1
|
Fujiwara H, Umetsu RY, Kuroda F, Miyawaki J, Kashiuchi T, Nishimoto K, Nagai K, Sekiyama A, Irizawa A, Takeda Y, Saitoh Y, Oguchi T, Harada Y, Suga S. Detecting halfmetallic electronic structures of spintronic materials in a magnetic field. Sci Rep 2021; 11:18654. [PMID: 34545160 PMCID: PMC8452713 DOI: 10.1038/s41598-021-97992-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/01/2021] [Indexed: 11/09/2022] Open
Abstract
Band-gap engineering is one of the fundamental techniques in semiconductor technology and also applicable in next generation spintronics using the spin degree of freedom. To fully utilize the spintronic materials, it is essential to optimize the spin-dependent electronic structures in the operando conditions by applying magnetic and/or electric fields. Here we present an advanced spectroscopic technique to probe the spin-polarized electronic structures by using magnetic circular dichroism (MCD) in resonant inelastic soft X-ray scattering (RIXS) under an external magnetic field. Thanks to the spin-selective dipole-allowed transitions in RIXS-MCD, we have successfully demonstrated the direct evidence of the perfectly spin-polarized electronic structures for the prototypical halfmetallic Heusller alloy \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {Co}_2\hbox {MnSi}$$\end{document}Co2MnSi. RIXS-MCD is a promising tool to probe the spin-dependent carriers and band-gap induced in the buried magnetic layers in an element specific way under the operando conditions.
Collapse
Affiliation(s)
- H Fujiwara
- Division of Materials Physics, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan.
| | - R Y Umetsu
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Sendai, Miyagi, 980-8577, Japan.,Center for Spintronics Research Network, Tohoku University, 2-1-1 Katahira, Sendai, Miyagi, 980-8577, Japan.,Center for Science and Innovation in Spintronics, 2-1-1 Katahira, Sendai, Miyagi, 980-8577, Japan
| | - F Kuroda
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - J Miyawaki
- Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8581, Japan.,Synchrotron Radiation Research Organization, The University of Tokyo, 1-1-1 Koto, Sayo-cho, Sayo, Hyogo, 679-5148, Japan.,Institute for Advanced Synchrotron Light Source, National Institutes for Quantum and Radiological Science and Technology, 6-6-11 Aoba, Sendai, Miyagi, 980-8579, Japan
| | - T Kashiuchi
- Division of Materials Physics, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - K Nishimoto
- Division of Materials Physics, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - K Nagai
- Division of Materials Physics, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - A Sekiyama
- Division of Materials Physics, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - A Irizawa
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Y Takeda
- Materials Sciences Research Center, Japan Atomic Energy Agency (JAEA), Sayo, Hyogo, 679-5148, Japan
| | - Y Saitoh
- Materials Sciences Research Center, Japan Atomic Energy Agency (JAEA), Sayo, Hyogo, 679-5148, Japan
| | - T Oguchi
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan.,Center for Spintronics Research Network, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Y Harada
- Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8581, Japan.,Synchrotron Radiation Research Organization, The University of Tokyo, 1-1-1 Koto, Sayo-cho, Sayo, Hyogo, 679-5148, Japan
| | - S Suga
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan.,Forschungszentrum Jülich, PGI-6, 52425, Jülich, Germany
| |
Collapse
|
2
|
Maganas D, Kowalska JK, Van Stappen C, DeBeer S, Neese F. Mechanism of L 2,3-edge x-ray magnetic circular dichroism intensity from quantum chemical calculations and experiment-A case study on V (IV)/V (III) complexes. J Chem Phys 2020; 152:114107. [PMID: 32199419 DOI: 10.1063/1.5129029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In this work, we present a combined experimental and theoretical study on the V L2,3-edge x-ray absorption (XAS) and x-ray magnetic circular dichroism (XMCD) spectra of VIVO(acac)2 and VIII(acac)3 prototype complexes. The recorded V L2,3-edge XAS and XMCD spectra are richly featured in both V L3 and L2 spectral regions. In an effort to predict and interpret the nature of the experimentally observed spectral features, a first-principles approach for the simultaneous prediction of XAS and XMCD spectra in the framework of wavefunction based ab initio methods is presented. The theory used here has previously been formulated for predicting optical absorption and MCD spectra. In the present context, it is applied to the prediction of the V L2,3-edge XAS and XMCD spectra of the VIVO(acac)2 and VIII(acac)3 complexes. In this approach, the spin-free Hamiltonian is computed on the basis of the complete active space configuration interaction (CASCI) in conjunction with second order N-electron valence state perturbation theory (NEVPT2) as well as the density functional theory (DFT)/restricted open configuration interaction with singles configuration state functions based on a ground state Kohn-Sham determinant (ROCIS/DFT). Quasi-degenerate perturbation theory is then used to treat the spin-orbit coupling (SOC) operator variationally at the many particle level. The XAS and XMCD transitions are computed between the relativistic many particle states, considering their respective Boltzmann populations. These states are obtained from the diagonalization of the SOC operator along with the spin and orbital Zeeman operators. Upon averaging over all possible magnetic field orientations, the XAS and XMCD spectra of randomly oriented samples are obtained. This approach does not rely on the validity of low-order perturbation theory and provides simultaneous access to the calculation of XMCD A, B, and C terms. The ability of the method to predict the XMCD C-term signs and provide access to the XMCD intensity mechanism is demonstrated on the basis of a generalized state coupling mechanism based on the type of the excitations dominating the relativistically corrected states. In the second step, the performance of CASCI, CASCI/NEVPT2, and ROCIS/DFT is evaluated. The very good agreement between theory and experiment has allowed us to unravel the complicated XMCD C-term mechanism on the basis of the SOC interaction between the various multiplets with spin S' = S, S ± 1. In the last step, it is shown that the commonly used spin and orbital sum rules are inadequate in interpreting the intensity mechanism of the XAS and XMCD spectra of the VIVO(acac)2 and VIII(acac)3 complexes as they breakdown when they are employed to predict their magneto-optical properties. This conclusion is expected to hold more generally.
Collapse
Affiliation(s)
- Dimitrios Maganas
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Joanna K Kowalska
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Casey Van Stappen
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|