refractors (lenses) with other kinds of illuminating sources and wavelengths.
Collapse
Affiliation(s)
- Michele Manfredda
- Elettra-Sincrotrone Trieste SCpA, SS 14 - km 163.5, 34149 Basovizza, Trieste Italy
| | - Lorenzo Raimondi
- Elettra-Sincrotrone Trieste SCpA, SS 14 - km 163.5, 34149 Basovizza, Trieste Italy
| | - Nicola Mahne
- Istituto Officina dei Materiali - CNR, SS 14 - km 163.5, 34149 Basovizza, Trieste Italy
| | - Marco Zangrando
- Elettra-Sincrotrone Trieste SCpA, SS 14 - km 163.5, 34149 Basovizza, Trieste Italy
| |
Collapse
|
13
|
Raimondi L, Manfredda M, Mahne N, Cocco D, Capotondi F, Pedersoli E, Kiskinova M, Zangrando M. Kirkpatrick-Baez active optics system at FERMI: system performance analysis. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:1462-1472. [PMID: 31490133 DOI: 10.1107/s1600577519007938] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 06/03/2019] [Indexed: 06/10/2023]
Abstract
FERMI is the first and only seeded EUV-SXR free-electron laser (FEL) facility available to users; it operates at Elettra - Sincrotrone Trieste (Italy) and it presents five operating endstations. Three of them, namely LDM (Low Density Matter), DiProI (Diffraction and Projection Imaging) and MagneDyn (Magneto-Dynamical studies), use a Kirkpatrick-Baez (KB) active X-ray optics system to focus the FEL pulses into the experimental chambers. The present work reports on the final results of the upgraded KB Active Optics Systems (KAOS), which have been mechanically modified in order to improve stability and repeatability with respect to the original design. The results have been obtained on both the FERMI FEL lines, FEL1 and FEL2, and are particularly relevant for the latter as it is the low-wavelength line recently opened to users. After a thorough description of the new mechanical layout of the system and the aspects that have been improved after the refurbishment, a set of simulations of the optical performances are presented. The code used to simulate the behavior of KAOS is WISEr, a physical-optics-based tool, which is freely accessible, and integrated into the Oasys platform, that takes into account the specific surface metrology characterization of the beamline mirrors, including figure errors and microroughness power spectral density. The results of WISEr are then used as a reference for the actual optimization of the optical system. This procedure relies heavily on a wavefront sensor (WFS) mounted out of focus to optimize the refocusing mirrors alignment as well as their curvature bending (by minimization of the coefficients of the Zernike wavefront expansion). Moreover, the WFS data are used to reconstruct the focal spot parameters by means of a back-propagation of the electric field. Finally, these results are compared with those obtained after the FEL ablation of a PMMA layer positioned on the focal plane, and analyzed ex situ in a post-mortem fashion. The mechanically refurbished optical system and the multi-technique alignment approach, aimed at optimizing the mirrors' curvature, pitch and roll angles, allowed a focal spot of 1.8 µm × 2.4 µm at 4.14 nm wavelength (FEL2) to be inferred, confirmed by the PMMA ablation imprints.
Collapse
Affiliation(s)
- Lorenzo Raimondi
- Elettra - Sincrotrone Trieste, SS 14 km 163.5 in Area Science Park, 34149 Trieste, Italy
| | - Michele Manfredda
- Elettra - Sincrotrone Trieste, SS 14 km 163.5 in Area Science Park, 34149 Trieste, Italy
| | - Nicola Mahne
- IOM-CNR - Istituto Officina dei Materiali - Consiglio Nazionale delle Ricerche, SS 14 km 163.5 in Area Science Park, 34149 Trieste, Italy
| | - Daniele Cocco
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd, MS-19, Menlo Park, CA 94025, USA
| | - Flavio Capotondi
- Elettra - Sincrotrone Trieste, SS 14 km 163.5 in Area Science Park, 34149 Trieste, Italy
| | - Emanuele Pedersoli
- Elettra - Sincrotrone Trieste, SS 14 km 163.5 in Area Science Park, 34149 Trieste, Italy
| | - Maya Kiskinova
- Elettra - Sincrotrone Trieste, SS 14 km 163.5 in Area Science Park, 34149 Trieste, Italy
| | - Marco Zangrando
- Elettra - Sincrotrone Trieste, SS 14 km 163.5 in Area Science Park, 34149 Trieste, Italy
| |
Collapse
|
14
|
Zimmermann J, Langbehn B, Cucini R, Di Fraia M, Finetti P, LaForge AC, Nishiyama T, Ovcharenko Y, Piseri P, Plekan O, Prince KC, Stienkemeier F, Ueda K, Callegari C, Möller T, Rupp D. Deep neural networks for classifying complex features in diffraction images. Phys Rev E 2019; 99:063309. [PMID: 31330687 DOI: 10.1103/physreve.99.063309] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Indexed: 11/07/2022]
Abstract
Intense short-wavelength pulses from free-electron lasers and high-harmonic-generation sources enable diffractive imaging of individual nanosized objects with a single x-ray laser shot. The enormous data sets with up to several million diffraction patterns present a severe problem for data analysis because of the high dimensionality of imaging data. Feature recognition and selection is a crucial step to reduce the dimensionality. Usually, custom-made algorithms are developed at a considerable effort to approximate the particular features connected to an individual specimen, but because they face different experimental conditions, these approaches do not generalize well. On the other hand, deep neural networks are the principal instrument for today's revolution in automated image recognition, a development that has not been adapted to its full potential for data analysis in science. We recently published [Langbehn et al., Phys. Rev. Lett. 121, 255301 (2018)PRLTAO0031-900710.1103/PhysRevLett.121.255301] the application of a deep neural network as a feature extractor for wide-angle diffraction images of helium nanodroplets. Here we present the setup, our modifications, and the training process of the deep neural network for diffraction image classification and its systematic bench marking. We find that deep neural networks significantly outperform previous attempts for sorting and classifying complex diffraction patterns and are a significant improvement for the much-needed assistance during postprocessing of large amounts of experimental coherent diffraction imaging data.
Collapse
Affiliation(s)
- Julian Zimmermann
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, 12489 Berlin, Germany
| | - Bruno Langbehn
- Institut für Optik und Atomare Physik, Technische Universität Berlin, 10623 Berlin, Germany
| | | | - Michele Di Fraia
- Elettra-Sincrotrone Trieste S.C.p.A., 34149 Trieste, Italy.,ISM-CNR, Istituto di Struttura della Materia, LD2 Unit, 34149 Trieste, Italy
| | - Paola Finetti
- Elettra-Sincrotrone Trieste S.C.p.A., 34149 Trieste, Italy
| | - Aaron C LaForge
- Institute of Physics, University of Freiburg, 79104 Freiburg, Germany
| | - Toshiyuki Nishiyama
- Division of Physics and Astronomy, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Yevheniy Ovcharenko
- Institut für Optik und Atomare Physik, Technische Universität Berlin, 10623 Berlin, Germany.,European XFEL GmbH, 22869 Schenefeld, Germany
| | - Paolo Piseri
- CIMAINA and Dipartimento di Fisica, University degli Studi di Milano, 20133 Milano, Italy
| | - Oksana Plekan
- Elettra-Sincrotrone Trieste S.C.p.A., 34149 Trieste, Italy
| | - Kevin C Prince
- Elettra-Sincrotrone Trieste S.C.p.A., 34149 Trieste, Italy.,Department of Chemistry and Biotechnology, Swinburne University of Technology, Victoria 3122, Australia
| | | | - Kiyoshi Ueda
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Carlo Callegari
- Elettra-Sincrotrone Trieste S.C.p.A., 34149 Trieste, Italy.,ISM-CNR, Istituto di Struttura della Materia, LD2 Unit, 34149 Trieste, Italy
| | - Thomas Möller
- Institut für Optik und Atomare Physik, Technische Universität Berlin, 10623 Berlin, Germany
| | - Daniela Rupp
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, 12489 Berlin, Germany
| |
Collapse
|
15
|
Langbehn B, Sander K, Ovcharenko Y, Peltz C, Clark A, Coreno M, Cucini R, Drabbels M, Finetti P, Di Fraia M, Giannessi L, Grazioli C, Iablonskyi D, LaForge AC, Nishiyama T, Oliver Álvarez de Lara V, Piseri P, Plekan O, Ueda K, Zimmermann J, Prince KC, Stienkemeier F, Callegari C, Fennel T, Rupp D, Möller T. Three-Dimensional Shapes of Spinning Helium Nanodroplets. PHYSICAL REVIEW LETTERS 2018; 121:255301. [PMID: 30608832 DOI: 10.1103/physrevlett.121.255301] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 10/24/2018] [Indexed: 05/12/2023]
Abstract
A significant fraction of superfluid helium nanodroplets produced in a free-jet expansion has been observed to gain high angular momentum resulting in large centrifugal deformation. We measured single-shot diffraction patterns of individual rotating helium nanodroplets up to large scattering angles using intense extreme ultraviolet light pulses from the FERMI free-electron laser. Distinct asymmetric features in the wide-angle diffraction patterns enable the unique and systematic identification of the three-dimensional droplet shapes. The analysis of a large data set allows us to follow the evolution from axisymmetric oblate to triaxial prolate and two-lobed droplets. We find that the shapes of spinning superfluid helium droplets exhibit the same stages as classical rotating droplets while the previously reported metastable, oblate shapes of quantum droplets are not observed. Our three-dimensional analysis represents a valuable landmark for clarifying the interrelation between morphology and superfluidity on the nanometer scale.
Collapse
Affiliation(s)
- Bruno Langbehn
- Institut für Optik und Atomare Physik, Technische Universität Berlin, 10623 Berlin, Germany
| | - Katharina Sander
- Institut für Physik, Universität Rostock, 18051 Rostock, Germany
| | - Yevheniy Ovcharenko
- Institut für Optik und Atomare Physik, Technische Universität Berlin, 10623 Berlin, Germany
- European XFEL GmbH, 22869 Schenefeld, Germany
| | - Christian Peltz
- Institut für Physik, Universität Rostock, 18051 Rostock, Germany
| | - Andrew Clark
- Laboratory of Molecular Nanodynamics, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Marcello Coreno
- ISM-CNR, Istituto di Struttura della Materia, LD2 Unit, 34149 Trieste, Italy
| | | | - Marcel Drabbels
- Laboratory of Molecular Nanodynamics, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Paola Finetti
- Elettra-Sincrotrone Trieste S.C.p.A., 34149 Trieste, Italy
| | - Michele Di Fraia
- ISM-CNR, Istituto di Struttura della Materia, LD2 Unit, 34149 Trieste, Italy
- Elettra-Sincrotrone Trieste S.C.p.A., 34149 Trieste, Italy
| | - Luca Giannessi
- Elettra-Sincrotrone Trieste S.C.p.A., 34149 Trieste, Italy
| | - Cesare Grazioli
- ISM-CNR, Istituto di Struttura della Materia, LD2 Unit, 34149 Trieste, Italy
| | - Denys Iablonskyi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Aaron C LaForge
- Physikalisches Institut, Universität Freiburg, 79104 Freiburg, Germany
| | - Toshiyuki Nishiyama
- Division of Physics and Astronomy, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | | | - Paolo Piseri
- CIMAINA and Dipartimento di Fisica, Università degli Studi di Milano, 20133 Milano, Italy
| | - Oksana Plekan
- Elettra-Sincrotrone Trieste S.C.p.A., 34149 Trieste, Italy
| | - Kiyoshi Ueda
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Julian Zimmermann
- Institut für Optik und Atomare Physik, Technische Universität Berlin, 10623 Berlin, Germany
- Max-Born-Institut fur Nichtlineare Optik und Kurzzeitspektroskopie, 12489 Berlin, Germany
| | - Kevin C Prince
- Elettra-Sincrotrone Trieste S.C.p.A., 34149 Trieste, Italy
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Victoria 3122, Australia
| | | | - Carlo Callegari
- ISM-CNR, Istituto di Struttura della Materia, LD2 Unit, 34149 Trieste, Italy
- Elettra-Sincrotrone Trieste S.C.p.A., 34149 Trieste, Italy
| | - Thomas Fennel
- Institut für Physik, Universität Rostock, 18051 Rostock, Germany
- Max-Born-Institut fur Nichtlineare Optik und Kurzzeitspektroskopie, 12489 Berlin, Germany
| | - Daniela Rupp
- Institut für Optik und Atomare Physik, Technische Universität Berlin, 10623 Berlin, Germany
- Max-Born-Institut fur Nichtlineare Optik und Kurzzeitspektroskopie, 12489 Berlin, Germany
| | - Thomas Möller
- Institut für Optik und Atomare Physik, Technische Universität Berlin, 10623 Berlin, Germany
| |
Collapse
|
16
|
Ilchen M, Hartmann G, Gryzlova EV, Achner A, Allaria E, Beckmann A, Braune M, Buck J, Callegari C, Coffee RN, Cucini R, Danailov M, De Fanis A, Demidovich A, Ferrari E, Finetti P, Glaser L, Knie A, Lindahl AO, Plekan O, Mahne N, Mazza T, Raimondi L, Roussel E, Scholz F, Seltmann J, Shevchuk I, Svetina C, Walter P, Zangrando M, Viefhaus J, Grum-Grzhimailo AN, Meyer M. Symmetry breakdown of electron emission in extreme ultraviolet photoionization of argon. Nat Commun 2018; 9:4659. [PMID: 30405105 PMCID: PMC6220192 DOI: 10.1038/s41467-018-07152-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 10/16/2018] [Indexed: 11/09/2022] Open
Abstract
Short wavelength free-electron lasers (FELs), providing pulses of ultrahigh photon intensity, have revolutionized spectroscopy on ionic targets. Their exceptional photon flux enables multiple photon absorptions within a single femtosecond pulse, which in turn allows for deep insights into the photoionization process itself as well as into evolving ionic states of a target. Here we employ ultraintense pulses from the FEL FERMI to spectroscopically investigate the sequential emission of electrons from gaseous, atomic argon in the neutral as well as the ionic ground state. A pronounced forward-backward symmetry breaking of the angularly resolved emission patterns with respect to the light propagation direction is experimentally observed and theoretically explained for the region of the Cooper minimum, where the asymmetry of electron emission is strongly enhanced. These findings aim to originate a better understanding of the fundamentals of photon momentum transfer in ionic matter.
Collapse
Affiliation(s)
- M Ilchen
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany. .,Institut für Physik, University of Kassel, Heinrich-Plett-Straße 40, 34132, Kassel, Germany.
| | - G Hartmann
- Institut für Physik, University of Kassel, Heinrich-Plett-Straße 40, 34132, Kassel, Germany.,Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607, Hamburg, Germany
| | - E V Gryzlova
- Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - A Achner
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - E Allaria
- Elettra-Sincrotrone Trieste SCpA, I-34149, Trieste, Italy
| | - A Beckmann
- X-Spectrum GmbH, Notkestraße 85, 22607, Hamburg, Germany
| | - M Braune
- Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607, Hamburg, Germany
| | - J Buck
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany.,Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607, Hamburg, Germany
| | - C Callegari
- Elettra-Sincrotrone Trieste SCpA, I-34149, Trieste, Italy
| | - R N Coffee
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - R Cucini
- Elettra-Sincrotrone Trieste SCpA, I-34149, Trieste, Italy
| | - M Danailov
- Elettra-Sincrotrone Trieste SCpA, I-34149, Trieste, Italy
| | - A De Fanis
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - A Demidovich
- Elettra-Sincrotrone Trieste SCpA, I-34149, Trieste, Italy
| | - E Ferrari
- Particle Accelerator Physics Laboratory, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - P Finetti
- Elettra-Sincrotrone Trieste SCpA, I-34149, Trieste, Italy
| | - L Glaser
- Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607, Hamburg, Germany
| | - A Knie
- Institut für Physik, University of Kassel, Heinrich-Plett-Straße 40, 34132, Kassel, Germany
| | - A O Lindahl
- Qamcom Research & Technology AB, Falkenbergsgatan 3, SE-412 85, Gothenburg, Sweden
| | - O Plekan
- Elettra-Sincrotrone Trieste SCpA, I-34149, Trieste, Italy
| | - N Mahne
- Elettra-Sincrotrone Trieste SCpA, I-34149, Trieste, Italy
| | - T Mazza
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - L Raimondi
- Elettra-Sincrotrone Trieste SCpA, I-34149, Trieste, Italy
| | - E Roussel
- Elettra-Sincrotrone Trieste SCpA, I-34149, Trieste, Italy
| | - F Scholz
- Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607, Hamburg, Germany
| | - J Seltmann
- Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607, Hamburg, Germany
| | - I Shevchuk
- Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607, Hamburg, Germany
| | - C Svetina
- Paul Scherrer Institut, 5232, Villingen PSI, Switzerland
| | - P Walter
- Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607, Hamburg, Germany.,SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - M Zangrando
- Elettra-Sincrotrone Trieste SCpA, I-34149, Trieste, Italy.,CNR, IOM, Lab Nazl TASC, I-34149, Trieste, Italy
| | - J Viefhaus
- Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607, Hamburg, Germany
| | - A N Grum-Grzhimailo
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany.,Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - M Meyer
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| |
Collapse
|
17
|
Holzmeier F, Bello RY, Hervé M, Achner A, Baumann TM, Meyer M, Finetti P, Di Fraia M, Gauthier D, Roussel E, Plekan O, Richter R, Prince KC, Callegari C, Bachau H, Palacios A, Martín F, Dowek D. Control of H_{2} Dissociative Ionization in the Nonlinear Regime Using Vacuum Ultraviolet Free-Electron Laser Pulses. PHYSICAL REVIEW LETTERS 2018; 121:103002. [PMID: 30240272 DOI: 10.1103/physrevlett.121.103002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Indexed: 06/08/2023]
Abstract
The role of the nuclear degrees of freedom in nonlinear two-photon single ionization of H_{2} molecules interacting with short and intense vacuum ultraviolet pulses is investigated, both experimentally and theoretically, by selecting single resonant vibronic intermediate neutral states. This high selectivity relies on the narrow bandwidth and tunability of the pulses generated at the FERMI free-electron laser. A sustained enhancement of dissociative ionization, which even exceeds nondissociative ionization, is observed and controlled as one selects progressively higher vibronic states. With the help of ab initio calculations for increasing pulse durations, the photoelectron and ion energy spectra obtained with velocity map imaging allow us to identify new photoionization pathways. With pulses of the order of 100 fs, the experiment probes a timescale that lies between that of ultrafast dynamical processes and that of steady state excitations.
Collapse
Affiliation(s)
- F Holzmeier
- Institut des Sciences Moléculaires d'Orsay CNRS, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay Cedex, France
- Synchrotron SOLEIL, 91192 Gif-sur-Yvette, France
| | - R Y Bello
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - M Hervé
- Institut des Sciences Moléculaires d'Orsay CNRS, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay Cedex, France
| | - A Achner
- European XFEL GmbH, 22869 Schenefeld, Germany
| | - T M Baumann
- European XFEL GmbH, 22869 Schenefeld, Germany
| | - M Meyer
- European XFEL GmbH, 22869 Schenefeld, Germany
| | - P Finetti
- Elettra-Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy
| | - M Di Fraia
- Elettra-Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy
| | - D Gauthier
- Elettra-Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy
| | - E Roussel
- Elettra-Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy
| | - O Plekan
- Elettra-Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy
| | - R Richter
- Elettra-Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy
| | - K C Prince
- Elettra-Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy
| | - C Callegari
- Elettra-Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy
| | - H Bachau
- Centre des Lasers Intenses et Applications (UMR 5107 du CNRS-CEA-Université de Bordeaux), 351 Cours de la Libération, 33405 Talence cedex, France
| | - A Palacios
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - F Martín
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Cantoblanco, 28049 Madrid, Spain
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - D Dowek
- Institut des Sciences Moléculaires d'Orsay CNRS, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay Cedex, France
| |
Collapse
|
18
|
Squibb RJ, Sapunar M, Ponzi A, Richter R, Kivimäki A, Plekan O, Finetti P, Sisourat N, Zhaunerchyk V, Marchenko T, Journel L, Guillemin R, Cucini R, Coreno M, Grazioli C, Di Fraia M, Callegari C, Prince KC, Decleva P, Simon M, Eland JHD, Došlić N, Feifel R, Piancastelli MN. Acetylacetone photodynamics at a seeded free-electron laser. Nat Commun 2018; 9:63. [PMID: 29302026 PMCID: PMC5754354 DOI: 10.1038/s41467-017-02478-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 12/04/2017] [Indexed: 11/30/2022] Open
Abstract
The first steps in photochemical processes, such as photosynthesis or animal vision, involve changes in electronic and geometric structure on extremely short time scales. Time-resolved photoelectron spectroscopy is a natural way to measure such changes, but has been hindered hitherto by limitations of available pulsed light sources in the vacuum-ultraviolet and soft X-ray spectral region, which have insufficient resolution in time and energy simultaneously. The unique combination of intensity, energy resolution, and femtosecond pulse duration of the FERMI-seeded free-electron laser can now provide exceptionally detailed information on photoexcitation–deexcitation and fragmentation in pump-probe experiments on the 50-femtosecond time scale. For the prototypical system acetylacetone we report here electron spectra measured as a function of time delay with enough spectral and time resolution to follow several photoexcited species through well-characterized individual steps, interpreted using state-of-the-art static and dynamics calculations. These results open the way for investigations of photochemical processes in unprecedented detail. The first steps in photochemical processes involve changes in electronic and geometric structure on extremely short timescales. Here, the authors report femtosecond dynamics in prototypical acetylacetone, by pump-probe photoexcitation-photoemission experiments and static and dynamics calculations.
Collapse
Affiliation(s)
- R J Squibb
- Department of Physics, University of Gothenburg, Origovägen 6B, SE-412 96, Gothenburg, Sweden
| | - M Sapunar
- Institut Ruđer Bošković, Bijenička cesta 54, 10000, Zagreb, Croatia
| | - A Ponzi
- Institut Ruđer Bošković, Bijenička cesta 54, 10000, Zagreb, Croatia
| | - R Richter
- Elettra-Sincrotrone Trieste, Strada Statale 14-km 163.5, 34149, Basovizza, Trieste, Italy
| | - A Kivimäki
- Consiglio Nazionale delle Ricerche-Istituto Officina dei Materiali, 34149, Trieste, Italy
| | - O Plekan
- Elettra-Sincrotrone Trieste, Strada Statale 14-km 163.5, 34149, Basovizza, Trieste, Italy
| | - P Finetti
- Elettra-Sincrotrone Trieste, Strada Statale 14-km 163.5, 34149, Basovizza, Trieste, Italy
| | - N Sisourat
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, 75005, Paris Cedex 05, France
| | - V Zhaunerchyk
- Department of Physics, University of Gothenburg, Origovägen 6B, SE-412 96, Gothenburg, Sweden
| | - T Marchenko
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, 75005, Paris Cedex 05, France
| | - L Journel
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, 75005, Paris Cedex 05, France
| | - R Guillemin
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, 75005, Paris Cedex 05, France
| | - R Cucini
- Elettra-Sincrotrone Trieste, Strada Statale 14-km 163.5, 34149, Basovizza, Trieste, Italy
| | - M Coreno
- Elettra-Sincrotrone Trieste, Strada Statale 14-km 163.5, 34149, Basovizza, Trieste, Italy.,Consiglio Nazionale delle Ricerche - Istituto di Struttura della Materia, LD2 unit, 34149, Trieste, Italy
| | - C Grazioli
- Elettra-Sincrotrone Trieste, Strada Statale 14-km 163.5, 34149, Basovizza, Trieste, Italy.,Consiglio Nazionale delle Ricerche - Istituto di Struttura della Materia, LD2 unit, 34149, Trieste, Italy
| | - M Di Fraia
- Elettra-Sincrotrone Trieste, Strada Statale 14-km 163.5, 34149, Basovizza, Trieste, Italy.,Consiglio Nazionale delle Ricerche - Istituto di Struttura della Materia, LD2 unit, 34149, Trieste, Italy
| | - C Callegari
- Elettra-Sincrotrone Trieste, Strada Statale 14-km 163.5, 34149, Basovizza, Trieste, Italy.,Consiglio Nazionale delle Ricerche - Istituto di Struttura della Materia, LD2 unit, 34149, Trieste, Italy
| | - K C Prince
- Elettra-Sincrotrone Trieste, Strada Statale 14-km 163.5, 34149, Basovizza, Trieste, Italy.,Molecular Model Discovery Laboratory, Department of Chemistry and Biotechnology, Swinburne University of Technology, Melbourne, VIC, 3122, Australia
| | - P Decleva
- Consiglio Nazionale delle Ricerche-Istituto Officina dei Materiali, 34149, Trieste, Italy.,Dipartimento di Scienze Chimiche e Farmaceutiche, Universitá di Trieste, 34127, Trieste, Italy
| | - M Simon
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, 75005, Paris Cedex 05, France
| | - J H D Eland
- Department of Physics, University of Gothenburg, Origovägen 6B, SE-412 96, Gothenburg, Sweden.,Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford, OX1 3QZ, UK
| | - N Došlić
- Institut Ruđer Bošković, Bijenička cesta 54, 10000, Zagreb, Croatia
| | - R Feifel
- Department of Physics, University of Gothenburg, Origovägen 6B, SE-412 96, Gothenburg, Sweden
| | - M N Piancastelli
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, 75005, Paris Cedex 05, France. .,Department of Physics and Astronomy, Uppsala University, SE-751 20, Uppsala, Sweden.
| |
Collapse
|
19
|
Application of Matched-Filter Concepts to Unbiased Selection of Data in Pump-Probe Experiments with Free Electron Lasers. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7060621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
|
21
|
Takanashi T, Golubev NV, Callegari C, Fukuzawa H, Motomura K, Iablonskyi D, Kumagai Y, Mondal S, Tachibana T, Nagaya K, Nishiyama T, Matsunami K, Johnsson P, Piseri P, Sansone G, Dubrouil A, Reduzzi M, Carpeggiani P, Vozzi C, Devetta M, Negro M, Faccialà D, Calegari F, Trabattoni A, Castrovilli MC, Ovcharenko Y, Mudrich M, Stienkemeier F, Coreno M, Alagia M, Schütte B, Berrah N, Plekan O, Finetti P, Spezzani C, Ferrari E, Allaria E, Penco G, Serpico C, De Ninno G, Diviacco B, Di Mitri S, Giannessi L, Jabbari G, Prince KC, Cederbaum LS, Demekhin PV, Kuleff AI, Ueda K. Time-Resolved Measurement of Interatomic Coulombic Decay Induced by Two-Photon Double Excitation of Ne_{2}. PHYSICAL REVIEW LETTERS 2017; 118:033202. [PMID: 28157370 DOI: 10.1103/physrevlett.118.033202] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Indexed: 06/06/2023]
Abstract
The hitherto unexplored two-photon doubly excited states [Ne^{*}(2p^{-1}3s)]_{2} were experimentally identified using the seeded, fully coherent, intense extreme ultraviolet free-electron laser FERMI. These states undergo ultrafast interatomic Coulombic decay (ICD), which predominantly produces singly ionized dimers. In order to obtain the rate of ICD, the resulting yield of Ne_{2}^{+} ions was recorded as a function of delay between the extreme ultraviolet pump and UV probe laser pulses. The extracted lifetimes of the long-lived doubly excited states, 390(-130/+450) fs, and of the short-lived ones, less than 150 fs, are in good agreement with ab initio quantum mechanical calculations.
Collapse
Affiliation(s)
- T Takanashi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 980-8577 Sendai, Japan
| | - N V Golubev
- Theoretische Chemie, Universität Heidelberg, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
| | - C Callegari
- Elettra-Sincrotrone Trieste, Strada Statale 14 - km 163,5 in AREA Science Park, 34149 Basovizza, Trieste, Italy
| | - H Fukuzawa
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 980-8577 Sendai, Japan
| | - K Motomura
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 980-8577 Sendai, Japan
| | - D Iablonskyi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 980-8577 Sendai, Japan
| | - Y Kumagai
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 980-8577 Sendai, Japan
| | - S Mondal
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 980-8577 Sendai, Japan
| | - T Tachibana
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 980-8577 Sendai, Japan
| | - K Nagaya
- Department of Physics, Graduate School of Science, Kyoto University, 606-8502 Kyoto, Japan
| | - T Nishiyama
- Department of Physics, Graduate School of Science, Kyoto University, 606-8502 Kyoto, Japan
| | - K Matsunami
- Department of Physics, Graduate School of Science, Kyoto University, 606-8502 Kyoto, Japan
| | - P Johnsson
- Department of Physics, Lund University, P.O. Box 118, 22100 Lund, Sweden
| | - P Piseri
- CIMAINA and Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, 20133 Milano, Italy
| | - G Sansone
- CNR-IFN, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
- Physikalisches Institut Albert-Ludwigs-Universität, Stefan-Meier-Strasse 19 79104 Freiburg, Germany
| | - A Dubrouil
- CNR-IFN, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - M Reduzzi
- CNR-IFN, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - P Carpeggiani
- CNR-IFN, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - C Vozzi
- CNR-IFN, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - M Devetta
- CNR-IFN, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - M Negro
- CNR-IFN, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - D Faccialà
- CNR-IFN, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - F Calegari
- CNR-IFN, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
- Center for Free-Electron Laser Science, DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - A Trabattoni
- CNR-IFN, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
- Center for Free-Electron Laser Science, DESY, Notkestr. 85, 22607 Hamburg, Germany
| | | | - Y Ovcharenko
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany
| | - M Mudrich
- Physikalisches Institut, Universität Freiburg, 79104 Freiburg, Germany
| | - F Stienkemeier
- Physikalisches Institut, Universität Freiburg, 79104 Freiburg, Germany
| | - M Coreno
- CNR-ISM, Area Science Park, 34149 Basovizza, Trieste, Italy
| | - M Alagia
- CNR-IOM, Area Science Park, 34149 Basovizza, Trieste, Italy
| | - B Schütte
- Max-Born-Institut, Max-Born-Strasse 2 A, 12489 Berlin, Germany
| | - N Berrah
- Department of Physics, University of Connecticut, 2152 Hillside Road, Storrs, Connecticut 06269, USA
| | - O Plekan
- Elettra-Sincrotrone Trieste, Strada Statale 14 - km 163,5 in AREA Science Park, 34149 Basovizza, Trieste, Italy
| | - P Finetti
- Elettra-Sincrotrone Trieste, Strada Statale 14 - km 163,5 in AREA Science Park, 34149 Basovizza, Trieste, Italy
| | - C Spezzani
- Elettra-Sincrotrone Trieste, Strada Statale 14 - km 163,5 in AREA Science Park, 34149 Basovizza, Trieste, Italy
| | - E Ferrari
- Elettra-Sincrotrone Trieste, Strada Statale 14 - km 163,5 in AREA Science Park, 34149 Basovizza, Trieste, Italy
| | - E Allaria
- Elettra-Sincrotrone Trieste, Strada Statale 14 - km 163,5 in AREA Science Park, 34149 Basovizza, Trieste, Italy
| | - G Penco
- Elettra-Sincrotrone Trieste, Strada Statale 14 - km 163,5 in AREA Science Park, 34149 Basovizza, Trieste, Italy
| | - C Serpico
- Elettra-Sincrotrone Trieste, Strada Statale 14 - km 163,5 in AREA Science Park, 34149 Basovizza, Trieste, Italy
| | - G De Ninno
- Elettra-Sincrotrone Trieste, Strada Statale 14 - km 163,5 in AREA Science Park, 34149 Basovizza, Trieste, Italy
- Laboratory of Quantum Optics, University of Nova Gorica, 5001 Nova Gorica, Slovenia
| | - B Diviacco
- Elettra-Sincrotrone Trieste, Strada Statale 14 - km 163,5 in AREA Science Park, 34149 Basovizza, Trieste, Italy
| | - S Di Mitri
- Elettra-Sincrotrone Trieste, Strada Statale 14 - km 163,5 in AREA Science Park, 34149 Basovizza, Trieste, Italy
| | - L Giannessi
- Elettra-Sincrotrone Trieste, Strada Statale 14 - km 163,5 in AREA Science Park, 34149 Basovizza, Trieste, Italy
| | - G Jabbari
- Theoretische Chemie, Universität Heidelberg, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
| | - K C Prince
- Elettra-Sincrotrone Trieste, Strada Statale 14 - km 163,5 in AREA Science Park, 34149 Basovizza, Trieste, Italy
- CNR-IOM, Area Science Park, 34149 Basovizza, Trieste, Italy
| | - L S Cederbaum
- Theoretische Chemie, Universität Heidelberg, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
| | - Ph V Demekhin
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | - A I Kuleff
- Theoretische Chemie, Universität Heidelberg, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
| | - K Ueda
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 980-8577 Sendai, Japan
| |
Collapse
|
22
|
Di Fraia M, Finetti P, Richter R, Prince KC, Wiese J, Devetta M, Negro M, Vozzi C, Ciriolo AG, Pusala A, Demidovich A, Danailov MB, Karamatskos ET, Trippel S, Küpper J, Callegari C. Impulsive laser-induced alignment of OCS molecules at FERMI. Phys Chem Chem Phys 2017; 19:19733-19739. [DOI: 10.1039/c7cp01812f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
OCS full rotational revival dynamics induced by impulsive NIR alignment monitored by Coulomb explosion correlated fragments after S 2p excitation.
Collapse
Affiliation(s)
| | | | | | - Kevin C. Prince
- Elettra-Sincrotrone Trieste S.C.p.A
- Basovizza
- Italy
- Molecular Model Discovery Laboratory
- Department of Chemistry and Biotechnology
| | - Joss Wiese
- Center for Free-Electron Laser Science
- Deutsches + Elektronen-Synchrotron DESY
- Hamburg
- Germany
| | | | - Matteo Negro
- Istituto di Fotonica e Nanotecnologie-CNR
- Milan
- Italy
| | | | | | - Aditya Pusala
- Politecnico di Milano
- Dipartimento di Fisica
- Milan
- Italy
| | | | | | - Evangelos T. Karamatskos
- Center for Free-Electron Laser Science
- Deutsches + Elektronen-Synchrotron DESY
- Hamburg
- Germany
- Department of Physics
| | - Sebastian Trippel
- Center for Free-Electron Laser Science
- Deutsches + Elektronen-Synchrotron DESY
- Hamburg
- Germany
- The Hamburg Center for Ultrafast Imaging
| | - Jochen Küpper
- Center for Free-Electron Laser Science
- Deutsches + Elektronen-Synchrotron DESY
- Hamburg
- Germany
- Department of Physics
| | | |
Collapse
|
23
|
Iablonskyi D, Nagaya K, Fukuzawa H, Motomura K, Kumagai Y, Mondal S, Tachibana T, Takanashi T, Nishiyama T, Matsunami K, Johnsson P, Piseri P, Sansone G, Dubrouil A, Reduzzi M, Carpeggiani P, Vozzi C, Devetta M, Negro M, Calegari F, Trabattoni A, Castrovilli MC, Faccialà D, Ovcharenko Y, Möller T, Mudrich M, Stienkemeier F, Coreno M, Alagia M, Schütte B, Berrah N, Kuleff AI, Jabbari G, Callegari C, Plekan O, Finetti P, Spezzani C, Ferrari E, Allaria E, Penco G, Serpico C, De Ninno G, Nikolov I, Diviacco B, Di Mitri S, Giannessi L, Prince KC, Ueda K. Slow Interatomic Coulombic Decay of Multiply Excited Neon Clusters. PHYSICAL REVIEW LETTERS 2016; 117:276806. [PMID: 28084773 DOI: 10.1103/physrevlett.117.276806] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Indexed: 06/06/2023]
Abstract
Ne clusters (∼5000 atoms) were resonantly excited (2p→3s) by intense free electron laser (FEL) radiation at FERMI. Such multiply excited clusters can decay nonradiatively via energy exchange between at least two neighboring excited atoms. Benefiting from the precise tunability and narrow bandwidth of seeded FEL radiation, specific sites of the Ne clusters were probed. We found that the relaxation of cluster surface atoms proceeds via a sequence of interatomic or intermolecular Coulombic decay (ICD) processes while ICD of bulk atoms is additionally affected by the surrounding excited medium via inelastic electron scattering. For both cases, cluster excitations relax to atomic states prior to ICD, showing that this kind of ICD is rather slow (picosecond range). Controlling the average number of excitations per cluster via the FEL intensity allows a coarse tuning of the ICD rate.
Collapse
Affiliation(s)
- D Iablonskyi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 980-8577 Sendai, Japan
| | - K Nagaya
- Department of Physics, Graduate School of Science, Kyoto University, 606-8502 Kyoto, Japan
| | - H Fukuzawa
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 980-8577 Sendai, Japan
| | - K Motomura
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 980-8577 Sendai, Japan
| | - Y Kumagai
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 980-8577 Sendai, Japan
| | - S Mondal
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 980-8577 Sendai, Japan
| | - T Tachibana
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 980-8577 Sendai, Japan
| | - T Takanashi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 980-8577 Sendai, Japan
| | - T Nishiyama
- Department of Physics, Graduate School of Science, Kyoto University, 606-8502 Kyoto, Japan
| | - K Matsunami
- Department of Physics, Graduate School of Science, Kyoto University, 606-8502 Kyoto, Japan
| | - P Johnsson
- Department of Physics, Lund University, 22100 Lund, Sweden
| | - P Piseri
- Dipartimento di Fisica, Università degli Studi di Milano, 20133 Milano, Italy
| | - G Sansone
- CNR-IFN, 20133 Milan, Italy
- Physikalisches Institut, Universität Freiburg, 79104 Freiburg, Germany
| | | | | | | | | | | | | | - F Calegari
- CNR-IFN, 20133 Milan, Italy
- Center for Free-Electron Laser Science, DESY, 22607 Hamburg, Germany
| | - A Trabattoni
- CNR-IFN, 20133 Milan, Italy
- Center for Free-Electron Laser Science, DESY, 22607 Hamburg, Germany
| | | | - D Faccialà
- Dipartimento di Fisica, Politecnico di Milano, 20133 Milan, Italy
| | - Y Ovcharenko
- Institut für Optik und Atomare Physik, TU Berlin, 10623 Berlin, Germany
| | - T Möller
- Institut für Optik und Atomare Physik, TU Berlin, 10623 Berlin, Germany
| | - M Mudrich
- Physikalisches Institut, Universität Freiburg, 79104 Freiburg, Germany
| | - F Stienkemeier
- Physikalisches Institut, Universität Freiburg, 79104 Freiburg, Germany
| | - M Coreno
- CNR-ISM, Area Science Park, 34149 Trieste, Italy
| | - M Alagia
- CNR-IOM, Area Science Park, 34149 Trieste, Italy
| | - B Schütte
- Max-Born-Institut, 12489 Berlin, Germany
| | - N Berrah
- Department of Physics, University of Connecticut, Storrs, Connecticut 06269, USA
| | - A I Kuleff
- Theoretische Chemie, Universität Heidelberg, 69120 Heidelberg, Germany
| | - G Jabbari
- Theoretische Chemie, Universität Heidelberg, 69120 Heidelberg, Germany
| | - C Callegari
- Elettra-Sincrotrone Trieste, Area Science Park, 34149 Trieste, Italy
| | - O Plekan
- Elettra-Sincrotrone Trieste, Area Science Park, 34149 Trieste, Italy
| | - P Finetti
- Elettra-Sincrotrone Trieste, Area Science Park, 34149 Trieste, Italy
| | - C Spezzani
- Elettra-Sincrotrone Trieste, Area Science Park, 34149 Trieste, Italy
| | - E Ferrari
- Elettra-Sincrotrone Trieste, Area Science Park, 34149 Trieste, Italy
| | - E Allaria
- Elettra-Sincrotrone Trieste, Area Science Park, 34149 Trieste, Italy
| | - G Penco
- Elettra-Sincrotrone Trieste, Area Science Park, 34149 Trieste, Italy
| | - C Serpico
- Elettra-Sincrotrone Trieste, Area Science Park, 34149 Trieste, Italy
| | - G De Ninno
- Elettra-Sincrotrone Trieste, Area Science Park, 34149 Trieste, Italy
- Laboratory of Quantum Optics, University of Nova Gorica, 5001 Nova Gorica, Slovenia
| | - I Nikolov
- Elettra-Sincrotrone Trieste, Area Science Park, 34149 Trieste, Italy
| | - B Diviacco
- Elettra-Sincrotrone Trieste, Area Science Park, 34149 Trieste, Italy
| | - S Di Mitri
- Elettra-Sincrotrone Trieste, Area Science Park, 34149 Trieste, Italy
| | - L Giannessi
- Elettra-Sincrotrone Trieste, Area Science Park, 34149 Trieste, Italy
| | - K C Prince
- CNR-IOM, Area Science Park, 34149 Trieste, Italy
- Elettra-Sincrotrone Trieste, Area Science Park, 34149 Trieste, Italy
| | - K Ueda
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 980-8577 Sendai, Japan
| |
Collapse
|
24
|
Allaria E, Badano L, Bassanese S, Capotondi F, Castronovo D, Cinquegrana P, Danailov MB, D'Auria G, Demidovich A, De Monte R, De Ninno G, Di Mitri S, Diviacco B, Fawley WM, Ferianis M, Ferrari E, Gaio G, Gauthier D, Giannessi L, Iazzourene F, Kurdi G, Mahne N, Nikolov I, Parmigiani F, Penco G, Raimondi L, Rebernik P, Rossi F, Roussel E, Scafuri C, Serpico C, Sigalotti P, Spezzani C, Svandrlik M, Svetina C, Trovó M, Veronese M, Zangrando D, Zangrando M. The FERMI free-electron lasers. JOURNAL OF SYNCHROTRON RADIATION 2015; 22:485-491. [PMID: 25931057 DOI: 10.1107/s1600577515005366] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 03/15/2015] [Indexed: 06/04/2023]
Abstract
FERMI is a seeded free-electron laser (FEL) facility located at the Elettra laboratory in Trieste, Italy, and is now in user operation with its first FEL line, FEL-1, covering the wavelength range between 100 and 20 nm. The second FEL line, FEL-2, a high-gain harmonic generation double-stage cascade covering the wavelength range 20-4 nm, has also completed commissioning and the first user call has been recently opened. An overview of the typical operating modes of the facility is presented.
Collapse
Affiliation(s)
- E Allaria
- Elettra-Sincrotrone Trieste, Trieste, Italy
| | - L Badano
- Elettra-Sincrotrone Trieste, Trieste, Italy
| | | | | | | | | | | | - G D'Auria
- Elettra-Sincrotrone Trieste, Trieste, Italy
| | | | - R De Monte
- Elettra-Sincrotrone Trieste, Trieste, Italy
| | - G De Ninno
- Elettra-Sincrotrone Trieste, Trieste, Italy
| | - S Di Mitri
- Elettra-Sincrotrone Trieste, Trieste, Italy
| | - B Diviacco
- Elettra-Sincrotrone Trieste, Trieste, Italy
| | - W M Fawley
- Elettra-Sincrotrone Trieste, Trieste, Italy
| | - M Ferianis
- Elettra-Sincrotrone Trieste, Trieste, Italy
| | - E Ferrari
- Elettra-Sincrotrone Trieste, Trieste, Italy
| | - G Gaio
- Elettra-Sincrotrone Trieste, Trieste, Italy
| | - D Gauthier
- Elettra-Sincrotrone Trieste, Trieste, Italy
| | | | | | - G Kurdi
- Elettra-Sincrotrone Trieste, Trieste, Italy
| | - N Mahne
- Elettra-Sincrotrone Trieste, Trieste, Italy
| | - I Nikolov
- Elettra-Sincrotrone Trieste, Trieste, Italy
| | | | - G Penco
- Elettra-Sincrotrone Trieste, Trieste, Italy
| | - L Raimondi
- Elettra-Sincrotrone Trieste, Trieste, Italy
| | - P Rebernik
- Elettra-Sincrotrone Trieste, Trieste, Italy
| | - F Rossi
- Elettra-Sincrotrone Trieste, Trieste, Italy
| | - E Roussel
- Elettra-Sincrotrone Trieste, Trieste, Italy
| | - C Scafuri
- Elettra-Sincrotrone Trieste, Trieste, Italy
| | - C Serpico
- Elettra-Sincrotrone Trieste, Trieste, Italy
| | | | - C Spezzani
- Elettra-Sincrotrone Trieste, Trieste, Italy
| | | | - C Svetina
- Elettra-Sincrotrone Trieste, Trieste, Italy
| | - M Trovó
- Elettra-Sincrotrone Trieste, Trieste, Italy
| | - M Veronese
- Elettra-Sincrotrone Trieste, Trieste, Italy
| | | | | |
Collapse
|