1
|
Rodrigues MJ, Cabry M, Collie G, Carter M, McAndrew C, Owen RL, Bellenie BR, Le Bihan YV, van Montfort RLM. Specific radiation damage to halogenated inhibitors and ligands in protein-ligand crystal structures. J Appl Crystallogr 2024; 57:1951-1965. [PMID: 39628887 PMCID: PMC11611281 DOI: 10.1107/s1600576724010549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/30/2024] [Indexed: 12/06/2024] Open
Abstract
Protein-inhibitor crystal structures aid medicinal chemists in efficiently improving the potency and selectivity of small-molecule inhibitors. It is estimated that a quarter of lead molecules in drug discovery projects are halogenated. Protein-inhibitor crystal structures have shed light on the role of halogen atoms in ligand binding. They form halogen bonds with protein atoms and improve shape complementarity of inhibitors with protein binding sites. However, specific radiation damage (SRD) can cause cleavage of carbon-halogen (C-X) bonds during X-ray diffraction data collection. This study shows significant C-X bond cleavage in protein-ligand structures of the therapeutic cancer targets B-cell lymphoma 6 (BCL6) and heat shock protein 72 (HSP72) complexed with halogenated ligands, which is dependent on the type of halogen and chemical structure of the ligand. The study found that metrics used to evaluate the fit of the ligand to the electron density deteriorated with increasing X-ray dose, and that SRD eliminated the anomalous signal from brominated ligands. A point of diminishing returns is identified, where collecting highly redundant data reduces the anomalous signal that may be used to identify binding sites of low-affinity ligands or for experimental phasing. Straightforward steps are proposed to mitigate the effects of C-X bond cleavage on structures of proteins bound to halogenated ligands and to improve the success of anomalous scattering experiments.
Collapse
Affiliation(s)
- Matthew J. Rodrigues
- Centre for Cancer Drug DiscoveryThe Institute of Cancer Research15 Cotswold RoadSuttonLondonSM2 5NGUnited Kingdom
- Division of Structural BiologyThe Institute of Cancer ResearchLondonSW3 6JBUnited Kingdom
| | - Marc Cabry
- Centre for Cancer Drug DiscoveryThe Institute of Cancer Research15 Cotswold RoadSuttonLondonSM2 5NGUnited Kingdom
- Division of Structural BiologyThe Institute of Cancer ResearchLondonSW3 6JBUnited Kingdom
| | - Gavin Collie
- Centre for Cancer Drug DiscoveryThe Institute of Cancer Research15 Cotswold RoadSuttonLondonSM2 5NGUnited Kingdom
- Division of Structural BiologyThe Institute of Cancer ResearchLondonSW3 6JBUnited Kingdom
| | - Michael Carter
- Centre for Cancer Drug DiscoveryThe Institute of Cancer Research15 Cotswold RoadSuttonLondonSM2 5NGUnited Kingdom
| | - Craig McAndrew
- Centre for Cancer Drug DiscoveryThe Institute of Cancer Research15 Cotswold RoadSuttonLondonSM2 5NGUnited Kingdom
| | - Robin L. Owen
- Diamond Light Source Harwell Science and Innovation Campus DidcotOX11 0DEUnited Kingdom
| | - Benjamin R. Bellenie
- Centre for Cancer Drug DiscoveryThe Institute of Cancer Research15 Cotswold RoadSuttonLondonSM2 5NGUnited Kingdom
| | - Yann-Vaï Le Bihan
- Centre for Cancer Drug DiscoveryThe Institute of Cancer Research15 Cotswold RoadSuttonLondonSM2 5NGUnited Kingdom
- Division of Structural BiologyThe Institute of Cancer ResearchLondonSW3 6JBUnited Kingdom
| | - Rob L. M. van Montfort
- Centre for Cancer Drug DiscoveryThe Institute of Cancer Research15 Cotswold RoadSuttonLondonSM2 5NGUnited Kingdom
- Division of Structural BiologyThe Institute of Cancer ResearchLondonSW3 6JBUnited Kingdom
| |
Collapse
|
2
|
Schofield LC, Dialpuri JS, Murshudov GN, Agirre J. Post-translational modifications in the Protein Data Bank. Acta Crystallogr D Struct Biol 2024; 80:647-660. [PMID: 39207896 PMCID: PMC11394121 DOI: 10.1107/s2059798324007794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Proteins frequently undergo covalent modification at the post-translational level, which involves the covalent attachment of chemical groups onto amino acids. This can entail the singular or multiple addition of small groups, such as phosphorylation; long-chain modifications, such as glycosylation; small proteins, such as ubiquitination; as well as the interconversion of chemical groups, such as the formation of pyroglutamic acid. These post-translational modifications (PTMs) are essential for the normal functioning of cells, as they can alter the physicochemical properties of amino acids and therefore influence enzymatic activity, protein localization, protein-protein interactions and protein stability. Despite their inherent importance, accurately depicting PTMs in experimental studies of protein structures often poses a challenge. This review highlights the role of PTMs in protein structures, as well as the prevalence of PTMs in the Protein Data Bank, directing the reader to accurately built examples suitable for use as a modelling reference.
Collapse
Affiliation(s)
- Lucy C Schofield
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, United Kingdom
| | - Jordan S Dialpuri
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, United Kingdom
| | - Garib N Murshudov
- MRC Laboratory of Molecular Biology, University of Cambridge, Cambridge, United Kingdom
| | - Jon Agirre
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, United Kingdom
| |
Collapse
|
3
|
Li X, Li C, Zhang W, Wang Y, Qian P, Huang H. Inflammation and aging: signaling pathways and intervention therapies. Signal Transduct Target Ther 2023; 8:239. [PMID: 37291105 PMCID: PMC10248351 DOI: 10.1038/s41392-023-01502-8] [Citation(s) in RCA: 388] [Impact Index Per Article: 194.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 04/26/2023] [Accepted: 05/15/2023] [Indexed: 06/10/2023] Open
Abstract
Aging is characterized by systemic chronic inflammation, which is accompanied by cellular senescence, immunosenescence, organ dysfunction, and age-related diseases. Given the multidimensional complexity of aging, there is an urgent need for a systematic organization of inflammaging through dimensionality reduction. Factors secreted by senescent cells, known as the senescence-associated secretory phenotype (SASP), promote chronic inflammation and can induce senescence in normal cells. At the same time, chronic inflammation accelerates the senescence of immune cells, resulting in weakened immune function and an inability to clear senescent cells and inflammatory factors, which creates a vicious cycle of inflammation and senescence. Persistently elevated inflammation levels in organs such as the bone marrow, liver, and lungs cannot be eliminated in time, leading to organ damage and aging-related diseases. Therefore, inflammation has been recognized as an endogenous factor in aging, and the elimination of inflammation could be a potential strategy for anti-aging. Here we discuss inflammaging at the molecular, cellular, organ, and disease levels, and review current aging models, the implications of cutting-edge single cell technologies, as well as anti-aging strategies. Since preventing and alleviating aging-related diseases and improving the overall quality of life are the ultimate goals of aging research, our review highlights the critical features and potential mechanisms of inflammation and aging, along with the latest developments and future directions in aging research, providing a theoretical foundation for novel and practical anti-aging strategies.
Collapse
Affiliation(s)
- Xia Li
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310058, China
| | - Chentao Li
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Wanying Zhang
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Yanan Wang
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Pengxu Qian
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310058, China.
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - He Huang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310058, China.
| |
Collapse
|
4
|
Garrido Ruiz D, Sandoval-Perez A, Rangarajan AV, Gunderson EL, Jacobson MP. Cysteine Oxidation in Proteins: Structure, Biophysics, and Simulation. Biochemistry 2022; 61:2165-2176. [PMID: 36161872 PMCID: PMC9583617 DOI: 10.1021/acs.biochem.2c00349] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Cysteine side chains
can exist in distinct oxidation
states depending
on the pH and redox potential of the environment, and cysteine oxidation
plays important yet complex regulatory roles. Compared with the effects
of post-translational modifications such as phosphorylation, the effects
of oxidation of cysteine to sulfenic, sulfinic, and sulfonic acid
on protein structure and function remain relatively poorly characterized.
We present an analysis of the role of cysteine reactivity as a regulatory
factor in proteins, emphasizing the interplay between electrostatics
and redox potential as key determinants of the resulting oxidation
state. A review of current computational approaches suggests underdeveloped
areas of research for studying cysteine reactivity through molecular
simulations.
Collapse
Affiliation(s)
- Diego Garrido Ruiz
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States
| | - Angelica Sandoval-Perez
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States
| | - Amith Vikram Rangarajan
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States
| | - Emma L Gunderson
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States
| | - Matthew P Jacobson
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States
| |
Collapse
|
5
|
Deng D, Zhang L, Dong M, Samuel RE, Ofori-Boadu A, Lamssali M. Radioactive waste: A review. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1818-1825. [PMID: 32860717 DOI: 10.1002/wer.1442] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/13/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
The reviewed papers presented here provide a general overview of worldwide radioactive waste-related studies conducted in 2019. The current review includes studies related to safety assessments, decommission and decontamination of nuclear facilities, fusion facilities, and transportation. Further, the review highlights radioactive wastewater decontamination, management solutions for the final disposal of low- and high-level radioactive wastes (LLRW and HLRW), interim storage and final disposal options for spent fuel (SF), and tritiated wastes, with a focus on environmental impacts due to the mobility of radionuclides in the ecosystem, water and soil along with other research progress made in the management of radioactive waste. PRACTITIONER POINTS: The release of radionuclides and their subsequent fate and transport in the environment poses public health concern and has stimulated recent research on the waste management techniques. Seeking a safe and environmental-friendly solution is the current trend for existing and projected inventories of radioactive waste. Significant progress in the field of geological disposal of radioactive waste has been made in the last two decades.
Collapse
Affiliation(s)
- Dongyang Deng
- Department of Built Environment, North Carolina A&T State University, Greensboro, North Carolina, USA
| | - Lifeng Zhang
- Department of Nanoengineering, North Carolina A&T State University, Greensboro, North Carolina, USA
| | - Ming Dong
- Department of Chemistry, North Carolina A&T State University, Greensboro, North Carolina, USA
| | - Raymond E Samuel
- Department of Biology, Center for Outreach in Alzheimer's Aging and Community Health (COAACH), North Carolina A&T State University, Greensboro, North Carolina, USA
| | - Andrea Ofori-Boadu
- Department of Built Environment, North Carolina A&T State University, Greensboro, North Carolina, USA
| | - Mehdi Lamssali
- Department of Built Environment, North Carolina A&T State University, Greensboro, North Carolina, USA
| |
Collapse
|
6
|
Bhattacharyya R, Dhar J, Ghosh Dastidar S, Chakrabarti P, Weiss MS. The susceptibility of disulfide bonds towards radiation damage may be explained by S⋯O interactions. IUCRJ 2020; 7:825-834. [PMID: 32939274 PMCID: PMC7467163 DOI: 10.1107/s2052252520008520] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/25/2020] [Indexed: 05/30/2023]
Abstract
Radiation-induced damage to protein crystals during X-ray diffraction data collection is a major impediment to obtaining accurate structural information on macromolecules. Some of the specific impairments that are inflicted upon highly brilliant X-ray irradiation are metal-ion reduction, disulfide-bond cleavage and a loss of the integrity of the carboxyl groups of acidic residues. With respect to disulfide-bond reduction, previous results have indicated that not all disulfide bridges are equally susceptible to damage. A careful analysis of the chemical environment of disulfide bonds in the structures of elastase, lysozyme, acetylcholinesterase and other proteins suggests that S-S bonds which engage in a close contact with a carbonyl O atom along the extension of the S-S bond vector are more susceptible to reduction than the others. Such an arrangement predisposes electron transfer to occur from the O atom to the disulfide bond, leading to its reduction. The interaction between a nucleophile and an electrophile, akin to hydrogen bonding, stabilizes protein structures, but it also provides a pathway of electron transfer to the S-S bond, leading to its reduction during exposure of the protein crystal to an intense X-ray beam. An otherwise stabilizing interaction can thus be the cause of destabilization under the condition of radiation exposure.
Collapse
Affiliation(s)
- Rajasri Bhattacharyya
- Department of Biochemistry, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700 054, India
| | - Jesmita Dhar
- Department of Biochemistry, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700 054, India
| | - Shubhra Ghosh Dastidar
- Division of Bioinformatics, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700 054, India
| | - Pinak Chakrabarti
- Department of Biochemistry, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700 054, India
| | - Manfred S. Weiss
- Macromolecular Crystallography (HZB-MX), Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Strasse 15, D-12489 Berlin, Germany
| |
Collapse
|
7
|
Garman EF, Weik M. X-ray radiation damage to biological samples: recent progress. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:907-911. [PMID: 31274412 DOI: 10.1107/s1600577519009408] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 06/30/2019] [Indexed: 05/20/2023]
Abstract
With the continuing development of beamlines for macromolecular crystallography (MX) over the last few years providing ever higher X-ray flux densities, it has become even more important to be aware of the effects of radiation damage on the resulting structures. Nine papers in this issue cover a range of aspects related to the physics and chemistry of the manifestations of this damage, as observed in both MX and small-angle X-ray scattering (SAXS) on crystals, solutions and tissue samples. The reports include measurements of the heating caused by X-ray irradiation in ruby microcrystals, low-dose experiments examining damage rates as a function of incident X-ray energy up to 30 keV on a metallo-enzyme using a CdTe detector of high quantum efficiency as well as a theoretical analysis of the gains predicted in diffraction efficiency using these detectors, a SAXS examination of low-dose radiation exposure effects on the dissociation of a protein complex related to human health, theoretical calculations describing radiation chemistry pathways which aim to explain the specific structural damage widely observed in proteins, investigation of radiation-induced damage effects in a DNA crystal, a case study on a metallo-enzyme where structural movements thought to be mechanism related might actually be radiation-damage-induced changes, and finally a review describing what X-ray radiation-induced cysteine modifications can teach us about protein dynamics and catalysis. These papers, along with some other relevant literature published since the last Journal of Synchrotron Radiation Radiation Damage special issue in 2017, are briefly summarized below.
Collapse
Affiliation(s)
- Elspeth F Garman
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Martin Weik
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044 Grenoble, France
| |
Collapse
|