1
|
Manzanillas L, Ablett JM, Choukroun M, Iguaz FJ, Rueff JP. Development of an x-ray polarimeter at the SOLEIL synchrotron. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:053302. [PMID: 38804809 DOI: 10.1063/5.0207370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024]
Abstract
Synchrotron radiation facilities provide highly polarized x-ray beams across a wide energy range. However, the exact type and degree of polarization vary according to the beamline and experimental setup. To accurately determine the angle and degree of linear polarization, a portable x-ray polarimeter has been developed. This setup consists of a silicon drift detector that rotates around a target made of high-density polyethylene. The imprint generated in the angular distribution of scattered photons from the target at a 90-degree angle between the incident x-rays and detector has been exploited to determine the beam polarization. Measurements were conducted at the GALAXIES beamline of the SOLEIL synchrotron. The expected angular distribution of the scattered photons for a given beam polarization was obtained through simulations using the Geant4 simulation toolkit. An excellent agreement between simulations and the collected data has been obtained, validating the setup and enabling a precise determination of the beam polarization.
Collapse
Affiliation(s)
- L Manzanillas
- SOLEIL Synchrotron, L'Orme des Merisiers, Départementale 128, 91190 Saint-Aubin, France
| | - J M Ablett
- SOLEIL Synchrotron, L'Orme des Merisiers, Départementale 128, 91190 Saint-Aubin, France
| | - M Choukroun
- SOLEIL Synchrotron, L'Orme des Merisiers, Départementale 128, 91190 Saint-Aubin, France
| | - F J Iguaz
- SOLEIL Synchrotron, L'Orme des Merisiers, Départementale 128, 91190 Saint-Aubin, France
| | - J-P Rueff
- SOLEIL Synchrotron, L'Orme des Merisiers, Départementale 128, 91190 Saint-Aubin, France
| |
Collapse
|
2
|
Simonelli L, Marini C, Ribo L, Homs R, Avila J, Heinis D, Preda I, Klementiev K. The CLEAR X-ray emission spectrometer available at the CLAESS beamline of ALBA synchrotron. JOURNAL OF SYNCHROTRON RADIATION 2023; 30:235-241. [PMID: 36601942 PMCID: PMC9814063 DOI: 10.1107/s1600577522009821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/06/2022] [Indexed: 06/17/2023]
Abstract
The CLEAR X-ray emission spectrometer installed at the CLAESS beamline of the ALBA synchrotron is described. It is an energy-dispersive spectrometer based on Rowland circle geometry with 1 m-diameter circle. The energy dispersion is achieved by the combination of a diced analyzer crystal and a unidimensional detector. A single unconventional dynamically bent analyzer crystal (Si 111) permits a wide energy range to be covered, just by exploiting its different reflections (333, 444, 555, 777, 888): 6-22 keV, with a spectrometer efficiency that decreases above 11 keV because of the Si detector thickness (Mythen, 350 µm), while the relative scattering intensities for the Si 333, 444, 555, 777 and 888 reflections correspond to 36, 40, 21, 13 and 15, respectively. The provided energy resolution is typically below 1-2 eV and depends on the beam size, working Bragg angle and reflection exploited. In most cases the energy dispersion ranges from 10 to 20 eV and can be enlarged by working in the out-of-Rowland geometry up to 40 eV. The spectrometer works in full backscattering geometry with the beam passing through the two halves of the analyzer. The vacuum beam path and the particular geometry allow a typical average noise of only 0.5 counts per second per pixel. The spectrometer is mainly used for measuring emission lines and high-resolution absorption spectra, with a typical scanning time for highly concentrated systems of around half an hour, including several repeats. The intrinsic energy dispersion allows systematic collection of resonant X-ray emission maps by measuring high-resolution absorption spectra. Moreover, it allows spectra to be measured on a single-shot basis. Resonant inelastic X-ray scattering experiments to probe electronic excitations are feasible, although the spectrometer is not optimized for this purpose due to the limited energy resolution and scattering geometry provided. In that case, to minimize the quasi-elastic line, the spectrometer is able to rotate along the beam path. Advantages and disadvantages with respect to other existing spectrometers are highlighted.
Collapse
Affiliation(s)
- L. Simonelli
- CELLS-ALBA Synchrotron Light Source, 08290 Cerdanyola del Vallès, Barcelona, Spain
| | - C. Marini
- CELLS-ALBA Synchrotron Light Source, 08290 Cerdanyola del Vallès, Barcelona, Spain
| | - L. Ribo
- CELLS-ALBA Synchrotron Light Source, 08290 Cerdanyola del Vallès, Barcelona, Spain
| | - R. Homs
- CELLS-ALBA Synchrotron Light Source, 08290 Cerdanyola del Vallès, Barcelona, Spain
| | - J. Avila
- CELLS-ALBA Synchrotron Light Source, 08290 Cerdanyola del Vallès, Barcelona, Spain
| | - D. Heinis
- CELLS-ALBA Synchrotron Light Source, 08290 Cerdanyola del Vallès, Barcelona, Spain
| | - I. Preda
- CELLS-ALBA Synchrotron Light Source, 08290 Cerdanyola del Vallès, Barcelona, Spain
| | - K. Klementiev
- CELLS-ALBA Synchrotron Light Source, 08290 Cerdanyola del Vallès, Barcelona, Spain
- MAX IV Laboratory, Fotongatan 2, 225 94 Lund, Sweden
| |
Collapse
|
3
|
Georgiou R, Sahle CJ, Sokaras D, Bernard S, Bergmann U, Rueff JP, Bertrand L. X-ray Raman Scattering: A Hard X-ray Probe of Complex Organic Systems. Chem Rev 2022; 122:12977-13005. [PMID: 35737888 DOI: 10.1021/acs.chemrev.1c00953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This paper provides a review of the characterization of organic systems via X-ray Raman scattering (XRS) and a step-by-step guidance for its application. We present the fundamentals of XRS required to use the technique and discuss the main parameters of the experimental set-ups to optimize spectral and spatial resolution while maximizing signal-to-background ratio. We review applications that target the analysis of mixtures of organic compounds, the identification of minor spectral features, and the spatial discrimination in heterogeneous systems. We discuss the recent development of the direct tomography technique, which utilizes the XRS process as a contrast mechanism for assessing the three-dimensional spatially resolved carbon chemistry of complex organic materials. We conclude by exposing the current limitations and provide an outlook on how to overcome some of the existing challenges and advance future developments and applications of this powerful technique for complex organic systems.
Collapse
Affiliation(s)
- Rafaella Georgiou
- Université Paris-Saclay, CNRS, Ministère de la Culture, UVSQ, MNHN, IPANEMA, F-91192 Saint-Aubin, France.,Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin BP 48, 91192, Gif-sur-Yvette, France
| | | | - Dimosthenis Sokaras
- SLAC National Accelerator Laboratory, Stanford Synchrotron Radiation Lightsource, Menlo Park, California 94025, United States
| | - Sylvain Bernard
- Muséum National d'Histoire Naturelle, Sorbonne Université, CNRS, UMR 7590, Institut de Minéralogie, Physique des Matériaux et Cosmochimie, 75005 Paris, France
| | - Uwe Bergmann
- Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Jean-Pascal Rueff
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin BP 48, 91192, Gif-sur-Yvette, France.,Laboratoire de Chimie Physique-Matière et Rayonnement, Sorbonne Université, CNRS, 75005 Paris, France
| | - Loïc Bertrand
- Photophysique et Photochimie Supramoléculaires et Macromoléculaires, Université Paris-Saclay, ENS Paris-Saclay, CNRS, 91190 Gif-sur-Yvette, France
| |
Collapse
|
4
|
Kvashnina KO, Butorin SM. High-energy resolution X-ray spectroscopy at actinide M 4,5 and ligand K edges: what we know, what we want to know, and what we can know. Chem Commun (Camb) 2022; 58:327-342. [PMID: 34874022 PMCID: PMC8725612 DOI: 10.1039/d1cc04851a] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/15/2021] [Indexed: 12/20/2022]
Abstract
In recent years, scientists have progressively recognized the role of electronic structures in the characterization of chemical properties for actinide containing materials. High-energy resolution X-ray spectroscopy at the actinide M4,5 edges emerged as a promising direction because this method can probe actinide properties at the atomic level through the possibility of reducing the experimental spectral width below the natural core-hole lifetime broadening. Parallel to the technical developments of the X-ray method and experimental discoveries, theoretical models, describing the observed electronic structure phenomena, have also advanced. In this feature article, we describe the latest progress in the field of high-energy resolution X-ray spectroscopy at the actinide M4,5 and ligand K edges and we show that the methods are able to (a) provide fingerprint information on the actinide oxidation state and ground state characters (b) probe 5f occupancy, non-stoichiometry, defects, and ligand/metal ratio and (c) investigate the local symmetry and effects of the crystal field. We discuss the chemical aspects of the electronic structure in terms familiar to chemists and materials scientists and conclude with a brief description of new opportunities and approaches to improve the experimental methodology and theoretical analysis for f-electron systems.
Collapse
Affiliation(s)
- Kristina O Kvashnina
- The Rossendorf Beamline at ESRF, The European Synchrotron, CS40220, 38043 Grenoble Cedex 9, France.
- Institute of Resource Ecology, Helmholtz Zentrum Dresden-Rossendorf (HZDR), PO Box 510119, 01314 Dresden, Germany
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Sergei M Butorin
- Condensed Matter Physics of Energy Materials, X-ray Photon Science, Department of Physics and Astronomy, Uppsala University, P.O. Box 516, SE-751 20 Uppsala, Sweden.
| |
Collapse
|
5
|
Verma H, Le Guen K, Delaunay R, Ismail I, Ilakovac V, Rueff JP, Zheng YJ, Jonnard P. Study of buried interfaces in Fe/Si multilayer by hard x‐ray emission spectroscopy. SURF INTERFACE ANAL 2021. [DOI: 10.1002/sia.7005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hina Verma
- Sorbonne Université, Faculté des sciences et Ingénierie, UMR CNRS, Laboratoire de Chimie Physique – Matière et Rayonnement Paris France
| | - Karine Le Guen
- Sorbonne Université, Faculté des sciences et Ingénierie, UMR CNRS, Laboratoire de Chimie Physique – Matière et Rayonnement Paris France
| | - Renaud Delaunay
- Sorbonne Université, Faculté des sciences et Ingénierie, UMR CNRS, Laboratoire de Chimie Physique – Matière et Rayonnement Paris France
| | - Iyas Ismail
- Sorbonne Université, Faculté des sciences et Ingénierie, UMR CNRS, Laboratoire de Chimie Physique – Matière et Rayonnement Paris France
| | - Vita Ilakovac
- Sorbonne Université, Faculté des sciences et Ingénierie, UMR CNRS, Laboratoire de Chimie Physique – Matière et Rayonnement Paris France
- Département de Physique CY Cergy Université Cergy‐Pontoise France
| | - Jean Pascal Rueff
- Sorbonne Université, Faculté des sciences et Ingénierie, UMR CNRS, Laboratoire de Chimie Physique – Matière et Rayonnement Paris France
- Synchrotron SOLEIL, L'Orme des Merisiers Gif sur Yvette France
| | - Yunlin Jacques Zheng
- Sorbonne Université, CNRS‐UMR 7588, Institut des NanoSciences de Paris (INSP) Paris France
| | - Philippe Jonnard
- Sorbonne Université, Faculté des sciences et Ingénierie, UMR CNRS, Laboratoire de Chimie Physique – Matière et Rayonnement Paris France
| |
Collapse
|
6
|
Hayama S, Boada R, Chaboy J, Birt A, Duller G, Cahill L, Freeman A, Amboage M, Keenan L, Diaz-Moreno S. Photon-in/photon-out spectroscopy at the I20-scanning beamline at diamond light source. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:284003. [PMID: 33957610 DOI: 10.1088/1361-648x/abfe93] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
A scanning multi-crystal x-ray emission spectrometer to perform photon-in/photon-out spectroscopy at the I20-Scanning beamline at Diamond Light Source is described. The instrument, equipped with three analyzer crystals, is based on a 1 m Rowland circle spectrometer operating in the vertical plane. The energy resolution of the spectrometer is of the order of 1 eV, having sufficient resolving power to overcome the core-hole lifetime broadening of most of the transition metalsK-edges. Examples showing the capability of the beamline for performing high energy resolution fluorescence detection x-ray absorption spectroscopy (HERFD-XAS), non-resonant x-ray emission spectroscopy (XES) and resonant x-ray emission spectroscopy are presented. The comparison of the Zn and MnK-edge HERFD-XANES of ZnO and MnO withab initiocalculations shows that the technique provides enhanced validation of the models by making subtle spectral features more visible.
Collapse
Affiliation(s)
- Shusaku Hayama
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Roberto Boada
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
- Department of Chemistry, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Jesús Chaboy
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Adrian Birt
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Graham Duller
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Leo Cahill
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Adam Freeman
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Monica Amboage
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Luke Keenan
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Sofia Diaz-Moreno
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| |
Collapse
|
7
|
Lelong G, Cormier L, Hennet L, Michel F, Rueff JP, Ablett JM, Monaco G. Lithium Borates from the Glass to the Melt: A Temperature-Induced Structural Transformation Viewed from the Boron and Oxygen Atoms. Inorg Chem 2021; 60:798-806. [PMID: 33401906 DOI: 10.1021/acs.inorgchem.0c02844] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A multiedge study of the local structure of lithium borate glasses and melts has been carried out using X-ray Raman scattering (XRS) as a function of temperature. Thanks to a wide range of compositions, from pure B2O3 up to the metaborate composition, we are able to finely interpret the modifications of the local environment of both the boron and oxygen atoms in terms of boron coordination number, formation of nonbridging oxygens (NBOs), and polymerization degree of the borate framework as a function of temperature and composition. A temperature-induced [4]B to [3]B conversion is observed above the glass transition temperature (Tg) from the glass to the melt from the triborate composition up to the metaborate composition. Two distinct melt structures are reported: a well-polymerized borate network-with few NBOs-below the triborate composition and a depolymerized borate network above the diborate composition with a rapid increase of the number of NBOs when Li2O is added. These two structurally distinct melts allow explaining the two dynamic regimes observed for lithium ion diffusion.
Collapse
Affiliation(s)
- Gérald Lelong
- Institut de Minéralogie, de Physique des Matériaux et Cosmochimie (IMPMC), Sorbonne Universités-UPMC Univ Paris 06, UMR CNRS 7590, Muséum National d'Histoire Naturelle, IRD UMR 206, 4 Place Jussieu, F-75005 Paris, France
| | - Laurent Cormier
- Institut de Minéralogie, de Physique des Matériaux et Cosmochimie (IMPMC), Sorbonne Universités-UPMC Univ Paris 06, UMR CNRS 7590, Muséum National d'Histoire Naturelle, IRD UMR 206, 4 Place Jussieu, F-75005 Paris, France
| | - Louis Hennet
- Conditions Extrêmes et Matériaux: Haute Température et Irradiation CNRS-UPR 3079, Orléans, France
| | - Florent Michel
- Institut de Minéralogie, de Physique des Matériaux et Cosmochimie (IMPMC), Sorbonne Universités-UPMC Univ Paris 06, UMR CNRS 7590, Muséum National d'Histoire Naturelle, IRD UMR 206, 4 Place Jussieu, F-75005 Paris, France
| | - Jean-Pascal Rueff
- Laboratoire de Chimie Physique - Matière et Rayonnement, Université Pierre et Marie Curie/CNRS-UMR 7614, 75005 Paris, France.,Synchrotron SOLEIL, L'Orme des Merisiers, BP 48, Saint Aubin, 91192 Gif sur Yvette, France
| | - James M Ablett
- Synchrotron SOLEIL, L'Orme des Merisiers, BP 48, Saint Aubin, 91192 Gif sur Yvette, France
| | - Giulio Monaco
- Physics and Astronomy Department, University of Padova, 35131 Padova, Italy
| |
Collapse
|
8
|
Glatzel P, Harris A, Marion P, Sikora M, Weng TC, Guilloud C, Lafuerza S, Rovezzi M, Detlefs B, Ducotté L. The five-analyzer point-to-point scanning crystal spectrometer at ESRF ID26. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:362-371. [PMID: 33399588 DOI: 10.1107/s1600577520015416] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/20/2020] [Indexed: 05/25/2023]
Abstract
X-ray emission spectroscopy in a point-to-point focusing geometry using instruments that employ more than one analyzer crystal poses challenges with respect to mechanical design and performance. This work discusses various options for positioning the components and provides the formulas for calculating their relative placement. Ray-tracing calculations were used to determine the geometrical contributions to the energy broadening including the source volume as given by the beam footprint on the sample. The alignment of the instrument is described and examples are given for the performance.
Collapse
Affiliation(s)
- Pieter Glatzel
- ESRF - The European Synchrotron, 71 Avenue des Martyres, 38000 Grenoble, France
| | | | - Philippe Marion
- ESRF - The European Synchrotron, 71 Avenue des Martyres, 38000 Grenoble, France
| | - Marcin Sikora
- ESRF - The European Synchrotron, 71 Avenue des Martyres, 38000 Grenoble, France
| | - Tsu Chien Weng
- ESRF - The European Synchrotron, 71 Avenue des Martyres, 38000 Grenoble, France
| | - Cyril Guilloud
- ESRF - The European Synchrotron, 71 Avenue des Martyres, 38000 Grenoble, France
| | - Sara Lafuerza
- ESRF - The European Synchrotron, 71 Avenue des Martyres, 38000 Grenoble, France
| | - Mauro Rovezzi
- ESRF - The European Synchrotron, 71 Avenue des Martyres, 38000 Grenoble, France
| | - Blanka Detlefs
- ESRF - The European Synchrotron, 71 Avenue des Martyres, 38000 Grenoble, France
| | - Ludovic Ducotté
- ESRF - The European Synchrotron, 71 Avenue des Martyres, 38000 Grenoble, France
| |
Collapse
|
9
|
Honkanen AP, Huotari S. General method to calculate the elastic deformation and X-ray diffraction properties of bent crystal wafers. IUCRJ 2021; 8:102-115. [PMID: 33520246 PMCID: PMC7793001 DOI: 10.1107/s2052252520014165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/23/2020] [Indexed: 06/12/2023]
Abstract
Toroidally and spherically bent single crystals are widely employed as optical elements in hard X-ray spectrometry at synchrotron and free-electron laser light sources, and in laboratory-scale instruments. To achieve optimal spectrometer performance, a solid theoretical understanding of the diffraction properties of such crystals is essential. In this work, a general method to calculate the internal stress and strain fields of toroidally bent crystals and how to apply it to predict their diffraction properties is presented. Solutions are derived and discussed for circular and rectangular spherically bent wafers due to their prevalence in contemporary instrumentation.
Collapse
Affiliation(s)
- Ari-Pekka Honkanen
- Department of Physics, University of Helsinki, PO Box 64, FI-00014 Helsinki, Finland
| | - Simo Huotari
- Department of Physics, University of Helsinki, PO Box 64, FI-00014 Helsinki, Finland
| |
Collapse
|
10
|
Li J, Sougrati MT, Zitolo A, Ablett JM, Oğuz IC, Mineva T, Matanovic I, Atanassov P, Huang Y, Zenyuk I, Di Cicco A, Kumar K, Dubau L, Maillard F, Dražić G, Jaouen F. Identification of durable and non-durable FeNx sites in Fe–N–C materials for proton exchange membrane fuel cells. Nat Catal 2020. [DOI: 10.1038/s41929-020-00545-2] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Higgins LJR, Sahle CJ, Balasubramanian M, Mishra B. X-ray Raman scattering for bulk chemical and structural insight into green carbon. Phys Chem Chem Phys 2020; 22:18435-18446. [PMID: 32776038 DOI: 10.1039/d0cp00417k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
X-ray Raman scattering (XRS) spectroscopy is an emerging inelastic scattering technique which uses hard X-rays to study the X-ray absorption edges of low-Z elements (e.g. C, N, O) in bulk. This study applies XRS spectroscopy to pyrolysis and hydrothermal carbons. These materials are thermochemically-produced carbon from renewable resources and represent a route for the sustainable production of carbon materials for many applications. Results confirm local structural differences between biomass-derived (Oak, Quercus Ilex) pyrolysis and hydrothermal carbon. In comparison with NEXAFS, XRS spectroscopy has been shown to be more resilient to experimental artefacts such as self-absorption. Density functional theory XRS calculations of potential structural sub-units confirm that hydrothermal carbon is a highly disordered carbon material formed principally of furan units linked by the α carbon atoms. Comparison of two pyrolysis temperatures (450 °C and 650 °C) shows the development of an increasingly condensed carbon structure. Based on our results, we have proposed a semi-quantitative route to pyrolysis condensation.
Collapse
Affiliation(s)
- Luke J R Higgins
- School of Chemical & Process Engineering, University of Leeds, Leeds, UK.
| | | | | | | |
Collapse
|
12
|
Lafuerza S, Retegan M, Detlefs B, Chatterjee R, Yachandra V, Yano J, Glatzel P. New reflections on hard X-ray photon-in/photon-out spectroscopy. NANOSCALE 2020; 12:16270-16284. [PMID: 32760987 PMCID: PMC7808884 DOI: 10.1039/d0nr01983f] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Analysis of the electronic structure and local coordination of an element is an important aspect in the study of the chemical and physical properties of materials. This is particularly relevant at the nanoscale where new phases of matter may emerge below a critical size. X-ray emission spectroscopy (XES) at synchrotron radiation sources and free electron lasers has enriched the field of X-ray spectroscopy. The spectroscopic techniques derived from the combination of X-ray absorption and emission spectroscopy (XAS-XES), such as resonant inelastic X-ray scattering (RIXS) and high energy resolution fluorescence detected (HERFD) XAS, are an ideal tool for the study of nanomaterials. New installations and beamline upgrades now often include wavelength dispersive instruments for the analysis of the emitted X-rays. With the growing use of XAS-XES, scientists are learning about the possibilities and pitfalls. We discuss some experimental aspects, assess the feasibility of measuring weak fluorescence lines in dilute, radiation sensitive samples, and present new experimental approaches for studying magnetic properties of colloidal nanoparticles directly in the liquid phase.
Collapse
Affiliation(s)
- Sara Lafuerza
- European Synchrotron Radiation Facility, 71 Avenue des Martyres, 38000 Grenoble, France.
| | | | | | | | | | | | | |
Collapse
|
13
|
Mazzone DG, Dzero M, Abeykoon AM, Yamaoka H, Ishii H, Hiraoka N, Rueff JP, Ablett JM, Imura K, Suzuki HS, Hancock JN, Jarrige I. Kondo-Induced Giant Isotropic Negative Thermal Expansion. PHYSICAL REVIEW LETTERS 2020; 124:125701. [PMID: 32281848 DOI: 10.1103/physrevlett.124.125701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 02/14/2020] [Indexed: 06/11/2023]
Abstract
Negative thermal expansion is an unusual phenomenon appearing in only a handful of materials, but pursuit and mastery of the phenomenon holds great promise for applications across disciplines and industries. Here we report use of x-ray spectroscopy and diffraction to investigate the 4f-electronic properties in Y-doped SmS and employ the Kondo volume collapse model to interpret the results. Our measurements reveal an unparalleled decrease of the bulk Sm valence by over 20% at low temperatures in the mixed-valent golden phase, which we show is caused by a strong coupling between an emergent Kondo lattice state and a large isotropic volume change. The amplitude and temperature range of the negative thermal expansion appear strongly dependent on the Y concentration and the associated chemical disorder, providing control over the observed effect. This finding opens avenues for the design of Kondo lattice materials with tunable, giant, and isotropic negative thermal expansion.
Collapse
Affiliation(s)
- D G Mazzone
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, USA
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - M Dzero
- Department of Physics, Kent State University, Kent, Ohio 44242, USA
| | - Am M Abeykoon
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - H Yamaoka
- RIKEN SPring-8 Center, Sayo, Hyogo 679-5148, Japan
| | - H Ishii
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - N Hiraoka
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - J-P Rueff
- Synchrotron SOLEIL, L'Orme des Merisiers, BP 48 Saint-Aubin, 91192 Gif-sur-Yvette, France
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement, 75005 Paris, France
| | - J M Ablett
- Synchrotron SOLEIL, L'Orme des Merisiers, BP 48 Saint-Aubin, 91192 Gif-sur-Yvette, France
| | - K Imura
- Department of Physics, Nagoya University, Nagoya 464-8602, Japan
| | - H S Suzuki
- Research Center for Advanced Measurement and Characterization, National Institute for Materials Science (NIMS), Sengen, Tsukuba 305-0047, Japan
- The Institute for Solid State Physics, The University of Tokyo, Kashiwanoha, Kashiwa 277-8581, Japan
| | - J N Hancock
- Department of Physics and Institute for Materials Science, University of Connecticut, Storrs, Connecticut 06269, USA
| | - I Jarrige
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, USA
| |
Collapse
|
14
|
Nowak SH, Armenta R, Schwartz CP, Gallo A, Abraham B, Garcia-Esparza AT, Biasin E, Prado A, Maciel A, Zhang D, Day D, Christensen S, Kroll T, Alonso-Mori R, Nordlund D, Weng TC, Sokaras D. A versatile Johansson-type tender x-ray emission spectrometer. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2020; 91:033101. [PMID: 32259983 DOI: 10.1063/1.5121853] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 02/13/2020] [Indexed: 05/23/2023]
Abstract
We present a high energy resolution x-ray spectrometer for the tender x-ray regime (1.6-5.0 keV) that was designed and operated at Stanford Synchrotron Radiation Lightsource. The instrument is developed on a Rowland geometry (500 mm of radius) using cylindrically bent Johansson analyzers and a position sensitive detector. By placing the sample inside the Rowland circle, the spectrometer operates in an energy-dispersive mode with a subnatural line-width energy resolution (∼0.32 eV at 2400 eV), even when an extended incident x-ray beam is used across a wide range of diffraction angles (∼30° to 65°). The spectrometer is enclosed in a vacuum chamber, and a sample chamber with independent ambient conditions is introduced to enable a versatile and fast-access sample environment (e.g., solid/gas/liquid samples, in situ cells, and radioactive materials). The design, capabilities, and performance are presented and discussed.
Collapse
Affiliation(s)
- S H Nowak
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, California 94025, USA
| | - R Armenta
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, California 94025, USA
| | - C P Schwartz
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, California 94025, USA
| | - A Gallo
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, California 94025, USA
| | - B Abraham
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, California 94025, USA
| | - A T Garcia-Esparza
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, California 94025, USA
| | - E Biasin
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, California 94025, USA
| | - A Prado
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, California 94025, USA
| | - A Maciel
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, California 94025, USA
| | - D Zhang
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, California 94025, USA
| | - D Day
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, California 94025, USA
| | - S Christensen
- National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, USA
| | - T Kroll
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, California 94025, USA
| | - R Alonso-Mori
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, California 94025, USA
| | - D Nordlund
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, California 94025, USA
| | - T-C Weng
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, California 94025, USA
| | - D Sokaras
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, California 94025, USA
| |
Collapse
|
15
|
Abstract
Using X-ray emission spectroscopy, we find appreciable local magnetic moments until 30 GPa to 40 GPa in the high-pressure phase of iron; however, no magnetic order is detected with neutron powder diffraction down to 1.8 K, contrary to previous predictions. Our first-principles calculations reveal a "spin-smectic" state lower in energy than previous results. This state forms antiferromagnetic bilayers separated by null spin bilayers, which allows a complete relaxation of the inherent frustration of antiferromagnetism on a hexagonal close-packed lattice. The magnetic bilayers are likely orientationally disordered, owing to the soft interlayer excitations and the near-degeneracy with other smectic phases. This possible lack of long-range correlation agrees with the null results from neutron powder diffraction. An orientationally disordered, spin-smectic state resolves previously perceived contradictions in high-pressure iron and could be integral to explaining its puzzling superconductivity.
Collapse
|
16
|
Georgiou R, Gueriau P, Sahle CJ, Bernard S, Mirone A, Garrouste R, Bergmann U, Rueff JP, Bertrand L. Carbon speciation in organic fossils using 2D to 3D x-ray Raman multispectral imaging. SCIENCE ADVANCES 2019; 5:eaaw5019. [PMID: 31497643 PMCID: PMC6716953 DOI: 10.1126/sciadv.aaw5019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 07/25/2019] [Indexed: 05/30/2023]
Abstract
The in situ two-dimensional (2D) and 3D imaging of the chemical speciation of organic fossils is an unsolved problem in paleontology and cultural heritage. Here, we use x-ray Raman scattering (XRS)-based imaging at the carbon K-edge to form 2D and 3D images of the carbon chemistry in two exceptionally preserved specimens, a fossil plant dating back from the Carboniferous and an ancient insect entrapped in 53-million-year-old amber. The 2D XRS imaging of the plant fossil reveals a homogeneous chemical composition with micrometric "pockets" of preservation, likely inherited from its geological history. The 3D XRS imaging of the insect cuticle displays an exceptionally well preserved remaining chemical signature typical of polysaccharides such as chitin around a largely hollowed-out inclusion. Our results open up new perspectives for in situ chemical speciation imaging of fossilized organic materials, with the potential to enhance our understanding of organic specimens and their paleobiology.
Collapse
Affiliation(s)
- Rafaella Georgiou
- IPANEMA, CNRS, ministère de la culture, Université de Versailles Saint-Quentin-en-Yvelines, Université Paris-Saclay, BP 48 St. Aubin, 91192 Gif-sur-Yvette, France
- Synchrotron SOLEIL, l’Orme des Merisiers, BP 48 St. Aubin, 91192 Gif-sur-Yvette, France
| | - Pierre Gueriau
- IPANEMA, CNRS, ministère de la culture, Université de Versailles Saint-Quentin-en-Yvelines, Université Paris-Saclay, BP 48 St. Aubin, 91192 Gif-sur-Yvette, France
- Institute of Earth Sciences, University of Lausanne, Géopolis, CH-1015 Lausanne, Switzerland
| | - Christoph J. Sahle
- ESRF–The European Synchrotron, 71, avenue des Martyrs, CS 40220, 38043 Grenoble, France
| | - Sylvain Bernard
- Muséum National d’Histoire Naturelle, Sorbonne Université, UMR CNRS 7590, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), 75005 Paris, France
| | - Alessandro Mirone
- ESRF–The European Synchrotron, 71, avenue des Martyrs, CS 40220, 38043 Grenoble, France
| | - Romain Garrouste
- Institut de Systématique Evolution Biodiversité (ISYEB), UMR 7205 MNHN/CNRS/Sorbonne Univ./EPHE/Univ. Antilles, Muséum National d’Histoire Naturelle, 57 rue Cuvier, CP 50, F-75005 Paris, France
| | - Uwe Bergmann
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Jean-Pascal Rueff
- Synchrotron SOLEIL, l’Orme des Merisiers, BP 48 St. Aubin, 91192 Gif-sur-Yvette, France
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique–Matière et Rayonnement, LCPMR, F-75005 Paris, France
| | - Loïc Bertrand
- IPANEMA, CNRS, ministère de la culture, Université de Versailles Saint-Quentin-en-Yvelines, Université Paris-Saclay, BP 48 St. Aubin, 91192 Gif-sur-Yvette, France
- Synchrotron SOLEIL, l’Orme des Merisiers, BP 48 St. Aubin, 91192 Gif-sur-Yvette, France
| |
Collapse
|
17
|
Borodin D, Schori A, Rueff JP, Ablett JM, Shwartz S. Evidence for Collective Nonlinear Interactions in X Ray into Ultraviolet Parametric Down-Conversion. PHYSICAL REVIEW LETTERS 2019; 122:023902. [PMID: 30720320 DOI: 10.1103/physrevlett.122.023902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Indexed: 06/09/2023]
Abstract
We present the observation of peculiar nonmonotonic photon energy dependencies of the count rates and of the rocking curves of parametric down-conversion of x rays into ultraviolet far from any atomic resonances. The observations cannot be explained by models that consider only atomic or bond charge responses and suggest that collective phenomena contribute to the effect. We propose an interpretation that includes nonlinear interactions with plasmons, which can explain the existence of peaks in this energy range. Our Letter implies that nonlinear interactions between x rays and either ultraviolet or visible radiation can be utilized as a powerful atomic-scale probe for collective effects in solids.
Collapse
Affiliation(s)
- D Borodin
- Physics Department and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, 52900 Israel
| | - A Schori
- Physics Department and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, 52900 Israel
| | - J-P Rueff
- Synchrotron SOLEIL L'Orme des Merisiers, BP 48 Saint-Aubin, 91192 Gif-sur-Yvette, France
- CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement, LCPMR, Sorbonne Université, F-75005 Paris, France
| | - J M Ablett
- Synchrotron SOLEIL L'Orme des Merisiers, BP 48 Saint-Aubin, 91192 Gif-sur-Yvette, France
| | - S Shwartz
- Physics Department and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, 52900 Israel
| |
Collapse
|