1
|
Feng S, Xiao W, Yu Y, Liu G, Zhang Y, Chen T, Lu C. Linker-Mediated Inactivation of the SAM-II Domain in the Tandem SAM-II/SAM-V Riboswitch. Int J Mol Sci 2024; 25:11288. [PMID: 39457069 PMCID: PMC11508383 DOI: 10.3390/ijms252011288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Tandem SAM-II/SAM-V riboswitch belongs to a class of riboswitches found in the marine bacterium 'Candidatus Pelagibacter ubique'. Previous studies have demonstrated that these riboswitches have the potential for digital modulation of gene expression at both the transcriptional and translational levels. In this study, we investigate the conformational changes in the tandem SAM-II/SAM-V riboswitch binding to S-adenosylmethionine (SAM) using selective 2'-hydroxyl acylation analyzed by the primer extension (SHAPE) assay, small-angle X-ray scattering (SAXS), and oligos depressing probing. Our findings reveal that the linker between SAM-II/SAM-V aptamers blocks the SAM response of the SAM-II domain. This result proposes a new mechanism for gene expression regulation, where the ligand-binding functions of tandem riboswitches can be selectively masked or released through a linker.
Collapse
Affiliation(s)
- Shanshan Feng
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China; (S.F.); (W.X.); (Y.Y.); (Y.Z.); (T.C.)
| | - Wenwen Xiao
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China; (S.F.); (W.X.); (Y.Y.); (Y.Z.); (T.C.)
| | - Yingying Yu
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China; (S.F.); (W.X.); (Y.Y.); (Y.Z.); (T.C.)
| | - Guangfeng Liu
- National Center for Protein Science Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China;
| | - Yunlong Zhang
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China; (S.F.); (W.X.); (Y.Y.); (Y.Z.); (T.C.)
| | - Ting Chen
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China; (S.F.); (W.X.); (Y.Y.); (Y.Z.); (T.C.)
| | - Changrui Lu
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China; (S.F.); (W.X.); (Y.Y.); (Y.Z.); (T.C.)
| |
Collapse
|
2
|
Larsen DN, Kaczmarek JZ, Palarasah Y, Graversen JH, Højrup P. Epitope mapping of SARS-CoV-2 RBDs by hydroxyl radical protein footprinting reveals the importance of including negative antibody controls. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:141011. [PMID: 38499233 DOI: 10.1016/j.bbapap.2024.141011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/01/2024] [Accepted: 03/11/2024] [Indexed: 03/20/2024]
Abstract
Understanding protein-protein interactions is crucial for drug design and investigating biological processes. Various techniques, such as CryoEM, X-ray spectroscopy, linear epitope mapping, and mass spectrometry-based methods, can be employed to map binding regions on proteins. Commonly used mass spectrometry-based techniques are cross-linking and hydrogen‑deuterium exchange (HDX). Another approach, hydroxyl radical protein footprinting (HRPF), identifies binding residues on proteins but faces challenges due to high initial costs and complex setups. This study introduces a generally applicable method using Fenton chemistry for epitope mapping in a standard mass spectrometry laboratory. It emphasizes the importance of controls, particularly the inclusion of a negative antibody control, not widely utilized in HRPF epitope mapping. Quantification by TMT labelling is introduced to reduce false positives, enabling direct comparison between sample conditions and biological triplicates. Additionally, six technical replicates were incorporated to enhance the depth of analysis. Observations on the receptor-binding domain (RBD) of SARS-CoV-2 Spike Protein, Alpha and Delta variants, revealed both binding and opening regions. Significantly changed peptides upon mixing with a negative control antibody suggested structural alterations or nonspecific binding induced by the antibody alone. Integration of negative control antibody experiments and high overlap between biological triplicates led to the exclusion of 40% of significantly changed regions. The final identified binding region correlated with existing literature on neutralizing antibodies against RBD. The presented method offers a straightforward implementation for HRPF analysis in a generic mass spectrometry-based laboratory. Enhanced data reliability was achieved through increased technical and biological replicates alongside negative antibody controls.
Collapse
Affiliation(s)
- Daniel Nyberg Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark; Ovodan Biotech A/S, Havnegade 36, DK-5000 Odense, Denmark
| | | | - Yaseelan Palarasah
- Department of Inflammation, Institute of Molecular Medicine, Faculty of Health and Medical Sciences, University of Southern Denmark, Odense, Denmark
| | - Jonas Heilskov Graversen
- Department of Inflammation, Institute of Molecular Medicine, Faculty of Health and Medical Sciences, University of Southern Denmark, Odense, Denmark
| | - Peter Højrup
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark; Ovodan Biotech A/S, Havnegade 36, DK-5000 Odense, Denmark.
| |
Collapse
|
3
|
Farquhar ER, Vijayalakshmi K, Jain R, Wang B, Kiselar J, Chance MR. Intact mass spectrometry screening to optimize hydroxyl radical dose for protein footprinting. Biochem Biophys Res Commun 2023; 671:343-349. [PMID: 37329657 PMCID: PMC10510565 DOI: 10.1016/j.bbrc.2023.06.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/19/2023]
Abstract
Hydroxyl radical protein footprinting (HRPF) using synchrotron radiation is a well-validated method to assess protein structure in the native solution state. In this method, X-ray radiolysis of water generates hydroxyl radicals that can react with solvent accessible side chains of proteins, with mass spectrometry used to detect the resulting labeled products. An ideal footprinting dose provides sufficient labeling to measure the structure but not so much as to influence the results. The optimization of hydroxyl radical dose is typically performed using an indirect Alexa488 fluorescence assay sensitive to hydroxyl radical concentration, but full evaluation of the experiment's outcome relies upon bottom-up liquid chromatography mass spectrometry (LC-MS) measurements to directly determine sites and extent of oxidative labeling at the peptide and protein level. A direct evaluation of the extent of labeling to provide direct and absolute measurements of dose and "safe" dose ranges in terms of, for example, average numbers of labels per protein, would provide immediate feedback on experimental outcomes prior to embarking on detailed LC-MS analyses. To this end, we describe an approach to integrate intact MS screening of labeled samples immediately following exposure, along with metrics to quantify the extent of observed labeling from the intact mass spectra. Intact MS results on the model protein lysozyme were evaluated in the context of Alexa488 assay results and a bottom-up LC-MS analysis of the same samples. This approach provides a basis for placing delivered hydroxyl radical dose metrics on firmer technical grounds for synchrotron X-ray footprinting of proteins, with explicit parameters to increase the likelihood of a productive experimental outcome. Further, the method directs approaches to provide absolute and direct dosimetry for all types of labeling for protein footprinting.
Collapse
Affiliation(s)
- Erik R Farquhar
- Center for Synchrotron Biosciences, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, OH, 44106, USA; Department of Nutrition, Case Western Reserve University, School of Medicine, 10900 Euclid Ave., Cleveland, OH, 44106, USA.
| | - Kanchustambham Vijayalakshmi
- Center for Synchrotron Biosciences, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, OH, 44106, USA; Department of Nutrition, Case Western Reserve University, School of Medicine, 10900 Euclid Ave., Cleveland, OH, 44106, USA
| | - Rohit Jain
- Center for Synchrotron Biosciences, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, OH, 44106, USA; Department of Nutrition, Case Western Reserve University, School of Medicine, 10900 Euclid Ave., Cleveland, OH, 44106, USA; Center for Proteomics and Bioinformatics, Case Western Reserve University, School of Medicine, 10900 Euclid Ave., Cleveland, OH, 44106, USA
| | - Benlian Wang
- Department of Nutrition, Case Western Reserve University, School of Medicine, 10900 Euclid Ave., Cleveland, OH, 44106, USA; Center for Proteomics and Bioinformatics, Case Western Reserve University, School of Medicine, 10900 Euclid Ave., Cleveland, OH, 44106, USA
| | - Janna Kiselar
- Department of Nutrition, Case Western Reserve University, School of Medicine, 10900 Euclid Ave., Cleveland, OH, 44106, USA; Center for Proteomics and Bioinformatics, Case Western Reserve University, School of Medicine, 10900 Euclid Ave., Cleveland, OH, 44106, USA
| | - Mark R Chance
- Center for Synchrotron Biosciences, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, OH, 44106, USA; Department of Nutrition, Case Western Reserve University, School of Medicine, 10900 Euclid Ave., Cleveland, OH, 44106, USA; Center for Proteomics and Bioinformatics, Case Western Reserve University, School of Medicine, 10900 Euclid Ave., Cleveland, OH, 44106, USA.
| |
Collapse
|
4
|
Structural Investigation of Therapeutic Antibodies Using Hydroxyl Radical Protein Footprinting Methods. Antibodies (Basel) 2022; 11:antib11040071. [PMID: 36412837 PMCID: PMC9680451 DOI: 10.3390/antib11040071] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Commercial monoclonal antibodies are growing and important components of modern therapies against a multitude of human diseases. Well-known high-resolution structural methods such as protein crystallography are often used to characterize antibody structures and to determine paratope and/or epitope binding regions in order to refine antibody design. However, many standard structural techniques require specialized sample preparation that may perturb antibody structure or require high concentrations or other conditions that are far from the conditions conducive to the accurate determination of antigen binding or kinetics. We describe here in this minireview the relatively new method of hydroxyl radical protein footprinting, a solution-state method that can provide structural and kinetic information on antibodies or antibody-antigen interactions useful for therapeutic antibody design. We provide a brief history of hydroxyl radical footprinting, examples of current implementations, and recent advances in throughput and accessibility.
Collapse
|
5
|
Chandler-Bostock R, Bingham RJ, Clark S, Scott AJP, Wroblewski E, Barker A, White SJ, Dykeman EC, Mata CP, Bohon J, Farquhar E, Twarock R, Stockley PG. Genome-regulated Assembly of a ssRNA Virus May Also Prepare It for Infection. J Mol Biol 2022; 434:167797. [PMID: 35998704 DOI: 10.1016/j.jmb.2022.167797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022]
Abstract
Many single-stranded, positive-sense RNA viruses regulate assembly of their infectious virions by forming multiple, cognate coat protein (CP)-genome contacts at sites termed Packaging Signals (PSs). We have determined the secondary structures of the bacteriophage MS2 ssRNA genome (gRNA) frozen in defined states using constraints from X-ray synchrotron footprinting (XRF). Comparison of the footprints from phage and transcript confirms the presence of multiple PSs in contact with CP dimers in the former. This is also true for a virus-like particle (VLP) assembled around the gRNA in vitro in the absence of the single-copy Maturation Protein (MP) found in phage. Since PS folds are present at many sites across gRNA transcripts, it appears that this genome has evolved to facilitate this mechanism of assembly regulation. There are striking differences between the gRNA-CP contacts seen in phage and the VLP, suggesting that the latter are inappropriate surrogates for aspects of phage structure/function. Roughly 50% of potential PS sites in the gRNA are not in contact with the protein shell of phage. However, many of these sit adjacent to, albeit not in contact with, PS-binding sites on CP dimers. We hypothesize that these act as PSs transiently during assembly but subsequently dissociate. Combining the XRF data with PS locations from an asymmetric cryo-EM reconstruction suggests that the genome positions of such dissociations are non-random and may facilitate infection. The loss of many PS-CP interactions towards the 3' end of the gRNA would allow this part of the genome to transit more easily through the narrow basal body of the pilus extruding machinery. This is the known first step in phage infection. In addition, each PS-CP dissociation event leaves the protein partner trapped in a non-lowest free-energy conformation. This destabilizes the protein shell which must disassemble during infection, further facilitating this stage of the life-cycle.
Collapse
Affiliation(s)
| | - Richard J Bingham
- Departments of Mathematics and Biology & York Cross-Disciplinary Centre for Systems Analysis, University of York, York, UK
| | - Sam Clark
- Departments of Mathematics and Biology & York Cross-Disciplinary Centre for Systems Analysis, University of York, York, UK
| | - Andrew J P Scott
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Emma Wroblewski
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Amy Barker
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Simon J White
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Eric C Dykeman
- Departments of Mathematics and Biology & York Cross-Disciplinary Centre for Systems Analysis, University of York, York, UK
| | - Carlos P Mata
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Jen Bohon
- CWRU Center for Synchrotron Biosciences, NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Erik Farquhar
- CWRU Center for Synchrotron Biosciences, NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Reidun Twarock
- Departments of Mathematics and Biology & York Cross-Disciplinary Centre for Systems Analysis, University of York, York, UK.
| | - Peter G Stockley
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
6
|
Rosi M, Russell B, Kristensen LG, Farquhar ER, Jain R, Abel D, Sullivan M, Costello SM, Dominguez-Martin MA, Chen Y, Marqusee S, Petzold CJ, Kerfeld CA, DePonte DP, Farahmand F, Gupta S, Ralston CY. An automated liquid jet for fluorescence dosimetry and microsecond radiolytic labeling of proteins. Commun Biol 2022; 5:866. [PMID: 36008591 PMCID: PMC9411504 DOI: 10.1038/s42003-022-03775-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 07/27/2022] [Indexed: 12/02/2022] Open
Abstract
X-ray radiolytic labeling uses broadband X-rays for in situ hydroxyl radical labeling to map protein interactions and conformation. High flux density beams are essential to overcome radical scavengers. However, conventional sample delivery environments, such as capillary flow, limit the use of a fully unattenuated focused broadband beam. An alternative is to use a liquid jet, and we have previously demonstrated that use of this form of sample delivery can increase labeling by tenfold at an unfocused X-ray source. Here we report the first use of a liquid jet for automated inline quantitative fluorescence dosage characterization and sample exposure at a high flux density microfocused synchrotron beamline. Our approach enables exposure times in single-digit microseconds while retaining a high level of side-chain labeling. This development significantly boosts the method’s overall effectiveness and efficiency, generates high-quality data, and opens up the arena for high throughput and ultrafast time-resolved in situ hydroxyl radical labeling. A high-speed liquid jet delivery system improves the X-ray footprinting and mass spectrometry method to label proteins for structural studies.
Collapse
Affiliation(s)
- Matthew Rosi
- Sonoma State University, Rohnert Park, Sonoma, CA, 94928, US
| | - Brandon Russell
- Sonoma State University, Rohnert Park, Sonoma, CA, 94928, US
| | - Line G Kristensen
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, US
| | - Erik R Farquhar
- Center for Synchrotron Biosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, US
| | - Rohit Jain
- Center for Synchrotron Biosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, US
| | - Donald Abel
- Center for Synchrotron Biosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, US
| | - Michael Sullivan
- Center for Synchrotron Biosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, US
| | - Shawn M Costello
- Biophysics Graduate Program, University of California, Berkeley, CA, USA
| | - Maria Agustina Dominguez-Martin
- MSU-DOE Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, US.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, US
| | - Yan Chen
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, US
| | - Susan Marqusee
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.,Department of Chemistry, University of California, Berkeley, CA, USA.,California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
| | - Christopher J Petzold
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, US
| | - Cheryl A Kerfeld
- MSU-DOE Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, US.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, US
| | | | - Farid Farahmand
- Sonoma State University, Rohnert Park, Sonoma, CA, 94928, US
| | - Sayan Gupta
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, US.
| | - Corie Y Ralston
- Molecular Foundry Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, US.
| |
Collapse
|
7
|
Jain R, Dhillon NS, Farquhar ER, Wang B, Li X, Kiselar J, Chance MR. Multiplex Chemical Labeling of Amino Acids for Protein Footprinting Structure Assessment. Anal Chem 2022; 94:9819-9825. [PMID: 35763792 PMCID: PMC9983563 DOI: 10.1021/acs.analchem.2c01640] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Protein footprinting with mass spectrometry is an established structural biology technique for mapping solvent accessibility and assessing molecular-level interactions of proteins. In hydroxyl radical protein footprinting (HRPF), hydroxyl (OH) radicals generated by water radiolysis or other methods covalently label protein side chains. Because of the wide dynamic range of OH reactivity, not all side chains are easily detected in a single experiment. Novel reagent development and the use of radical chain reactions for labeling, including trifluoromethyl radicals, is a potential approach to normalize the labeling across a diverse set of residues. HRPF in the presence of a trifluoromethylation reagent under the right conditions could provide a "one-pot" reaction for multiplex labeling of protein side chains. Toward this goal, we have systematically evaluated amino acid labeling with the recently investigated Langlois' reagent (LR) activated by X-ray-mediated water radiolysis, followed by three different mass spectrometry methods. We compared the reactivity of CF3 and OH radical labeling for all 20 protein side chains in a competition-free environment. We found that all 20 amino acids exhibited CF3 or OH labeling in LR. Our investigations provide the evidence and knowledge set to perfect hydroxyl radical-activated trifluoromethyl chemistry as "one-pot" reaction for multiplex labeling of protein side chains to achieve higher resolution in HRPF.
Collapse
Affiliation(s)
- Rohit Jain
- Center for Synchrotron Biosciences, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA,Center for Proteomics and Bioinformatics, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| | - Nanak S. Dhillon
- Department of Nutrition, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| | - Erik R. Farquhar
- Center for Synchrotron Biosciences, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| | - Benlian Wang
- Center for Proteomics and Bioinformatics, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| | - Xiaolin Li
- Center for Proteomics and Bioinformatics, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| | - Janna Kiselar
- Center for Proteomics and Bioinformatics, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA,Department of Nutrition, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| | - Mark R. Chance
- Center for Synchrotron Biosciences, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA,Center for Proteomics and Bioinformatics, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA,Department of Nutrition, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA,Corresponding Author: Mark R. Chance - Center for Synchrotron Biosciences; Center for Proteomics and Bioinformatics; Department of Nutrition, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA.
| |
Collapse
|
8
|
Patel N, Clark S, Weiß EU, Mata CP, Bohon J, Farquhar ER, Maskell DP, Ranson NA, Twarock R, Stockley PG. In vitro functional analysis of gRNA sites regulating assembly of hepatitis B virus. Commun Biol 2021; 4:1407. [PMID: 34916604 PMCID: PMC8677749 DOI: 10.1038/s42003-021-02897-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 11/16/2021] [Indexed: 11/16/2022] Open
Abstract
The roles of RNA sequence/structure motifs, Packaging Signals (PSs), for regulating assembly of an HBV genome transcript have been investigated in an efficient in vitro assay containing only core protein (Cp) and RNA. Variants of three conserved PSs, within the genome of a strain not used previously, preventing correct presentation of a Cp-recognition loop motif are differentially deleterious for assembly of nucleocapsid-like particles (NCPs). Cryo-electron microscopy reconstruction of the T = 4 NCPs formed with the wild-type gRNA transcript, reveal that the interior of the Cp shell is in contact with lower resolution density, potentially encompassing the arginine-rich protein domains and gRNA. Symmetry relaxation followed by asymmetric reconstruction reveal that such contacts are made at every symmetry axis. We infer from their regulation of assembly that some of these contacts would involve gRNA PSs, and confirmed this by X-ray RNA footprinting. Mutation of the ε stem-loop in the gRNA, where polymerase binds in vivo, produces a poor RNA assembly substrate with Cp alone, largely due to alterations in its conformation. The results show that RNA PSs regulate assembly of HBV genomic transcripts in vitro, and therefore may play similar roles in vivo, in concert with other molecular factors.
Collapse
Affiliation(s)
- Nikesh Patel
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| | - Sam Clark
- Departments of Biology and Mathematics & York Centre for Complex Systems Analysis, University of York, York, YO10 5DD, UK
| | - Eva U Weiß
- Departments of Biology and Mathematics & York Centre for Complex Systems Analysis, University of York, York, YO10 5DD, UK
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Josef-Schneider-Str. 2/D15, D-97080, Würzburg, Germany
| | - Carlos P Mata
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
- Electron and Confocal Microscopy Unit (UCCTs), National Centre for Microbiology (ISCIII). Majadahonda, Madrid, Spain
| | - Jen Bohon
- CWRU Center for Synchrotron Biosciences, NSLS-II, Brookhaven National Laboratory, Upton, NY, 11973, USA
- Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Erik R Farquhar
- CWRU Center for Synchrotron Biosciences, NSLS-II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Daniel P Maskell
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Reidun Twarock
- Departments of Biology and Mathematics & York Centre for Complex Systems Analysis, University of York, York, YO10 5DD, UK
| | - Peter G Stockley
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
9
|
McKenzie-Coe A, Montes NS, Jones LM. Hydroxyl Radical Protein Footprinting: A Mass Spectrometry-Based Structural Method for Studying the Higher Order Structure of Proteins. Chem Rev 2021; 122:7532-7561. [PMID: 34633178 DOI: 10.1021/acs.chemrev.1c00432] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hydroxyl radical protein footprinting (HRPF) coupled to mass spectrometry has been successfully used to investigate a plethora of protein-related questions. The method, which utilizes hydroxyl radicals to oxidatively modify solvent-accessible amino acids, can inform on protein interaction sites and regions of conformational change. Hydroxyl radical-based footprinting was originally developed to study nucleic acids, but coupling the method with mass spectrometry has enabled the study of proteins. The method has undergone several advancements since its inception that have increased its utility for more varied applications such as protein folding and the study of biotherapeutics. In addition, recent innovations have led to the study of increasingly complex systems including cell lysates and intact cells. Technological advances have also increased throughput and allowed for better control of experimental conditions. In this review, we provide a brief history of the field of HRPF and detail recent innovations and applications in the field.
Collapse
Affiliation(s)
- Alan McKenzie-Coe
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, United States
| | - Nicholas S Montes
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, United States
| | - Lisa M Jones
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, United States
| |
Collapse
|
10
|
Kristensen LG, Holton JM, Rad B, Chen Y, Petzold CJ, Gupta S, Ralston CY. Hydroxyl radical mediated damage of proteins in low oxygen solution investigated using X-ray footprinting mass spectrometry. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:1333-1342. [PMID: 34475282 PMCID: PMC8415330 DOI: 10.1107/s1600577521004744] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/04/2021] [Indexed: 05/12/2023]
Abstract
In the method of X-ray footprinting mass spectrometry (XFMS), proteins at micromolar concentration in solution are irradiated with a broadband X-ray source, and the resulting hydroxyl radical modifications are characterized using liquid chromatography mass spectrometry to determine sites of solvent accessibility. These data are used to infer structural changes in proteins upon interaction with other proteins, folding, or ligand binding. XFMS is typically performed under aerobic conditions; dissolved molecular oxygen in solution is necessary in many, if not all, the hydroxyl radical modifications that are generally reported. In this study we investigated the result of X-ray induced modifications to three different proteins under aerobic versus low oxygen conditions, and correlated the extent of damage with dose calculations. We observed a concentration-dependent protecting effect at higher protein concentration for a given X-ray dose. For the typical doses used in XFMS experiments there was minimal X-ray induced aggregation and fragmentation, but for higher doses we observed formation of covalent higher molecular weight oligomers, as well as fragmentation, which was affected by the amount of dissolved oxygen in solution. The higher molecular weight products in the form of dimers, trimers, and tetramers were present in all sample preparations, and, upon X-ray irradiation, these oligomers became non-reducible as seen in SDS-PAGE. The results provide an important contribution to the large body of X-ray radiation damage literature in structural biology research, and will specifically help inform the future planning of XFMS, and well as X-ray crystallography and small-angle X-ray scattering experiments.
Collapse
Affiliation(s)
- Line G Kristensen
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - James M Holton
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Behzad Rad
- Molecular Foundry Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Yan Chen
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Christopher J Petzold
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Sayan Gupta
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Corie Y Ralston
- Molecular Foundry Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| |
Collapse
|
11
|
Jain R, Abel D, Rakitin M, Sullivan M, Lodowski DT, Chance MR, Farquhar ER. New high-throughput endstation to accelerate the experimental optimization pipeline for synchrotron X-ray footprinting. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:1321-1332. [PMID: 34475281 PMCID: PMC8415340 DOI: 10.1107/s1600577521005026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/11/2021] [Indexed: 05/30/2023]
Abstract
Synchrotron X-ray footprinting (XF) is a growing structural biology technique that leverages radiation-induced chemical modifications via X-ray radiolysis of water to produce hydroxyl radicals that probe changes in macromolecular structure and dynamics in solution states of interest. The X-ray Footprinting of Biological Materials (XFP) beamline at the National Synchrotron Light Source II provides the structural biology community with access to instrumentation and expert support in the XF method, and is also a platform for development of new technological capabilities in this field. The design and implementation of a new high-throughput endstation device based around use of a 96-well PCR plate form factor and supporting diagnostic instrumentation for synchrotron XF is described. This development enables a pipeline for rapid comprehensive screening of the influence of sample chemistry on hydroxyl radical dose using a convenient fluorescent assay, illustrated here with a study of 26 organic compounds. The new high-throughput endstation device and sample evaluation pipeline now available at the XFP beamline provide the worldwide structural biology community with a robust resource for carrying out well optimized synchrotron XF studies of challenging biological systems with complex sample compositions.
Collapse
Affiliation(s)
- Rohit Jain
- Center for Synchrotron Biosciences, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
- Center for Proteomics and Bioinformatics, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
- Department of Nutrition, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Donald Abel
- Center for Synchrotron Biosciences, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Maksim Rakitin
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Michael Sullivan
- Center for Synchrotron Biosciences, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
- Department of Nutrition, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - David T. Lodowski
- Center for Proteomics and Bioinformatics, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
- Department of Nutrition, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Mark R. Chance
- Center for Synchrotron Biosciences, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
- Center for Proteomics and Bioinformatics, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
- Department of Nutrition, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Erik R. Farquhar
- Center for Synchrotron Biosciences, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
- Department of Nutrition, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| |
Collapse
|
12
|
Siddons DP, Kuczewski AJ, Rumaiz AK, Tappero R, Idir M, Nakhoda K, Khanfri J, Singh V, Farquhar ER, Sullivan M, Abel D, Brady DJ, Yuan X. A coded aperture microscope for X-ray fluorescence full-field imaging. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:1703-1706. [PMID: 33147197 PMCID: PMC7642964 DOI: 10.1107/s1600577520012308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
The design and construction of an instrument for full-field imaging of the X-ray fluorescence emitted by a fully illuminated sample are presented. The aim is to produce an X-ray microscope with a few micrometers spatial resolution, which does not need to scan the sample. Since the fluorescence from a spatially inhomogeneous sample may contain many fluorescence lines, the optic which will provide the magnification of the emissions must be achromatic, i.e. its optical properties must be energy-independent. The only optics which fulfill this requirement in the X-ray regime are mirrors and pinholes. The throughput of a simple pinhole is very low, so the concept of coded apertures is an attractive extension which improves the throughput by having many pinholes, and retains the achromatic property. Modified uniformly redundant arrays (MURAs) with 10 µm openings and 50% open area have been fabricated using gold in a lithographic technique, fabricated on a 1 µm-thick silicon nitride membrane. The gold is 25 µm thick, offering good contrast up to 20 keV. The silicon nitride is transparent down into the soft X-ray region. MURAs with various orders, from 19 up to 73, as well as their respective negative (a mask where open and closed positions are inversed compared with the original mask), have been made. Having both signs of mask will reduce near-field artifacts and make it possible to correct for any lack of contrast.
Collapse
Affiliation(s)
- D. P. Siddons
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - A. J. Kuczewski
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - A. K. Rumaiz
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - R. Tappero
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - M. Idir
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - K. Nakhoda
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - J. Khanfri
- Stony Brook University, Stony Brook, NY 11794, USA
| | - V. Singh
- Louisiana State University, Baton Rouge, LA 70803, USA
| | - E. R. Farquhar
- Case Western Reserve University, Cleveland, OH 44106, USA
| | - M. Sullivan
- Case Western Reserve University, Cleveland, OH 44106, USA
| | - D. Abel
- Case Western Reserve University, Cleveland, OH 44106, USA
| | | | - X. Yuan
- Nokia Bell Labs, Murray Hill, NJ 07974, USA
| |
Collapse
|
13
|
Liu XR, Zhang MM, Gross ML. Mass Spectrometry-Based Protein Footprinting for Higher-Order Structure Analysis: Fundamentals and Applications. Chem Rev 2020; 120:4355-4454. [PMID: 32319757 PMCID: PMC7531764 DOI: 10.1021/acs.chemrev.9b00815] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Proteins adopt different higher-order structures (HOS) to enable their unique biological functions. Understanding the complexities of protein higher-order structures and dynamics requires integrated approaches, where mass spectrometry (MS) is now positioned to play a key role. One of those approaches is protein footprinting. Although the initial demonstration of footprinting was for the HOS determination of protein/nucleic acid binding, the concept was later adapted to MS-based protein HOS analysis, through which different covalent labeling approaches "mark" the solvent accessible surface area (SASA) of proteins to reflect protein HOS. Hydrogen-deuterium exchange (HDX), where deuterium in D2O replaces hydrogen of the backbone amides, is the most common example of footprinting. Its advantage is that the footprint reflects SASA and hydrogen bonding, whereas one drawback is the labeling is reversible. Another example of footprinting is slow irreversible labeling of functional groups on amino acid side chains by targeted reagents with high specificity, probing structural changes at selected sites. A third footprinting approach is by reactions with fast, irreversible labeling species that are highly reactive and footprint broadly several amino acid residue side chains on the time scale of submilliseconds. All of these covalent labeling approaches combine to constitute a problem-solving toolbox that enables mass spectrometry as a valuable tool for HOS elucidation. As there has been a growing need for MS-based protein footprinting in both academia and industry owing to its high throughput capability, prompt availability, and high spatial resolution, we present a summary of the history, descriptions, principles, mechanisms, and applications of these covalent labeling approaches. Moreover, their applications are highlighted according to the biological questions they can answer. This review is intended as a tutorial for MS-based protein HOS elucidation and as a reference for investigators seeking a MS-based tool to address structural questions in protein science.
Collapse
Affiliation(s)
| | | | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA, 63130
| |
Collapse
|
14
|
Chance MR, Farquhar ER, Yang S, Lodowski DT, Kiselar J. Protein Footprinting: Auxiliary Engine to Power the Structural Biology Revolution. J Mol Biol 2020; 432:2973-2984. [PMID: 32088185 PMCID: PMC7245549 DOI: 10.1016/j.jmb.2020.02.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 12/25/2022]
Abstract
Structural biology is entering an exciting time where many new high-resolution structures of large complexes and membrane proteins are determined regularly. These advances have been driven by over fifteen years of technology advancements, first in macromolecular crystallography, and recently in Cryo-electron microscopy. These structures are allowing detailed questions about functional mechanisms of the structures, and the biology enabled by these structures, to be addressed for the first time. At the same time, mass spectrometry technologies for protein structure analysis, "footprinting" studies, have improved their sensitivity and resolution dramatically and can provide detailed sub-peptide and residue level information for validating structures and interactions or understanding the dynamics of structures in the context of ligand binding or assembly. In this perspective, we review the use of protein footprinting to extend our understanding of macromolecular systems, particularly for systems challenging for analysis by other techniques, such as intrinsically disordered proteins, amyloidogenic proteins, and other proteins/complexes so far recalcitrant to existing methods. We also illustrate how the availability of high-resolution structural information can be a foundation for a suite of hybrid approaches to divine structure-function relationships beyond what individual techniques can deliver.
Collapse
Affiliation(s)
- Mark R Chance
- Case Center for Proteomics and Bioinformatics, USA; Case Center for Synchrotron Biosciences, USA; Department of Nutrition, Case Western Reserve University, School of Medicine, 10900 Euclid Ave., Cleveland, OH, 44106, USA.
| | | | - Sichun Yang
- Case Center for Proteomics and Bioinformatics, USA; Department of Nutrition, Case Western Reserve University, School of Medicine, 10900 Euclid Ave., Cleveland, OH, 44106, USA
| | - David T Lodowski
- Case Center for Proteomics and Bioinformatics, USA; Department of Nutrition, Case Western Reserve University, School of Medicine, 10900 Euclid Ave., Cleveland, OH, 44106, USA
| | - Janna Kiselar
- Case Center for Proteomics and Bioinformatics, USA; Department of Nutrition, Case Western Reserve University, School of Medicine, 10900 Euclid Ave., Cleveland, OH, 44106, USA
| |
Collapse
|
15
|
Gupta S, Chen Y, Petzold CJ, DePonte DP, Ralston CY. Development of Container Free Sample Exposure for Synchrotron X-ray Footprinting. Anal Chem 2020; 92:1565-1573. [PMID: 31790200 DOI: 10.1021/acs.analchem.9b04849] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The method of X-ray footprinting and mass spectrometry (XFMS) on large protein assemblies and membrane protein samples requires high flux density to overcome the hydroxyl radical scavenging reactions produced by the buffer constituents and the total protein content. Previously, we successfully developed microsecond XFMS using microfluidic capillary flow and a microfocused broadband X-ray source at the Advanced Light Source synchrotron beamlines, but the excessive radiation damage incurred when using capillaries prevented the full usage of a high-flux density beam. Here we present another significant advance for the XFMS method: the instrumentation of a liquid injection jet to deliver container free samples to the X-ray beam. Our preliminary experiments with a liquid jet at a bending magnet X-ray beamline demonstrate the feasibility of the approach and show a significant improvement in the effective dose for both the Alexa fluorescence assay and protein samples compared to conventional capillary flow methods. The combination of precisely controlled high dose delivery, shorter exposure times, and elimination of radiation damage due to capillary effects significantly increases the signal quality of the hydroxyl radical modification products and the dose-response data. This new approach is the first application of container free sample handling for XFMS and opens up the method for even further advances, such as high-quality microsecond time-resolved XFMS studies.
Collapse
Affiliation(s)
- Sayan Gupta
- Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Yan Chen
- Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | | | - Daniel P DePonte
- Stanford Linear Accelerator Center , Menlo Park , California 94025 , United States
| | - Corie Y Ralston
- Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| |
Collapse
|
16
|
Du Y, Duc NM, Rasmussen SGF, Hilger D, Kubiak X, Wang L, Bohon J, Kim HR, Wegrecki M, Asuru A, Jeong KM, Lee J, Chance MR, Lodowski DT, Kobilka BK, Chung KY. Assembly of a GPCR-G Protein Complex. Cell 2019; 177:1232-1242.e11. [PMID: 31080064 DOI: 10.1016/j.cell.2019.04.022] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 02/25/2019] [Accepted: 04/09/2019] [Indexed: 12/30/2022]
Abstract
The activation of G proteins by G protein-coupled receptors (GPCRs) underlies the majority of transmembrane signaling by hormones and neurotransmitters. Recent structures of GPCR-G protein complexes obtained by crystallography and cryoelectron microscopy (cryo-EM) reveal similar interactions between GPCRs and the alpha subunit of different G protein isoforms. While some G protein subtype-specific differences are observed, there is no clear structural explanation for G protein subtype-selectivity. All of these complexes are stabilized in the nucleotide-free state, a condition that does not exist in living cells. In an effort to better understand the structural basis of coupling specificity, we used time-resolved structural mass spectrometry techniques to investigate GPCR-G protein complex formation and G-protein activation. Our results suggest that coupling specificity is determined by one or more transient intermediate states that serve as selectivity filters and precede the formation of the stable nucleotide-free GPCR-G protein complexes observed in crystal and cryo-EM structures.
Collapse
Affiliation(s)
- Yang Du
- Molecular and Cellular Physiology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Nguyen Minh Duc
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Søren G F Rasmussen
- Department of Neuroscience, University of Copenhagen, Copenhagen 2200, Denmark
| | - Daniel Hilger
- Molecular and Cellular Physiology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Xavier Kubiak
- Department of Neuroscience, University of Copenhagen, Copenhagen 2200, Denmark
| | - Liwen Wang
- Department of Nutrition, Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jennifer Bohon
- Department of Nutrition, Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; Case Center for Synchrotron Biosciences, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Hee Ryung Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Marcin Wegrecki
- Department of Neuroscience, University of Copenhagen, Copenhagen 2200, Denmark
| | - Awuri Asuru
- Department of Nutrition, Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Kyung Min Jeong
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jeongmi Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Mark R Chance
- Department of Nutrition, Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; Case Center for Synchrotron Biosciences, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - David T Lodowski
- Department of Nutrition, Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Brian K Kobilka
- Molecular and Cellular Physiology, School of Medicine, Stanford University, Stanford, CA 94305, USA.
| | - Ka Young Chung
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|