1
|
Bogacz I, Szilagyi E, Makita H, Simon PS, Zhang M, Doyle MD, Chatterjee K, Kretzschmar M, Chernev P, Croy N, Cheah MH, Dasgupta M, Nangca I, Fransson T, Bhowmick A, Brewster AS, Sauter NK, Owada S, Tono K, Zerdane S, Oggenfuss A, Babich D, Sander M, Mankowsky R, Lemke HT, Gee LB, Sato T, Kroll T, Messinger J, Alonso-Mori R, Bergmann U, Sokaras D, Yachandra VK, Kern J, Yano J. X-ray Absorption Spectroscopy of Dilute Metalloenzymes at X-ray Free-Electron Lasers in a Shot-by-Shot Mode. J Phys Chem Lett 2025; 16:3778-3787. [PMID: 40193717 PMCID: PMC12010424 DOI: 10.1021/acs.jpclett.5c00399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/29/2025] [Accepted: 04/01/2025] [Indexed: 04/09/2025]
Abstract
X-ray absorption spectroscopy (XAS) of 3d transition metals provides important electronic structure information for many fields. However, X-ray-induced radiation damage under physiological temperature has prevented using this method to study dilute aqueous systems, such as metalloenzymes, as the catalytic reaction proceeds. Here we present a new approach to enable operando XAS of dilute biological samples and demonstrate its feasibility with K-edge XAS spectra from the Mn cluster in photosystem II and the Fe-S centers in photosystem I. This approach combines highly efficient sample delivery strategies and a robust signal normalization method with high-transmission Bragg diffraction-based spectrometers at X-ray free-electron lasers (XFELs) in a damage-free, shot-by-shot mode. These photon-out spectrometers have been optimized for discriminating the metal Mn/Fe Kα fluorescence signals from the overwhelming scattering background present on currently available detectors for XFELs that lack suitable energy discrimination. We quantify the enhanced performance metrics of the spectrometer and discuss its potential applications for acquiring time-resolved XAS spectra of biological samples during their reactions at XFELs.
Collapse
Affiliation(s)
- Isabel Bogacz
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Erzsi Szilagyi
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department
of Physics, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Hiroki Makita
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Philipp S. Simon
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Miao Zhang
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Margaret D. Doyle
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Kuntal Chatterjee
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Moritz Kretzschmar
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department
of Biology, Humboldt-Universität
zu Berlin, D 10099 Berlin, Germany
| | - Petko Chernev
- Molecular
Biomimetics, Department of Chemistry - Ångström, Molecular
Biomimetics, Uppsala University, SE 75120 Uppsala, Sweden
| | - Nicholas Croy
- Molecular
Biomimetics, Department of Chemistry - Ångström, Molecular
Biomimetics, Uppsala University, SE 75120 Uppsala, Sweden
| | - Mun-Hon Cheah
- Molecular
Biomimetics, Department of Chemistry - Ångström, Molecular
Biomimetics, Uppsala University, SE 75120 Uppsala, Sweden
| | - Medhanjali Dasgupta
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Isabela Nangca
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Thomas Fransson
- Department
of Theoretical Chemistry and Biology, KTH
Royal Institute of Technology, 114 28 Stockholm, Sweden
| | - Asmit Bhowmick
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Aaron S. Brewster
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Nicholas K. Sauter
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Shigeki Owada
- Japan Synchrotron
Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
- RIKEN
SPring-8 Center, 1-1-1
Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Kensuke Tono
- Japan Synchrotron
Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
- RIKEN
SPring-8 Center, 1-1-1
Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Serhane Zerdane
- SwissFEL, Paul
Scherrer Institut, 5232 Villigen, Switzerland
| | | | - Danylo Babich
- SwissFEL, Paul
Scherrer Institut, 5232 Villigen, Switzerland
| | - Mathias Sander
- SwissFEL, Paul
Scherrer Institut, 5232 Villigen, Switzerland
| | - Roman Mankowsky
- SwissFEL, Paul
Scherrer Institut, 5232 Villigen, Switzerland
| | - Henrik T. Lemke
- SwissFEL, Paul
Scherrer Institut, 5232 Villigen, Switzerland
| | - Leland B. Gee
- Linac
Coherent Light Source, SLAC National Accelerator
Laboratory, Menlo
Park, California 94025, United States
| | - Takahiro Sato
- Linac
Coherent Light Source, SLAC National Accelerator
Laboratory, Menlo
Park, California 94025, United States
| | - Thomas Kroll
- SSRL, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Johannes Messinger
- Molecular
Biomimetics, Department of Chemistry - Ångström, Molecular
Biomimetics, Uppsala University, SE 75120 Uppsala, Sweden
- Department
of Plant Physiology, Umeå Plant Science Centre, Umeå University, 90187 Umeå, Sweden
| | - Roberto Alonso-Mori
- Linac
Coherent Light Source, SLAC National Accelerator
Laboratory, Menlo
Park, California 94025, United States
| | - Uwe Bergmann
- Department
of Physics, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Dimosthenis Sokaras
- SSRL, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Vittal K. Yachandra
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jan Kern
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Junko Yano
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
2
|
Liu F, Li M, Diao Q, Li Z, Shen Z, Li F, Hong Z, Lian H, Yue S, Hou Q, Zhang C, Zhang D, Li C, Yang F, Yang J. Double-edge scan wavefront metrology and its application in crystal diffraction wavefront measurements. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:1146-1153. [PMID: 39073994 PMCID: PMC11371054 DOI: 10.1107/s1600577524006222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/25/2024] [Indexed: 07/31/2024]
Abstract
Achieving diffraction-limited performance in fourth-generation synchrotron radiation sources demands monochromator crystals that can preserve the wavefront across an unprecedented extensive range. There is an urgent need for techniques of absolute crystal diffraction wavefront measurement. At the Beijing Synchrotron Radiation Facility (BSRF), a novel edge scan wavefront metrology technique has been developed. This technique employs a double-edge tracking method, making diffraction-limited level absolute crystal diffraction wavefront measurement a reality. The results demonstrate an equivalent diffraction surface slope error below 70 nrad (corresponding to a wavefront phase error of 4.57% λ) r.m.s. within a nearly 6 mm range for a flat crystal in the crystal surface coordinate. The double-edge structure contributes to exceptional measurement precision for slope error reproducibility, achieving levels below 15 nrad (phase error reproducibility < λ/100) even at a first-generation synchrotron radiation source. Currently, the measurement termed double-edge scan (DES) has already been regarded as a critical feedback mechanism in the fabrication of next-generation crystals.
Collapse
Affiliation(s)
- Fang Liu
- Beijing Synchrotron Radiation Facility, Institute of High Energy PhysicsChinese Academy of SciencesBeijing100049People’s Republic of China
- University of Chinese Academy of SciencesChinese Academy of SciencesBeijing100049People’s Republic of China
| | - Ming Li
- Beijing Synchrotron Radiation Facility, Institute of High Energy PhysicsChinese Academy of SciencesBeijing100049People’s Republic of China
- University of Chinese Academy of SciencesChinese Academy of SciencesBeijing100049People’s Republic of China
| | - Qianshun Diao
- Beijing Synchrotron Radiation Facility, Institute of High Energy PhysicsChinese Academy of SciencesBeijing100049People’s Republic of China
- University of Chinese Academy of SciencesChinese Academy of SciencesBeijing100049People’s Republic of China
| | - Zhe Li
- Beijing Synchrotron Radiation Facility, Institute of High Energy PhysicsChinese Academy of SciencesBeijing100049People’s Republic of China
| | - Zhibang Shen
- Beijing Synchrotron Radiation Facility, Institute of High Energy PhysicsChinese Academy of SciencesBeijing100049People’s Republic of China
- University of Chinese Academy of SciencesChinese Academy of SciencesBeijing100049People’s Republic of China
| | - Fan Li
- National Institute of MetrologyBeijing100029People’s Republic of China
| | - Zhen Hong
- Beijing Synchrotron Radiation Facility, Institute of High Energy PhysicsChinese Academy of SciencesBeijing100049People’s Republic of China
| | - Hongkai Lian
- Beijing Synchrotron Radiation Facility, Institute of High Energy PhysicsChinese Academy of SciencesBeijing100049People’s Republic of China
| | - Shuaipeng Yue
- Beijing Synchrotron Radiation Facility, Institute of High Energy PhysicsChinese Academy of SciencesBeijing100049People’s Republic of China
| | - Qingyan Hou
- Beijing Synchrotron Radiation Facility, Institute of High Energy PhysicsChinese Academy of SciencesBeijing100049People’s Republic of China
| | - Changrui Zhang
- Beijing Synchrotron Radiation Facility, Institute of High Energy PhysicsChinese Academy of SciencesBeijing100049People’s Republic of China
| | - Dongni Zhang
- Beijing Synchrotron Radiation Facility, Institute of High Energy PhysicsChinese Academy of SciencesBeijing100049People’s Republic of China
- University of Chinese Academy of SciencesChinese Academy of SciencesBeijing100049People’s Republic of China
| | - Congcong Li
- Beijing Synchrotron Radiation Facility, Institute of High Energy PhysicsChinese Academy of SciencesBeijing100049People’s Republic of China
- University of Chinese Academy of SciencesChinese Academy of SciencesBeijing100049People’s Republic of China
| | - Fugui Yang
- Beijing Synchrotron Radiation Facility, Institute of High Energy PhysicsChinese Academy of SciencesBeijing100049People’s Republic of China
- University of Chinese Academy of SciencesChinese Academy of SciencesBeijing100049People’s Republic of China
| | - Junliang Yang
- Beijing Synchrotron Radiation Facility, Institute of High Energy PhysicsChinese Academy of SciencesBeijing100049People’s Republic of China
| |
Collapse
|
3
|
Roesner B, Raabe J, Willmott PR, Flechsig U. The concept for hard X-ray beamline optics at SLS 2.0. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:771-778. [PMID: 38819842 PMCID: PMC11226164 DOI: 10.1107/s1600577524003163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/12/2024] [Indexed: 06/01/2024]
Abstract
In the scope of the latest upgrade of the Swiss Light Source, five hard X-ray beamlines will be constructed or rebuilt. To use synergies between these beamline projects, a concept is developed here for hard X-ray beamlines that is tailored to the new storage ring. Herein, this concept is described from the source, via the front end, to the beamline optics. The latter will be outlined in detail, including a new and modular concept for hard X-ray monochromators, focusing optics and heat-load management. With a simple, easy-to-operate and robust beamline design, the new beamlines will greatly profit from the increased brilliance of the new storage ring. The performance increase is up to four orders of magnitude, while the beamline concept allows for the broad application of experimental techniques, from propagation-based methods, such as phase-contrast tomography, to imaging techniques with nanometre resolution. At the same time, spectroscopy experiments are possible as well as high-performance serial X-ray crystallography.
Collapse
Affiliation(s)
- Benedikt Roesner
- Paul Scherrer InstituteForschungsstrasse 1115232Villigen PSISwitzerland
| | - Joerg Raabe
- Paul Scherrer InstituteForschungsstrasse 1115232Villigen PSISwitzerland
| | | | - Uwe Flechsig
- Paul Scherrer InstituteForschungsstrasse 1115232Villigen PSISwitzerland
| |
Collapse
|
4
|
Barlow K, Phelps R, Eng J, Katayama T, Sutcliffe E, Coletta M, Brechin EK, Penfold TJ, Johansson JO. Tracking nuclear motion in single-molecule magnets using femtosecond X-ray absorption spectroscopy. Nat Commun 2024; 15:4043. [PMID: 38744877 PMCID: PMC11094174 DOI: 10.1038/s41467-024-48411-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/30/2024] [Indexed: 05/16/2024] Open
Abstract
The development of new data storage solutions is crucial for emerging digital technologies. Recently, all-optical magnetic switching has been achieved in dielectrics, proving to be faster than traditional methods. Despite this, single-molecule magnets (SMMs), which are an important class of magnetic materials due to their nanometre size, remain underexplored for ultrafast photomagnetic switching. Herein, we report femtosecond time-resolved K-edge X-ray absorption spectroscopy (TR-XAS) on a Mn(III)-based trinuclear SMM. Exploiting the elemental specificity of XAS, we directly track nuclear dynamics around the metal ions and show that the ultrafast dynamics upon excitation of a crystal-field transition are dominated by a magnetically active Jahn-Teller mode. Our results, supported by simulations, reveal minute bond length changes from 0.01 to 0.05 Å demonstrating the sensitivity of the method. These geometrical changes are discussed in terms of magneto-structural relationships and consequently our results illustrate the importance of TR-XAS for the emerging area of ultrafast molecular magnetism.
Collapse
Affiliation(s)
- Kyle Barlow
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ, Edinburgh, UK
| | - Ryan Phelps
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ, Edinburgh, UK
| | - Julien Eng
- Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Tetsuo Katayama
- Japan Synchrotron Radiation Research Institute, Kouto 1-1-1, Sayo, Hyogo, 679-5198, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo, 679-5148, Japan
| | - Erica Sutcliffe
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ, Edinburgh, UK
| | - Marco Coletta
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ, Edinburgh, UK
| | - Euan K Brechin
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ, Edinburgh, UK
| | - Thomas J Penfold
- Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK.
| | - J Olof Johansson
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ, Edinburgh, UK.
| |
Collapse
|
5
|
Katayama T, Choi TK, Khakhulin D, Dohn AO, Milne CJ, Vankó G, Németh Z, Lima FA, Szlachetko J, Sato T, Nozawa S, Adachi SI, Yabashi M, Penfold TJ, Gawelda W, Levi G. Atomic-scale observation of solvent reorganization influencing photoinduced structural dynamics in a copper complex photosensitizer. Chem Sci 2023; 14:2572-2584. [PMID: 36908966 PMCID: PMC9993854 DOI: 10.1039/d2sc06600a] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Photochemical reactions in solution are governed by a complex interplay between transient intramolecular electronic and nuclear structural changes and accompanying solvent rearrangements. State-of-the-art time-resolved X-ray solution scattering has emerged in the last decade as a powerful technique to observe solute and solvent motions in real time. However, disentangling solute and solvent dynamics and how they mutually influence each other remains challenging. Here, we simultaneously measure femtosecond X-ray emission and scattering to track both the intramolecular and solvation structural dynamics following photoexcitation of a solvated copper photosensitizer. Quantitative analysis assisted by molecular dynamics simulations reveals a two-step ligand flattening strongly coupled to the solvent reorganization, which conventional optical methods could not discern. First, a ballistic flattening triggers coherent motions of surrounding acetonitrile molecules. In turn, the approach of acetonitrile molecules to the copper atom mediates the decay of intramolecular coherent vibrations and induces a further ligand flattening. These direct structural insights reveal that photoinduced solute and solvent motions can be intimately intertwined, explaining how the key initial steps of light harvesting are affected by the solvent on the atomic time and length scale. Ultimately, this work takes a step forward in understanding the microscopic mechanisms of the bidirectional influence between transient solvent reorganization and photoinduced solute structural dynamics.
Collapse
Affiliation(s)
- Tetsuo Katayama
- Japan Synchrotron Radiation Research Institute Kouto 1-1-1, Sayo Hyogo 679-5198 Japan.,RIKEN SPring-8 Center 1-1-1 Kouto, Sayo Hyogo 679-5148 Japan
| | - Tae-Kyu Choi
- XFEL Division, Pohang Accelerator Laboratory Jigok-ro 127-80 Pohang 37673 Republic of Korea
| | | | - Asmus O Dohn
- Science Institute, University of Iceland 107 Reykjavík Iceland .,DTU Physics, Technical University of Denmark Kongens Lyngby Denmark
| | | | - György Vankó
- Wigner Research Centre for Physics, Hungarian Academy of Sciences H-1525 Budapest Hungary
| | - Zoltán Németh
- Wigner Research Centre for Physics, Hungarian Academy of Sciences H-1525 Budapest Hungary
| | | | - Jakub Szlachetko
- SOLARIS National Synchrotron Radiation Centre, Jagiellonian University PL-30392 Kraków Poland
| | - Tokushi Sato
- European XFEL Holzkoppel 4, Schenefeld 22869 Germany
| | - Shunsuke Nozawa
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK) 1-1 Oho Tsukuba Ibaraki 305-0801 Japan.,Department of Materials Structure Science, School of High Energy Accelerator Science, The Graduate University for Advanced Studies 1-1 Oho Tsukuba Ibaraki 305-0801 Japan
| | - Shin-Ichi Adachi
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK) 1-1 Oho Tsukuba Ibaraki 305-0801 Japan.,Department of Materials Structure Science, School of High Energy Accelerator Science, The Graduate University for Advanced Studies 1-1 Oho Tsukuba Ibaraki 305-0801 Japan
| | - Makina Yabashi
- RIKEN SPring-8 Center 1-1-1 Kouto, Sayo Hyogo 679-5148 Japan
| | - Thomas J Penfold
- Chemistry-School of Natural and Environmental Sciences, Newcastle University Newcastle Upon-Tyne NE1 7RU UK
| | - Wojciech Gawelda
- Departamento de Química, Universidad Autónoma de Madrid, Campus Cantoblanco 28047 Madrid Spain.,IMDEA-Nanociencia, Campus Cantoblanco C/Faraday 9 28049 Madrid Spain.,Faculty of Physics, Adam Mickiewicz University 61-614 Poznań Poland
| | - Gianluca Levi
- Science Institute, University of Iceland 107 Reykjavík Iceland
| |
Collapse
|
6
|
Hong Z, Diao Q, Xu W, Yuan Q, Yang J, Li Z, Jiang Y, Zhang C, Zhang D, Liu F, Zhang X, Liu P, Tao Y, Sheng W, Li M, Zhao Y. A magnetically controlled chemical-mechanical polishing (MC-CMP) approach for fabricating channel-cut silicon crystal optics for the High Energy Photon Source. JOURNAL OF SYNCHROTRON RADIATION 2023; 30:84-89. [PMID: 36601929 PMCID: PMC9814062 DOI: 10.1107/s1600577522011122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Crystal monochromators are indispensable optical components for the majority of beamlines at synchrotron radiation facilities. Channel-cut monochromators are sometimes chosen to filter monochromatic X-ray beams by virtue of their ultrahigh angular stability. Nevertheless, high-accuracy polishing on the inner diffracting surfaces remains challenging, thus hampering their performance in preserving the coherence or wavefront of the photon beam. Herein, a magnetically controlled chemical-mechanical polishing (MC-CMP) approach has been successfully developed for fine polishing of the inner surfaces of channel-cut crystals. This MC-CMP process relieves the constraints of narrow working space dictated by small offset requirements and achieves near-perfect polishing on the surface of the crystals. Using this method, a high-quality surface with roughness of 0.614 nm (root mean square, r.m.s.) is obtained in a channel-cut crystal with 7 mm gap designed for beamlines at the High Energy Photon Source, a fourth-generation synchrotron radiation source under construction. On-line X-ray topography and rocking-curve measurements indicate that the stress residual layer on the crystal surface was removed. Firstly, the measured rocking-curve width is in good agreement with the theoretical value. Secondly, the peak reflectivity is very close to theoretical values. Thirdly, topographic images of the optics after polishing were uniform without any speckle or scratches. Only a nearly 2.5 nm-thick SiO2 layer was observed on the perfect crystalline matrix from high-resolution transmission electron microscopy photographs, indicating that the structure of the bulk material is defect- and dislocation-free. Future development of MC-CMP is promising for fabricating wavefront-preserving and ultra-stable channel-cut monochromators, which are crucial to exploit the merits of fourth-generation synchrotron radiation sources or hard X-ray free-electron lasers.
Collapse
Affiliation(s)
- Zhen Hong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Qianshun Diao
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Wei Xu
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Qingxi Yuan
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Junliang Yang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Zhongliang Li
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201800, People’s Republic of China
| | - Yongcheng Jiang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Changrui Zhang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Dongni Zhang
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Fang Liu
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Xiaowei Zhang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Peng Liu
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Ye Tao
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Weifan Sheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Ming Li
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Yidong Zhao
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| |
Collapse
|
7
|
Yamanaka KI, Sato K, Sato S, Nozawa S, Lee S, Fukaya R, Fukuzawa H, You D, Saito S, Takanashi T, Katayama T, Togashi T, Nonaka T, Dohmae K, Adachi SI, Ueda K, Yabashi M, Morikawa T, Asahi R. Ultrafast Charge-Transfer Dynamics in a Visible-Light-Excited Iridium(III) Terpyridine 2-Phenylpyridine Complex Studied by Femtosecond X-ray Absorption Spectroscopy. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Early Days of SACLA XFEL. PHOTONICS 2022. [DOI: 10.3390/photonics9050357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The SACLA (SPring-8 Angstrom compact laser) was designed to significantly downsize the SASE (self-amplified spontaneous emission) type XFEL (X-ray free-electron laser), in order to generate coherent light in the wavelength region of 0.1 nm by adopting an in-vacuum undulator that can shorten the magnetic field period length. In addition, a SASE XFEL facility with a total length of 700 m has become a reality by using a C-band RF accelerating tube that enables a high acceleration gradient. Although progress was initially slow, the small-scale, low-cost SACLA was smoothly constructed, and it became the second light source to lase in the 0.1 nm wavelength region, following the LCLS (linac coherent light source) in the United States. In this paper, we look back on the history leading up to SACLA. and describe the SCSS (SPring-8 compact SASE source) project as a preparatory stage and a part of the construction/commissioning of SACLA. Since March 2012, SACLA has been operating as a shared user facility. Just a few of the upgrade activities of the facility and advanced research conducted are introduced. Finally, we will discuss the future development of the SPring-8 site, which has co-located the third-generation synchrotron radiation facility SPring-8 and the X-ray free-electron laser facility SACLA.
Collapse
|
9
|
Mara MW, Phelan BT, Xie ZL, Kim TW, Hsu DJ, Liu X, Valentine AJS, Kim P, Li X, Adachi SI, Katayama T, Mulfort KL, Chen LX. Unveiling ultrafast dynamics in bridged bimetallic complexes using optical and X-ray transient absorption spectroscopies. Chem Sci 2022; 13:1715-1724. [PMID: 35282628 PMCID: PMC8827017 DOI: 10.1039/d1sc05034f] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/14/2022] [Indexed: 01/04/2023] Open
Abstract
In photosynthetic systems employing multiple transition metal centers, the properties of charge-transfer states are tuned by the coupling between metal centers. Here, we use ultrafast optical and X-ray spectroscopies to elucidate the effects of metal–metal interactions in a bimetallic tetrapyridophenazine-bridged Os(ii)/Cu(i) complex. Despite having an appropriate driving force for Os-to-Cu hole transfer in the Os(ii) moiety excited state, no such charge transfer was observed. However, excited-state coupling between the metal centers is present, evidenced by variations in the Os MLCT lifetime depending on the identity of the opposite metal center. This coupling results in concerted coherent vibrations appearing in the relaxation kinetics of the MLCT states for both Cu and Os centers. These vibrations are dominated by metal–ligand contraction at the Cu/Os centers, which are in-phase and linked through the conjugated bridging ligand. This study shows how vibronic coupling between transition metal centers affects the ultrafast dynamics in bridged, multi-metallic systems from the earliest times after photoexcitation to excited-state decay, presenting avenues for tuning charge-transfer states through judicious choice of metal/ligand groups. In photosynthetic systems employing multiple transition metal centers, the properties of charge-transfer states are tuned by the coupling between metal centers.![]()
Collapse
Affiliation(s)
- Michael W. Mara
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60437, USA
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Brian T. Phelan
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60437, USA
| | - Zhu-Lin Xie
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60437, USA
| | - Tae Wu Kim
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60437, USA
| | - Darren J. Hsu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Xiaolin Liu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | | | - Pyosang Kim
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60437, USA
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Shin-ichi Adachi
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
- Department of Materials Structure Science, School of High Energy Accelerator Science, The Graduate University for Advanced Studies, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Tetsuo Katayama
- Japan Synchrotron Radiation Research Institute, Kouto 1-1-1, Sayo, Hyogo 679-5198, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Karen L. Mulfort
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60437, USA
| | - Lin X. Chen
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60437, USA
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
10
|
Tiwari SP, Tama F, Miyashita O. Protocol for Retrieving Three-Dimensional Biological Shapes for a Few XFEL Single-Particle Diffraction Patterns. J Chem Inf Model 2021; 61:4108-4119. [PMID: 34357759 DOI: 10.1021/acs.jcim.1c00602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
X-ray free-electron laser (XFEL) scattering promises to probe single biomolecular complexes without crystallization, enabling the study of biomolecular structures under near-physiological conditions at room temperature. However, such structural determination of biomolecules is extremely challenging thus far. In addition to the large numbers of diffraction patterns required, the orientation of each diffraction pattern needs to be accurately estimated and the missing phase information needs to be recovered for three-dimensional (3D) structure reconstruction. Given the current limitations to the amount and resolution of the data available from single-particle XFEL scattering experiments, we propose an alternative approach to find plausible 3D biological shapes from a limited number of diffraction patterns to serve as a starting point for further analyses. In our proposed strategy, small sets of input (e.g., five) XFEL diffraction patterns were matched against a library of diffraction patterns simulated from 1628 electron microscopy (EM) models to find potential matching 3D models that are consistent with the input diffraction patterns. This approach was tested for three example cases: EMD-3457 (Thermoplasma acidophilum 20S proteasome), EMD-5141 (Escherichia coli 70S ribosome complex), and EMD-5152 (budding yeast Nup84 complex). We observed that choosing the best strategy to define matching regions on the diffraction patterns is critical for identifying correctly matching diffraction patterns. While increasing the number of input diffraction patterns improved the matches in some cases, we found that the resulting matches are more dependent on the uniqueness or complexity of the shape as captured in the individual input diffraction patterns and the availability of a similar 3D biological shape in the search library. The protocol could be useful for finding candidate models for a limited amount of low-resolution data, even when insufficient for reconstruction, performing a quick exploration of new data upon collection, and the analysis of the conformational heterogeneity of the particle of interest as captured within the diffraction patterns.
Collapse
Affiliation(s)
- Sandhya P Tiwari
- RIKEN Center for Computational Science, Kobe, Hyogo 650-0047, Japan.,Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Florence Tama
- RIKEN Center for Computational Science, Kobe, Hyogo 650-0047, Japan.,Graduate School of Science, Department of Physics, Nagoya University, Nagoya, Aichi 464-8601, Japan.,Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Osamu Miyashita
- RIKEN Center for Computational Science, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
11
|
Uemura Y, Ismail ASM, Park SH, Kwon S, Kim M, Niwa Y, Wadati H, Elnaggar H, Frati F, Haarman T, Höppel N, Huse N, Hirata Y, Zhang Y, Yamagami K, Yamamoto S, Matsuda I, Katayama T, Togashi T, Owada S, Yabashi M, Halisdemir U, Koster G, Yokoyama T, Weckhuysen BM, de Groot FMF. Femtosecond Charge Density Modulations in Photoexcited CuWO 4. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:7329-7336. [PMID: 33859771 PMCID: PMC8040018 DOI: 10.1021/acs.jpcc.0c10525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Copper tungstate (CuWO4) is an important semiconductor with a sophisticated and debatable electronic structure that has a direct impact on its chemistry. Using the PAL-XFEL source, we study the electronic dynamics of photoexcited CuWO4. The Cu L3 X-ray absorption spectrum shifts to lower energy upon photoexcitation, which implies that the photoexcitation process from the oxygen valence band to the tungsten conduction band effectively increases the charge density on the Cu atoms. The decay time of this spectral change is 400 fs indicating that the increased charge density exists only for a very short time and relaxes electronically. The initial increased charge density gives rise to a structural change on a time scale longer than 200 ps.
Collapse
Affiliation(s)
- Yohei Uemura
- Inorganic
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitslaan 99, 3584 CG Utrecht, The Netherlands
- Institute
for Catalysis, Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Ahmed S. M. Ismail
- Inorganic
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitslaan 99, 3584 CG Utrecht, The Netherlands
| | - Sang Han Park
- PAL-XFEL,
Pohang Accelerator Laboratory, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, South Korea
| | - Soonnam Kwon
- PAL-XFEL,
Pohang Accelerator Laboratory, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, South Korea
| | - Minseok Kim
- PAL-XFEL,
Pohang Accelerator Laboratory, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, South Korea
| | - Yasuhiro Niwa
- Photon
Factory, Institute for Materials Structure
Science, KEK, Tsukuba 305-0801, Japan
| | - Hiroki Wadati
- Institute
for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
- Graduate
School of Material Science, University of
Hyogo, Kamigori, Hyogo 678-1297, Japan
| | - Hebatalla Elnaggar
- Inorganic
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitslaan 99, 3584 CG Utrecht, The Netherlands
| | - Federica Frati
- Inorganic
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitslaan 99, 3584 CG Utrecht, The Netherlands
| | - Ties Haarman
- Inorganic
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitslaan 99, 3584 CG Utrecht, The Netherlands
| | - Niko Höppel
- Department
of Physics and Center for Free-Electron Laser Science, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Nils Huse
- Department
of Physics and Center for Free-Electron Laser Science, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Yasuyuki Hirata
- Institute
for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| | - Yujun Zhang
- Institute
for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| | - Kohei Yamagami
- Institute
for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| | - Susumu Yamamoto
- Institute
for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| | - Iwao Matsuda
- Institute
for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| | - Tetsuo Katayama
- JASRI, Kouto, Sayo-cho, Hyogo 679-5198, Japan
- RIKEN
SPring-8 Center, Kouto Sayo-cho, Hyogo 679-5148, Japan
| | - Tadashi Togashi
- JASRI, Kouto, Sayo-cho, Hyogo 679-5198, Japan
- RIKEN
SPring-8 Center, Kouto Sayo-cho, Hyogo 679-5148, Japan
| | - Shigeki Owada
- JASRI, Kouto, Sayo-cho, Hyogo 679-5198, Japan
- RIKEN
SPring-8 Center, Kouto Sayo-cho, Hyogo 679-5148, Japan
| | - Makina Yabashi
- RIKEN
SPring-8 Center, Kouto Sayo-cho, Hyogo 679-5148, Japan
| | - Uufuk Halisdemir
- Faculty
of Science and Technology and MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 2171, 7500 AE Enschede, The Netherlands
| | - Gertjan Koster
- Faculty
of Science and Technology and MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 2171, 7500 AE Enschede, The Netherlands
| | | | - Bert M. Weckhuysen
- Inorganic
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitslaan 99, 3584 CG Utrecht, The Netherlands
| | - Frank M. F. de Groot
- Inorganic
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitslaan 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
12
|
Rein C, Uhlig J, Carrasco-Busturia D, Khalili K, Gertsen AS, Moltke A, Zhang X, Katayama T, Lastra JMG, Nielsen MM, Adachi SI, Haldrup K, Andreasen JW. Element-specific investigations of ultrafast dynamics in photoexcited Cu 2ZnSnS 4 nanoparticles in solution. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2021; 8:024501. [PMID: 33869663 PMCID: PMC8032451 DOI: 10.1063/4.0000055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
Ultrafast, light-induced dynamics in copper-zinc-tin-sulfide (CZTS) photovoltaic nanoparticles are investigated through a combination of optical and x-ray transient absorption spectroscopy. Laser-pump, x-ray-probe spectroscopy on a colloidal CZTS nanoparticle ink yields element-specificity, which reveals a rapid photo-induced shift of electron density away from Cu-sites, affecting the molecular orbital occupation and structure of CZTS. We observe the formation of a stable charge-separated and thermally excited structure, which persists for nanoseconds and involves an increased charge density at the Zn sites. Combined with density functional theory calculations, the results provide new insight into the structural and electronic dynamics of CZTS absorbers for solar cells.
Collapse
Affiliation(s)
- Christian Rein
- Department of Energy Conversion and Storage, Technical University of Denmark, Fysikvej, 2800 Kgs., Lyngby, Denmark
| | - Jens Uhlig
- NanoLund and Chemical Physics, Lund University, Box 124, 22100 Lund, Sweden
| | - David Carrasco-Busturia
- Department of Energy Conversion and Storage, Technical University of Denmark, Fysikvej, 2800 Kgs., Lyngby, Denmark
| | - Khadijeh Khalili
- Department of Energy Conversion and Storage, Technical University of Denmark, Fysikvej, 2800 Kgs., Lyngby, Denmark
| | - Anders S. Gertsen
- Department of Energy Conversion and Storage, Technical University of Denmark, Fysikvej, 2800 Kgs., Lyngby, Denmark
| | - Asbjørn Moltke
- Department of Energy Conversion and Storage, Technical University of Denmark, Fysikvej, 2800 Kgs., Lyngby, Denmark
| | - Xiaoyi Zhang
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Tetsuo Katayama
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo, 679-5198, Japan, and RIKEN Spring-8 Center, 1-1-1 Kouto, Sayo, Hyogo, 679-5148, Japan
| | - Juan Maria García Lastra
- Department of Energy Conversion and Storage, Technical University of Denmark, Fysikvej, 2800 Kgs., Lyngby, Denmark
| | - Martin Meedom Nielsen
- Department of Physics, Technical University of Denmark, Fysikvej, 2800 Kgs., Lyngby, Denmark
| | - Shin-Ichi Adachi
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan and Department of Materials Structure Science, School of High Energy Accelerator Science, The Graduate University for Advanced Studies, 1-1, Oho, Tsukuba, Ibaraki, 305-0801, Japan
| | - Kristoffer Haldrup
- Department of Physics, Technical University of Denmark, Fysikvej, 2800 Kgs., Lyngby, Denmark
| | - Jens Wenzel Andreasen
- Department of Energy Conversion and Storage, Technical University of Denmark, Fysikvej, 2800 Kgs., Lyngby, Denmark
| |
Collapse
|
13
|
A self-referenced in-situ arrival time monitor for X-ray free-electron lasers. Sci Rep 2021; 11:3562. [PMID: 33574378 PMCID: PMC7878505 DOI: 10.1038/s41598-021-82597-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 01/21/2021] [Indexed: 11/30/2022] Open
Abstract
We present a novel, highly versatile, and self-referenced arrival time monitor for measuring the femtosecond time delay between a hard X-ray pulse from a free-electron laser and an optical laser pulse, measured directly on the same sample used for pump-probe experiments. Two chirped and picosecond long optical supercontinuum pulses traverse the sample with a mutually fixed time delay of 970 fs, while a femtosecond X-ray pulse arrives at an instant in between both pulses. Behind the sample the supercontinuum pulses are temporally overlapped to yield near-perfect destructive interference in the absence of the X-ray pulse. Stimulation of the sample with an X-ray pulse delivers non-zero contributions at certain optical wavelengths, which serve as a measure of the relative arrival time of the X-ray pulse with an accuracy of better than 25 fs. We find an excellent agreement of our monitor with the existing timing diagnostics at the SACLA XFEL with a Pearson correlation value of 0.98. We demonstrate a high sensitivity to measure X-ray pulses with pulse energies as low as 30 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\upmu $$\end{document}μJ. Using a free-flowing liquid jet as interaction sample ensures the full replacement of the sample volume for each X-ray/optical event, thus enabling its utility even at MHz repetition rate XFEL sources.
Collapse
|
14
|
Femtosecond Optical Laser System with Spatiotemporal Stabilization for Pump-Probe Experiments at SACLA. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10217934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We constructed a synchronized femtosecond optical laser system with spatiotemporal stabilization for pump-probe experiments at SPring-8 Angstrom Compact Free Electron Laser (SACLA). Stabilization of output power and pointing has been achieved with a small fluctuation level of a few percent by controlling conditions of temperature and air-flow in the optical paths. A feedback system using a balanced optical-microwave phase detector (BOMPD) has been successfully realized to reduce jitter down to 50 fs. We demonstrated the temporal stability with a time-resolved X-ray diffraction measurement and observed the coherent phonon oscillation of the photo-excited Bi without the post-processing using the timing monitor.
Collapse
|
15
|
Niozu A, Kumagai Y, Nishiyama T, Fukuzawa H, Motomura K, Bucher M, Asa K, Sato Y, Ito Y, Takanashi T, You D, Ono T, Li Y, Kukk E, Miron C, Neagu L, Callegari C, Di Fraia M, Rossi G, Galli DE, Pincelli T, Colombo A, Owada S, Tono K, Kameshima T, Joti Y, Katayama T, Togashi T, Yabashi M, Matsuda K, Nagaya K, Bostedt C, Ueda K. Characterizing crystalline defects in single nanoparticles from angular correlations of single-shot diffracted X-rays. IUCRJ 2020; 7:276-286. [PMID: 32148855 PMCID: PMC7055387 DOI: 10.1107/s205225252000144x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
Characterizing and controlling the uniformity of nanoparticles is crucial for their application in science and technology because crystalline defects in the nanoparticles strongly affect their unique properties. Recently, ultra-short and ultra-bright X-ray pulses provided by X-ray free-electron lasers (XFELs) opened up the possibility of structure determination of nanometre-scale matter with Å spatial resolution. However, it is often difficult to reconstruct the 3D structural information from single-shot X-ray diffraction patterns owing to the random orientation of the particles. This report proposes an analysis approach for characterizing defects in nanoparticles using wide-angle X-ray scattering (WAXS) data from free-flying single nanoparticles. The analysis method is based on the concept of correlated X-ray scattering, in which correlations of scattered X-ray are used to recover detailed structural information. WAXS experiments of xenon nanoparticles, or clusters, were conducted at an XFEL facility in Japan by using the SPring-8 Ångstrom compact free-electron laser (SACLA). Bragg spots in the recorded single-shot X-ray diffraction patterns showed clear angular correlations, which offered significant structural information on the nanoparticles. The experimental angular correlations were reproduced by numerical simulation in which kinematical theory of diffraction was combined with geometric calculations. We also explain the diffuse scattering intensity as being due to the stacking faults in the xenon clusters.
Collapse
Affiliation(s)
- Akinobu Niozu
- Department of Physics, Kyoto University, Kyoto 606-8502, Japan
- RIKEN SPring-8 Center, Sayo, Hyogo 679-5148, Japan
| | - Yoshiaki Kumagai
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439, USA
| | - Toshiyuki Nishiyama
- Department of Physics, Kyoto University, Kyoto 606-8502, Japan
- RIKEN SPring-8 Center, Sayo, Hyogo 679-5148, Japan
| | - Hironobu Fukuzawa
- RIKEN SPring-8 Center, Sayo, Hyogo 679-5148, Japan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Koji Motomura
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Maximilian Bucher
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439, USA
| | - Kazuki Asa
- Department of Physics, Kyoto University, Kyoto 606-8502, Japan
- RIKEN SPring-8 Center, Sayo, Hyogo 679-5148, Japan
| | - Yuhiro Sato
- Department of Physics, Kyoto University, Kyoto 606-8502, Japan
- RIKEN SPring-8 Center, Sayo, Hyogo 679-5148, Japan
| | - Yuta Ito
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Tsukasa Takanashi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Daehyun You
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Taishi Ono
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Yiwen Li
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Edwin Kukk
- Department of Physics and Astronomy, University of Turku, 20014 Turku, Finland
| | - Catalin Miron
- Université Paris-Saclay, CEA, CNRS, LIDYL, 91191, Gif-sur-Yvette, France
- Extreme Light Infrastructure – Nuclear Physics (ELI–NP), Horia Hulubei National Institute for Physics and Nuclear Engineering, 30 Reactorului Street, RO-077125 Magurele, Jud. Ilfov, Romania
| | - Liviu Neagu
- Extreme Light Infrastructure – Nuclear Physics (ELI–NP), Horia Hulubei National Institute for Physics and Nuclear Engineering, 30 Reactorului Street, RO-077125 Magurele, Jud. Ilfov, Romania
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor PO Box MG-36, 077125 Magurele, Jud. Ilfov, Romania
| | - Carlo Callegari
- Elettra – Sincrotrone Trieste S.C.p.A, 34149 Basovizza, Trieste, Italy
| | - Michele Di Fraia
- Elettra – Sincrotrone Trieste S.C.p.A, 34149 Basovizza, Trieste, Italy
| | - Giorgio Rossi
- Department of Physics, Università degli Studi di Milano, Via G. Celoria 16, I-20133 Milano, Italy
| | - Davide E. Galli
- Department of Physics, Università degli Studi di Milano, Via G. Celoria 16, I-20133 Milano, Italy
| | - Tommaso Pincelli
- Department of Physics, Università degli Studi di Milano, Via G. Celoria 16, I-20133 Milano, Italy
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4–6, 14195 Berlin, Germany
| | - Alessandro Colombo
- Department of Physics, ETH Zürich, Stefano-Franscini-Platz 5, 8049 Zürich, Switzerland
| | | | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute (JASRI), Sayo, Hyogo 679-5198, Japan
| | - Takashi Kameshima
- Japan Synchrotron Radiation Research Institute (JASRI), Sayo, Hyogo 679-5198, Japan
| | - Yasumasa Joti
- Japan Synchrotron Radiation Research Institute (JASRI), Sayo, Hyogo 679-5198, Japan
| | - Tetsuo Katayama
- Japan Synchrotron Radiation Research Institute (JASRI), Sayo, Hyogo 679-5198, Japan
| | - Tadashi Togashi
- Japan Synchrotron Radiation Research Institute (JASRI), Sayo, Hyogo 679-5198, Japan
| | | | | | - Kiyonobu Nagaya
- Department of Physics, Kyoto University, Kyoto 606-8502, Japan
- RIKEN SPring-8 Center, Sayo, Hyogo 679-5148, Japan
| | - Christoph Bostedt
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439, USA
- Laboratory for Femtochemistry, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
- LUXS Laboratory for Ultrafast X-ray Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Kiyoshi Ueda
- RIKEN SPring-8 Center, Sayo, Hyogo 679-5148, Japan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| |
Collapse
|
16
|
Koide A, Uemura Y, Kido D, Wakisaka Y, Takakusagi S, Ohtani B, Niwa Y, Nozawa S, Ichiyanagi K, Fukaya R, Adachi SI, Katayama T, Togashi T, Owada S, Yabashi M, Yamamoto Y, Katayama M, Hatada K, Yokoyama T, Asakura K. Photoinduced anisotropic distortion as the electron trapping site of tungsten trioxide by ultrafast W L 1-edge X-ray absorption spectroscopy with full potential multiple scattering calculations. Phys Chem Chem Phys 2020; 22:2615-2621. [PMID: 30989154 DOI: 10.1039/c9cp01332f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Understanding the excited state of photocatalysts is significant to improve their activity for water splitting reaction. X-ray absorption fine structure (XAFS) spectroscopy in X-ray free electron lasers (XFEL) is a powerful method to address dynamic changes in electronic states and structures of photocatalysts in the excited state in ultrafast short time scales. The ultrafast atomic-scale local structural change in photoexcited WO3 was observed by W L1 edge XAFS spectroscopy using an XFEL. An anisotropic local distortion around the W atom could reproduce well the spectral features at a delay time of 100 ps after photoexcitation based on full potential multiple scattering calculations. The distortion involved the movement of W to shrink the shortest W-O bonds and elongate the longest one. The movement of the W atom could be explained by the filling of the dxy and dzx orbitals, which were originally located at the bottom of the conduction band with photoexcited electrons.
Collapse
Affiliation(s)
- Akihiro Koide
- Institute for Molecular Science, Myodaiji-cho, Okazaki 444-8585, Japan. and Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, F-35000 Rennes, France
| | - Yohei Uemura
- Institute for Molecular Science, Myodaiji-cho, Okazaki 444-8585, Japan. and Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitslaan 99, 3584 CG Utrecht, The Netherlands.
| | - Daiki Kido
- Institute for Catalysis Hokkaido University, Sapporo 001-0021, Japan.
| | - Yuki Wakisaka
- Institute for Catalysis Hokkaido University, Sapporo 001-0021, Japan.
| | - Satoru Takakusagi
- Institute for Catalysis Hokkaido University, Sapporo 001-0021, Japan.
| | - Bunsho Ohtani
- Institute for Catalysis Hokkaido University, Sapporo 001-0021, Japan.
| | - Yasuhiro Niwa
- Photon Factory, Institute for Materials Structure Sciene, KEK, Tsukuba 305-0801, Japan
| | - Shunsuke Nozawa
- Photon Factory, Institute for Materials Structure Sciene, KEK, Tsukuba 305-0801, Japan
| | - Kohei Ichiyanagi
- Photon Factory, Institute for Materials Structure Sciene, KEK, Tsukuba 305-0801, Japan
| | - Ryo Fukaya
- Photon Factory, Institute for Materials Structure Sciene, KEK, Tsukuba 305-0801, Japan
| | - Shin-Ichi Adachi
- Photon Factory, Institute for Materials Structure Sciene, KEK, Tsukuba 305-0801, Japan
| | | | | | - Shigeki Owada
- RIKEN SPring-8 Center, Kouto Sayo-cho, Hyogo 679-5148, Japan
| | - Makina Yabashi
- RIKEN SPring-8 Center, Kouto Sayo-cho, Hyogo 679-5148, Japan
| | - Yusaku Yamamoto
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Misaki Katayama
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Keisuke Hatada
- Department of Physics, University of Toyama, Toyama 930-8555, Japan
| | | | - Kiyotaka Asakura
- Institute for Catalysis Hokkaido University, Sapporo 001-0021, Japan.
| |
Collapse
|
17
|
Early time dynamics of laser-ablated silicon using ultrafast grazing incidence X-ray scattering. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.136811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Nishiyama T, Kumagai Y, Niozu A, Fukuzawa H, Motomura K, Bucher M, Ito Y, Takanashi T, Asa K, Sato Y, You D, Li Y, Ono T, Kukk E, Miron C, Neagu L, Callegari C, Di Fraia M, Rossi G, Galli DE, Pincelli T, Colombo A, Kameshima T, Joti Y, Hatsui T, Owada S, Katayama T, Togashi T, Tono K, Yabashi M, Matsuda K, Bostedt C, Nagaya K, Ueda K. Ultrafast Structural Dynamics of Nanoparticles in Intense Laser Fields. PHYSICAL REVIEW LETTERS 2019; 123:123201. [PMID: 31633947 DOI: 10.1103/physrevlett.123.123201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/22/2019] [Indexed: 06/10/2023]
Abstract
Femtosecond laser pulses have opened new frontiers for the study of ultrafast phase transitions and nonequilibrium states of matter. In this Letter, we report on structural dynamics in atomic clusters pumped with intense near-infrared (NIR) pulses into a nanoplasma state. Employing wide-angle scattering with intense femtosecond x-ray pulses from a free-electron laser source, we find that highly excited xenon nanoparticles retain their crystalline bulk structure and density in the inner core long after the driving NIR pulse. The observed emergence of structural disorder in the nanoplasma is consistent with a propagation from the surface to the inner core of the clusters.
Collapse
Affiliation(s)
- Toshiyuki Nishiyama
- Division of Physics and Astronomy, Kyoto University, Kyoto 606-8501, Japan
- RIKEN SPring-8 Center, Sayo, Hyogo 679-5148, Japan
| | - Yoshiaki Kumagai
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Akinobu Niozu
- Division of Physics and Astronomy, Kyoto University, Kyoto 606-8501, Japan
- RIKEN SPring-8 Center, Sayo, Hyogo 679-5148, Japan
| | - Hironobu Fukuzawa
- RIKEN SPring-8 Center, Sayo, Hyogo 679-5148, Japan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Koji Motomura
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Maximilian Bucher
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA
| | - Yuta Ito
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Tsukasa Takanashi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Kazuki Asa
- Division of Physics and Astronomy, Kyoto University, Kyoto 606-8501, Japan
- RIKEN SPring-8 Center, Sayo, Hyogo 679-5148, Japan
| | - Yuhiro Sato
- Division of Physics and Astronomy, Kyoto University, Kyoto 606-8501, Japan
- RIKEN SPring-8 Center, Sayo, Hyogo 679-5148, Japan
| | - Daehyun You
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Yiwen Li
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Taishi Ono
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Edwin Kukk
- Department of Physics and Astronomy, University of Turku, 20014 Turku, Finland
| | - Catalin Miron
- LIDYL, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
- Extreme Light Infrastructure-Nuclear Physics (ELI-NP), "Horia Hulubei" National Institute for Physics and Nuclear Engineering, 30 Reactorului Street, RO-077125 Măgurele, Jud. Ilfov, Romania
| | - Liviu Neagu
- Extreme Light Infrastructure-Nuclear Physics (ELI-NP), "Horia Hulubei" National Institute for Physics and Nuclear Engineering, 30 Reactorului Street, RO-077125 Măgurele, Jud. Ilfov, Romania
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor PO Box MG-36, 077125 Măgurele, Jud. Ilfov, Romania
| | - Carlo Callegari
- Elettra-Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy
| | | | - Giorgio Rossi
- Department of Physics, Università degli Studi di Milano, Via Celoria 16, 20133 Milano, Italy
| | - Davide E Galli
- Department of Physics, Università degli Studi di Milano, Via Celoria 16, 20133 Milano, Italy
| | - Tommaso Pincelli
- Department of Physics, Università degli Studi di Milano, Via Celoria 16, 20133 Milano, Italy
- Istituto Officina dei Materiali (IOM)-CNR, Laboratorio TASC, Area Science Park, S.S.14, Km 163.5, I-34149 Trieste, Italy
| | - Alessandro Colombo
- Department of Physics, Università degli Studi di Milano, Via Celoria 16, 20133 Milano, Italy
| | - Takashi Kameshima
- Japan Synchrotron Radiation Research Institute (JASRI), Sayo, Hyogo 679-5198, Japan
| | - Yasumasa Joti
- Japan Synchrotron Radiation Research Institute (JASRI), Sayo, Hyogo 679-5198, Japan
| | | | | | - Tetsuo Katayama
- Japan Synchrotron Radiation Research Institute (JASRI), Sayo, Hyogo 679-5198, Japan
| | - Tadashi Togashi
- Japan Synchrotron Radiation Research Institute (JASRI), Sayo, Hyogo 679-5198, Japan
| | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute (JASRI), Sayo, Hyogo 679-5198, Japan
| | | | - Kazuhiro Matsuda
- Division of Physics and Astronomy, Kyoto University, Kyoto 606-8501, Japan
| | - Christoph Bostedt
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA
- Paul-Scherrer Institute, CH-5232 Villigen PSI, Switzerland
- LUXS Laboratory for Ultrafast X-ray Sciences, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Kiyonobu Nagaya
- Division of Physics and Astronomy, Kyoto University, Kyoto 606-8501, Japan
- RIKEN SPring-8 Center, Sayo, Hyogo 679-5148, Japan
| | - Kiyoshi Ueda
- RIKEN SPring-8 Center, Sayo, Hyogo 679-5148, Japan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| |
Collapse
|
19
|
Katayama T, Nozawa S, Umena Y, Lee S, Togashi T, Owada S, Yabashi M. A versatile experimental system for tracking ultrafast chemical reactions with X-ray free-electron lasers. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2019; 6:054302. [PMID: 31531388 PMCID: PMC6742500 DOI: 10.1063/1.5111795] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/23/2019] [Indexed: 05/17/2023]
Abstract
An experimental system, SPINETT (SACLA Pump-probe INstrumEnt for Tracking Transient dynamics), dedicated for ultrafast pump-probe experiments using X-ray free-electron lasers has been developed. SPINETT consists of a chamber operated under 1 atm helium pressure, two Von Hamos spectrometers, and a large two-dimensional detector having a short work distance. This platform covers complementary X-ray techniques; one can perform time-resolved X-ray absorption spectroscopy, time-resolved X-ray emission spectroscopy, and time-resolved X-ray diffuse scattering. Two types of liquid injectors have been prepared for low-viscosity chemical solutions and for protein microcrystals embedded in a matrix. We performed a test experiment at SPring-8 Angstrom Compact free-electron LAser and demonstrated the capability of SPINETT to obtain the local electronic structure and geometrical information simultaneously.
Collapse
Affiliation(s)
| | | | - Yasufumi Umena
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tshushima Naka, Okayama 700-8530, Japan
| | - SungHee Lee
- Department of Chemistry and Chemical Institute for Functional Materials, Pusan National University, Busan 609-735, South Korea
| | | | | | - Makina Yabashi
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| |
Collapse
|
20
|
Katayama T, Northey T, Gawelda W, Milne CJ, Vankó G, Lima FA, Bohinc R, Németh Z, Nozawa S, Sato T, Khakhulin D, Szlachetko J, Togashi T, Owada S, Adachi SI, Bressler C, Yabashi M, Penfold TJ. Tracking multiple components of a nuclear wavepacket in photoexcited Cu(I)-phenanthroline complex using ultrafast X-ray spectroscopy. Nat Commun 2019; 10:3606. [PMID: 31399565 PMCID: PMC6689108 DOI: 10.1038/s41467-019-11499-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 07/18/2019] [Indexed: 11/09/2022] Open
Abstract
Disentangling the strong interplay between electronic and nuclear degrees of freedom is essential to achieve a full understanding of excited state processes during ultrafast nonadiabatic chemical reactions. However, the complexity of multi-dimensional potential energy surfaces means that this remains challenging. The energy flow during vibrational and electronic relaxation processes can be explored with structural sensitivity by probing a nuclear wavepacket using femtosecond time-resolved X-ray Absorption Near Edge Structure (TR-XANES). However, it remains unknown to what level of detail vibrational motions are observable in this X-ray technique. Herein we track the wavepacket dynamics of a prototypical [Cu(2,9-dimethyl-1,10-phenanthroline)2]+ complex using TR-XANES. We demonstrate that sensitivity to individual wavepacket components can be modulated by the probe energy and that the bond length change associated with molecular breathing mode can be tracked with a sub-Angstrom resolution beyond optical-domain observables. Importantly, our results reveal how state-of-the-art TR-XANES provides deeper insights of ultrafast nonadiabatic chemical reactions.
Collapse
Affiliation(s)
- Tetsuo Katayama
- Japan Synchrotron Radiation Research Institute, Kouto 1-1-1, Sayo, Hyogo, 679-5198, Japan. .,RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo, 679-5148, Japan.
| | - Thomas Northey
- Chemistry-School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon-Tyne, NE1 7RU, UK
| | - Wojciech Gawelda
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.,Faculty of Physics, Adam Mickiewicz University, 61-614, Poznań, Poland
| | | | - György Vankó
- Wigner Research Centre for Physics, Hungarian Academy of Sciences, 1525, Budapest, Hungary
| | | | - Rok Bohinc
- SwissFEL, Paul Scherrer Institut, 5232, Villigen-PSI, Switzerland
| | - Zoltán Németh
- Wigner Research Centre for Physics, Hungarian Academy of Sciences, 1525, Budapest, Hungary
| | - Shunsuke Nozawa
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan.,Department of Materials Structure Science, School of High Energy Accelerator Science, The Graduate University for Advanced Studies, 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan
| | - Tokushi Sato
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.,Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | | | - Jakub Szlachetko
- Institute of Nuclear Physics, Polish Academy of Sciences, 31-342, Kraków, Poland
| | - Tadashi Togashi
- Japan Synchrotron Radiation Research Institute, Kouto 1-1-1, Sayo, Hyogo, 679-5198, Japan.,RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo, 679-5148, Japan
| | - Shigeki Owada
- Japan Synchrotron Radiation Research Institute, Kouto 1-1-1, Sayo, Hyogo, 679-5198, Japan.,RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo, 679-5148, Japan
| | - Shin-Ichi Adachi
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan.,Department of Materials Structure Science, School of High Energy Accelerator Science, The Graduate University for Advanced Studies, 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan
| | - Christian Bressler
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.,Centre for Ultrafast Imaging CUI, University of Hamburg, 22761, Hamburg, Germany
| | - Makina Yabashi
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo, 679-5148, Japan
| | - Thomas J Penfold
- Chemistry-School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon-Tyne, NE1 7RU, UK.
| |
Collapse
|