1
|
Mousavi S, Hardy JG. In-situ microscopy and digital image correlation to study the mechanical characteristics of polymer-based materials. DISCOVER MATERIALS 2025; 5:41. [PMID: 39981354 PMCID: PMC11836150 DOI: 10.1007/s43939-025-00208-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/03/2025] [Indexed: 02/22/2025]
Abstract
In-situ microscopic methods can help researchers to analyse microstructural changes of materials structures under different conditions (e.g., temperature and pressure) at various length scales. Digital Image Correlation (DIC) combines image registration and tracking to enable accurate measurements of changes in materials in 2D and 3D. This review focuses on combining microscopy and DIC to study the properties of materials (including natural/synthetic biomaterials, biological samples and their composites) in academic, public and industry settings, including exciting examples of bioimaging.
Collapse
Affiliation(s)
- Seyedtaghi Mousavi
- Department of Biochemistry, Payame Noor University, P. O. Box 19395-3697, Tehran, Iran
| | - John G. Hardy
- Department of Chemistry, Lancaster University, Lancaster, Lancashire LA1 4YB UK
- Materials Science Lancaster, Lancaster University, Lancaster, Lancashire LA1 4YB UK
| |
Collapse
|
2
|
Arsana KGY, Svenda M, Hertz HM. Sample Preparation Protocol for Laboratory Cryo-Soft X-Ray Microscopy for Studying Cellular Nanoparticle Uptake. Int J Mol Sci 2025; 26:1657. [PMID: 40004121 PMCID: PMC11855688 DOI: 10.3390/ijms26041657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/07/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Soft X-ray microscopy (SXM) is a powerful technique for high-resolution biomedical imaging, enabling the observation of bio-nano interactions in near-native conditions without the need for heavy metal staining and fluorescence labeling. A laboratory soft X-ray microscope (LSXM) was developed to bridge the resolution gap between light microscopy and electron microscopy in cellular imaging. However, LSXMs employ a lower-brightness X-ray source in comparison to those operated in synchrotron facilities, which can negatively affect the contrast of X-ray micrographs. Therefore, proper sample preparation is essential to achieve optimal imaging results. This paper details an LSXM sample preparation protocol for investigating cellular nanoparticle uptake. Samples are prepared using optimized parameters for both manual plunge-freezing and automated vitrification, ensuring the rapid transition of biological material into a solid state with controllable thickness in the 5-10 μm range, preserving cellular structures and enabling optimal X-ray transmission for cellular imaging. We demonstrate the effectiveness of this protocol in facilitating the observation of nanoparticle uptake in two different biological samples: murine macrophages and acanthamoeba. Controlling ice thickness improves X-ray transmission through the specimen, enhancing the contrast and image quality of SXM.
Collapse
Affiliation(s)
| | | | - Hans M. Hertz
- Biomedical and X-Ray Physics, Department of Applied Physics, KTH Royal Institute of Technology, 10691 Stockholm, Sweden (M.S.)
| |
Collapse
|
3
|
Gräfenstein A, Brückner D, Rumancev C, Garrevoet J, Galbierz V, Schroeder WH, Schroer CG, Falkenberg G, Rosenhahn A. Single-Slice XRF Mapping of Light Elements in Frozen-Hydrated Allium schoenoprasum via a Self-Absorption-Corrected Hyperspectral Tomographic Reconstruction Approach. Anal Chem 2023. [PMID: 37384657 DOI: 10.1021/acs.analchem.3c00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
3D and 2D-cross-sectional X-ray fluorescence analysis of biological material is a powerful tool to image the distribution of elements and to understand and quantify metal homeostasis and the distribution of anthropogenic metals and nanoparticles with minimal preparation artifacts. Using tomograms recorded on cryogenically prepared leaves of Allium schoenoprasum, the cross-sectional distribution of physiologically relevant elements like calcium, potassium, manganese, and zinc could be tomographically reconstructed by peak fitting followed by a conventional maximum-likelihood algorithm with self-absorption correction to reveal the quantitative cross-sectional element distribution. If light elements such as S and P are located deep in the sample compared to the escape depth of their characteristic X-ray fluorescence lines, the quantitative reconstruction becomes inaccurate. As a consequence, noise is amplified to a magnitude where it might be misinterpreted as actual concentration. We show that a tomographic MCA hyperspectral reconstruction in combination with a self-absorption correction allows for fitting of the XRF spectra directly in real space, which significantly improves the qualitative and quantitative analysis of the light elements compared to the conventional method as noise and artifacts in the tomographic reconstruction are reduced. This reconstruction approach can substantially improve the quantitative analysis of trace elements as it allows the fitting of summed voxel spectra in anatomical regions of interest. The presented method can be applied to XRF 2D single-slice tomography data and 3D tomograms and is particularly relevant for, but not limited to, biological material in order to help retrieve self-absorption corrected quantitative reconstructions of the spatial distribution of light elements and ultra-trace-elements.
Collapse
Affiliation(s)
- A Gräfenstein
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, Universitätsstr. 150NC4, 44780 Bochum, Germany
| | - D Brückner
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- Helmholtz Imaging Platform, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - C Rumancev
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, Universitätsstr. 150NC4, 44780 Bochum, Germany
| | - J Garrevoet
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - V Galbierz
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - W H Schroeder
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- Nanotech Consulting, Liblarer Straβe 8, 50321 Brühl, Germany
| | - C G Schroer
- Center for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- Department Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Helmholtz Imaging Platform, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - G Falkenberg
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - A Rosenhahn
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, Universitätsstr. 150NC4, 44780 Bochum, Germany
| |
Collapse
|
4
|
Wählisch A, Unterumsberger R, Hönicke P, Lubeck J, Kayser Y, Weser J, Dai G, Hahm K, Weimann T, Seim C, Rehbein S, Beckhoff B. Quantitative Element-Sensitive Analysis of Individual Nanoobjects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204943. [PMID: 36521935 DOI: 10.1002/smll.202204943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/22/2022] [Indexed: 06/17/2023]
Abstract
A reliable and quantitative material analysis is crucial for assessing new technological processes, especially to facilitate a quantitative understanding of advanced material properties at the nanoscale. To this end, X-ray fluorescence microscopy techniques can offer an element-sensitive and non-destructive tool for the investigation of a wide range of nanotechnological materials. Since X-ray radiation provides information depths of up to the microscale, even stratified or buried arrangements are easily accessible without invasive sample preparation. However, in terms of the quantification capabilities, these approaches are usually restricted to a qualitative or semi-quantitative analysis at the nanoscale. Relying on comparable reference nanomaterials is often not straightforward or impossible because the development of innovative nanomaterials has proven to be more fast-paced than any development process for appropriate reference materials. The present work corroborates that a traceable quantification of individual nanoobjects can be realized by means of an X-ray fluorescence microscope when utilizing rather conventional but well-calibrated instrumentation instead of reference materials. As a proof of concept, the total number of atoms forming a germanium nanoobject is quantified using soft X-ray radiation. Furthermore, complementary dimensional parameters of such objects are reconstructed.
Collapse
Affiliation(s)
- André Wählisch
- Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587, Berlin, Germany
| | | | - Philipp Hönicke
- Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587, Berlin, Germany
| | - Janin Lubeck
- Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587, Berlin, Germany
| | - Yves Kayser
- Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587, Berlin, Germany
| | - Jan Weser
- Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587, Berlin, Germany
| | - Gaoliang Dai
- Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116, Braunschweig, Germany
| | - Kai Hahm
- Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116, Braunschweig, Germany
| | - Thomas Weimann
- Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116, Braunschweig, Germany
| | - Christian Seim
- Technische Universität Berlin, Germany, Hardenbergstr. 36, 10623, Berlin, Germany
| | - Stefan Rehbein
- Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| | - Burkhard Beckhoff
- Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587, Berlin, Germany
| |
Collapse
|
5
|
Beckhoff B. Traceable Characterization of Nanomaterials by X-ray Spectrometry Using Calibrated Instrumentation. NANOMATERIALS 2022; 12:nano12132255. [PMID: 35808090 PMCID: PMC9268651 DOI: 10.3390/nano12132255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/27/2022] [Accepted: 06/12/2022] [Indexed: 11/16/2022]
Abstract
Traceable characterization methods allow for the accurate correlation of the functionality or toxicity of nanomaterials with their underlaying chemical, structural or physical material properties. These correlations are required for the directed development of nanomaterials to reach target functionalities such as conversion efficiencies or selective sensitivities. The reliable characterization of nanomaterials requires techniques that often need to be adapted to the nano-scaled dimensions of the samples with respect to both the spatial dimensions of the probe and the instrumental or experimental discrimination capability. The traceability of analytical methods revealing information on chemical material properties relies on reference materials or qualified calibration samples, the spatial elemental distributions of which must be very similar to the nanomaterial of interest. At the nanoscale, however, only few well-known reference materials exist. An alternate route to establish the required traceability lays in the physical calibration of the analytical instrument’s response behavior and efficiency in conjunction with a good knowledge of the various interaction probabilities. For the elemental analysis, speciation, and coordination of nanomaterials, such a physical traceability can be achieved with X-ray spectrometry. This requires the radiometric calibration of energy- and wavelength-dispersive X-ray spectrometers, as well as the reliable determination of atomic X-ray fundamental parameters using such instrumentation. In different operational configurations, the information depths, discrimination capability, and sensitivity of X-ray spectrometry can be considerably modified while preserving its traceability, allowing for the characterization of surface contamination as well as interfacial thin layer and nanoparticle chemical compositions. Furthermore, time-resolved and hybrid approaches provide access to analytical information under operando conditions or reveal dimensional information, such as elemental or species depth profiles of nanomaterials. The aim of this review is to demonstrate the absolute quantification capabilities of SI-traceable X-ray spectrometry based upon calibrated instrumentation and knowledge about X-ray interaction probabilities.
Collapse
Affiliation(s)
- Burkhard Beckhoff
- Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, 10587 Berlin, Germany
| |
Collapse
|
6
|
Combined laser-based X-ray fluorescence and particle-induced X-ray emission for versatile multi-element analysis. Sci Rep 2021; 11:9998. [PMID: 33976237 PMCID: PMC8113557 DOI: 10.1038/s41598-021-86657-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/26/2021] [Indexed: 11/16/2022] Open
Abstract
Particle and radiation sources are widely employed in manifold applications. In the last decades, the upcoming of versatile, energetic, high-brilliance laser-based sources, as produced by intense laser–matter interactions, has introduced utilization of these sources in diverse areas, given their potential to complement or even outperform existing techniques. In this paper, we show that the interaction of an intense laser with a solid target produces a versatile, non-destructive, fast analysis technique that allows to switch from laser-driven PIXE (Particle-Induced X-ray Emission) to laser-driven XRF (X-ray Fluorescence) within single laser shots, by simply changing the atomic number of the interaction target. The combination of both processes improves the retrieval of constituents in materials and allows for volumetric analysis up to tens of microns and on cm2 large areas up to a detection threshold of ppms. This opens the route for a versatile, non-destructive, and fast combined analysis technique.
Collapse
|
7
|
Sun T, Zhang X, Xu Z, Wang Y, Guo Z, Wang J, Tai R. A bidirectional scanning method for scanning transmission X-ray microscopy. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:512-517. [PMID: 33650564 DOI: 10.1107/s1600577520016112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
Scanning mode is a key factor for the comprehensive performance, including imaging efficiency, of scanning transmission X-ray microscopy (STXM). Herein is presented a bidirectional scanning method designed for STXM with an S-shaped moving track. In this method, artificially designed ramp waves are generated by a piezo-stage controller to control the two-dimensional scanning of the sample. The sample position information is measured using laser interferometric sensors and sent to a field-programmable gate array (FPGA) board which also acquires the X-ray signals simultaneously from the detector. Since the data recorded by the FPGA contain the real position of each scanned point, the influence of the backlash caused by the back-turning movement on the STXM image can be eliminated. By employing an adapted post-processing program, a re-meshed high-resolution STXM image can be obtained. This S-track bidirectional scanning method in fly-scan mode has been implemented on the STXM endstation at the Shanghai Synchrotron Radiation Facility (SSRF), and successfully resolved the ∼30 nm interval between the innermost strips of a Siemens star. This work removes the limitation on bidirectional scanning caused by motor backlash and vibration, and significantly improves the efficiency of STXM experiments.
Collapse
Affiliation(s)
- Tianxiao Sun
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, People's Republic of China
| | - Xiangzhi Zhang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, People's Republic of China
| | - Zijian Xu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, People's Republic of China
| | - Yong Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, People's Republic of China
| | - Zhi Guo
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, People's Republic of China
| | - Jian Wang
- Canadian Light Source Inc., University of Saskatchewan, 44 Innovation Boulevard, Saskatoon, Saskatchewan S7N 2V3, Canada
| | - Renzhong Tai
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, People's Republic of China
| |
Collapse
|
8
|
Oura M, Ishihara T, Osawa H, Yamane H, Hatsui T, Ishikawa T. Development of a scanning soft X-ray spectromicroscope to investigate local electronic structures on surfaces and interfaces of advanced materials under conditions ranging from low vacuum to helium atmosphere. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:664-674. [PMID: 32381766 PMCID: PMC7285684 DOI: 10.1107/s1600577520002258] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 02/18/2020] [Indexed: 06/11/2023]
Abstract
A scanning soft X-ray spectromicroscope was recently developed based mainly on the photon-in/photon-out measurement scheme for the investigation of local electronic structures on the surfaces and interfaces of advanced materials under conditions ranging from low vacuum to helium atmosphere. The apparatus was installed at the soft X-ray beamline (BL17SU) at SPring-8. The characteristic features of the apparatus are described in detail. The feasibility of this spectromicroscope was demonstrated using soft X-ray undulator radiation. Here, based on these results, element-specific two-dimensional mapping and micro-XAFS (X-ray absorption fine structure) measurements are reported, as well as the observation of magnetic domain structures from using a reference sample of permalloy micro-dot patterns fabricated on a silicon substrate, with modest spatial resolution (e.g. ∼500 nm). Then, the X-ray radiation dose for Nafion® near the fluorine K-edge is discussed as a typical example of material that is not radiation hardened against a focused X-ray beam, for near future experiments.
Collapse
Affiliation(s)
- Masaki Oura
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Tomoko Ishihara
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Hitoshi Osawa
- JASRI, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Hiroyuki Yamane
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Takaki Hatsui
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Tetsuya Ishikawa
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| |
Collapse
|
9
|
Rumancev C, Gräfenstein A, Vöpel T, Stuhr S, von Gundlach AR, Senkbeil T, Garrevoet J, Jolmes L, König B, Falkenberg G, Ebbinghaus S, Schroeder WH, Rosenhahn A. X-ray fluorescence analysis of metal distributions in cryogenic biological samples using large-acceptance-angle SDD detection and continuous scanning at the Hard X-ray Micro/Nano-Probe beamline P06 at PETRA III. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:60-66. [PMID: 31868737 PMCID: PMC6927521 DOI: 10.1107/s1600577519014048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
A new Rococo 2 X-ray fluorescence detector was implemented into the cryogenic sample environment at the Hard X-ray Micro/Nano-Probe beamline P06 at PETRA III, DESY, Hamburg, Germany. A four sensor-field cloverleaf design is optimized for the investigation of planar samples and operates in a backscattering geometry resulting in a large solid angle of up to 1.1 steradian. The detector, coupled with the Xspress 3 pulse processor, enables measurements at high count rates of up to 106 counts per second per sensor. The measured energy resolution of ∼129 eV (Mn Kα at 10000 counts s-1) is only minimally impaired at the highest count rates. The resulting high detection sensitivity allows for an accurate determination of trace element distributions such as in thin frozen hydrated biological specimens. First proof-of-principle measurements using continuous-movement 2D scans of frozen hydrated HeLa cells as a model system are reported to demonstrate the potential of the new detection system.
Collapse
Affiliation(s)
- C. Rumancev
- Analytical Chemistry – Biointerfaces, Ruhr University Bochum, 44780 Bochum, Germany
| | - A. Gräfenstein
- Analytical Chemistry – Biointerfaces, Ruhr University Bochum, 44780 Bochum, Germany
| | - T. Vöpel
- Department of Physical Chemistry II, Ruhr University Bochum, 44780 Bochum, Germany
| | - S. Stuhr
- Analytical Chemistry – Biointerfaces, Ruhr University Bochum, 44780 Bochum, Germany
| | - A. R. von Gundlach
- Analytical Chemistry – Biointerfaces, Ruhr University Bochum, 44780 Bochum, Germany
| | - T. Senkbeil
- Analytical Chemistry – Biointerfaces, Ruhr University Bochum, 44780 Bochum, Germany
| | - J. Garrevoet
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, Hamburg, Germany
| | - L. Jolmes
- Analytical Chemistry – Biointerfaces, Ruhr University Bochum, 44780 Bochum, Germany
| | - B. König
- Analytical Chemistry – Biointerfaces, Ruhr University Bochum, 44780 Bochum, Germany
| | - G. Falkenberg
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, Hamburg, Germany
| | - S. Ebbinghaus
- Department of Physical Chemistry II, Ruhr University Bochum, 44780 Bochum, Germany
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, Rebenring 56, 38106 Braunschweig, Germany
| | - W. H. Schroeder
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, Hamburg, Germany
- Nanotech Consulting, Arnoldsweilerstrasse 10, 52382 Niederzier, Germany
| | - A. Rosenhahn
- Analytical Chemistry – Biointerfaces, Ruhr University Bochum, 44780 Bochum, Germany
| |
Collapse
|
10
|
Späth A. Additive Nano-Lithography with Focused Soft X-rays: Basics, Challenges, and Opportunities. MICROMACHINES 2019; 10:E834. [PMID: 31801198 PMCID: PMC6953100 DOI: 10.3390/mi10120834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 12/18/2022]
Abstract
Focused soft X-ray beam induced deposition (FXBID) is a novel technique for direct-write nanofabrication of metallic nanostructures from metal organic precursor gases. It combines the established concepts of focused electron beam induced processing (FEBIP) and X-ray lithography (XRL). The present setup is based on a scanning transmission X-ray microscope (STXM) equipped with a gas flow cell to provide metal organic precursor molecules towards the intended deposition zone. Fundamentals of X-ray microscopy instrumentation and X-ray radiation chemistry relevant for FXBID development are presented in a comprehensive form. Recently published proof-of-concept studies on initial experiments on FXBID nanolithography are reviewed for an overview on current progress and proposed advances of nanofabrication performance. Potential applications and advantages of FXBID are discussed with respect to competing electron/ion based techniques.
Collapse
Affiliation(s)
- Andreas Späth
- Friedrich-Alexander-University Erlangen-Nuremberg, Physical Chemistry II, Egerlandstraße 3, 91058 Erlangen, Germany
| |
Collapse
|