1
|
Gupta S, Russell B, Kristensen LG, Tyler J, Costello SM, Marqusee S, Rad B, Ralston CY. Enabling simultaneous photoluminescence spectroscopy and X-ray footprinting mass spectrometry to study protein conformation and interactions. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:1214-1225. [PMID: 39749913 PMCID: PMC11802294 DOI: 10.1039/d4ay01670j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
X-ray footprinting mass spectrometry (XFMS) is a structural biology method that uses broadband X-rays for in situ hydroxyl radical labeling to map protein interactions and conformation in solution. However, while XFMS alone provides important structural information on biomolecules, as we move into the era of the interactome, hybrid methods are becoming increasingly necessary to gain a comprehensive understanding of protein complexes and interactions. Toward this end, we report the development of the first synergetic application of inline and real-time fluorescent spectroscopy at the Advanced Light Source's XFMS facility to study local protein interactions and global conformational changes simultaneously. To facilitate general use, we designed a flexible and optimum system for producing high-quality spectroscopy-XFMS hybrid data, with rapid interchangeable liquid jet or capillary sample delivery for multimodal inline spectroscopy, and several choices for optofluidic environments. To validate the hybrid system, we used the covalently interacting SpyCatcher-SpyTag split protein system. We show that our hybrid system can be used to detect the interaction of SpyTag and SpyCatcher via fluorescence resonance energy transfer (FRET), while elucidating key structural features throughout the complex at the residue level via XFMS. Our results highlight the usefulness of hybrid method in providing binding and structural details to precisely engineer protein interactions.
Collapse
Affiliation(s)
- Sayan Gupta
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Brandon Russell
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Line G Kristensen
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - James Tyler
- Molecular Foundry Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
| | - Shawn M Costello
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Susan Marqusee
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Behzad Rad
- Molecular Foundry Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
| | - Corie Y Ralston
- Molecular Foundry Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
| |
Collapse
|
2
|
Sutter M, Utschig LM, Niklas J, Paul S, Kahan DN, Gupta S, Poluektov OG, Ferlez BH, Tefft NM, TerAvest MA, Hickey DP, Vermaas JV, Ralston CY, Kerfeld CA. Electrochemical cofactor recycling of bacterial microcompartments. Proc Natl Acad Sci U S A 2024; 121:e2414220121. [PMID: 39585991 PMCID: PMC11626177 DOI: 10.1073/pnas.2414220121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/15/2024] [Indexed: 11/27/2024] Open
Abstract
Bacterial microcompartments (BMCs) are prokaryotic organelles that consist of a protein shell which sequesters metabolic reactions in its interior. While most of the substrates and products are relatively small and can permeate the shell, many of the encapsulated enzymes require cofactors that must be regenerated inside. We have analyzed the occurrence of an enzyme previously assigned as a cobalamin (vitamin B12) reductase and, curiously, found it in many unrelated BMC types that do not employ B12 cofactors. We propose Nicotinamide adenine dinucleotide (NAD+) regeneration as the function of this enzyme and name it Metabolosome Nicotinamide Adenine Dinucleotide Hydrogen (NADH) dehydrogenase (MNdh). Its partner shell protein BMC-TSE (tandem domain BMC shell protein of the single layer type for electron transfer) assists in passing the generated electrons to the outside. We support this hypothesis with bioinformatic analysis, functional assays, Electron Paramagnetic Resonance spectroscopy, protein voltammetry, and structural modeling verified with X-ray footprinting. This finding represents a paradigm for the BMC field, identifying a new, widely occurring route for cofactor recycling and a new function for the shell as separating redox environments.
Collapse
Affiliation(s)
- Markus Sutter
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI48824
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Lisa M. Utschig
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL60439
| | - Jens Niklas
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL60439
| | - Sathi Paul
- Molecular Foundry Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Darren N. Kahan
- Biophysics Graduate Program, University of California, Berkeley, CA94720
| | - Sayan Gupta
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Oleg G. Poluektov
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL60439
| | - Bryan H. Ferlez
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI48824
| | - Nicholas M. Tefft
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI48824
| | - Michaela A. TerAvest
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI48824
| | - David P. Hickey
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI48824
| | - Josh V. Vermaas
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI48824
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI48824
| | - Corie Y. Ralston
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
- Molecular Foundry Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Cheryl A. Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI48824
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI48824
| |
Collapse
|
3
|
Mayr AL, Paunkov A, Hummel K, Razzazi-Fazeli E, Leitsch D. Comparative proteomic analysis of metronidazole-sensitive and resistant Trichomonas vaginalis suggests a novel mode of metronidazole action and resistance. Int J Parasitol Drugs Drug Resist 2024; 26:100566. [PMID: 39368438 PMCID: PMC11490683 DOI: 10.1016/j.ijpddr.2024.100566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/07/2024]
Abstract
The microaerophilic parasite Trichomonas vaginalis occurs worldwide and causes inflammation of the urogenital tract, especially in women. With 156 million infections annually, trichomoniasis is the most prevalent non-viral sexually transmitted disease. Trichomoniasis is treated with 5-nitroimidazoles, especially metronidazole, which are prodrugs that have to be reduced at their nitro group to be activated. Resistance rates to metronidazole have remained comparably low, but they can be higher in certain areas leading to an increase of refractory cases. Metronidazole resistance in T. vaginalis can develop in vivo in clinical isolates, or it can be induced in the laboratory. Both types of resistance share certain characteristics but differ with regard to the dependence of ambient oxygen to become manifest. Although several candidate factors for metronidazole resistance have been described in the past, e.g. pyruvate:ferredoxin oxidoreductase and ferredoxin or thioredoxin reductase, open questions regarding their role in resistance have remained. In order to address these questions, we performed a proteomic study with metronidazole-sensitive and -resistant laboratory strains, as well as with clinical strains, in order to identify factors causative for resistance. The list of proteins consistently associated with resistance was surprisingly short. Resistant laboratory and clinical strains only shared the downregulation of flavin reductase 1 (FR1), an enzyme previously identified to be involved in resistance. Originally, FR1 was believed to be an oxygen scavenging enzyme, but here we identified it as a ferric iron reductase which produces ferrous iron. Based on this finding and on further experimental evidence as presented herein, we propose a novel mechanism of metronidazole activation which is based on ferrous iron binding to proteins, thereby rendering them susceptible to complex formation with metronidazole. Upon resolution of iron-protein-metronidazole complexes, metronidazole radicals are formed which quickly react with thiols or proteins in the direct vicinity, leading to breaks in the peptide backbone.
Collapse
Affiliation(s)
- Anna-Lena Mayr
- VetCore Facility for Research, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| | - Ana Paunkov
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Kinderspitalgasse 15, 1090, Vienna, Austria
| | - Karin Hummel
- VetCore Facility for Research, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| | - Ebrahim Razzazi-Fazeli
- VetCore Facility for Research, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| | - David Leitsch
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Kinderspitalgasse 15, 1090, Vienna, Austria.
| |
Collapse
|
4
|
Wang F, Zhang Q, An R, Lyu C, Xu J, Wang D. Reactive species of plasma-activated water for murine norovirus 1 inactivation. Food Res Int 2024; 194:114877. [PMID: 39232515 DOI: 10.1016/j.foodres.2024.114877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024]
Abstract
Human norovirus (HuNoV), the leading cause of foodborne acute gastroenteritis, poses a serious threat to public health. Traditional disinfection methods lead to destructions of food properties and functions, and/or environmental contaminations. Green and efficient approaches are urgently needed to disinfect HuNoV. Plasma-activated water (PAW) containing amounts of reactive species is an emerging nonthermal and eco-friendly disinfectant towards the pathogenic microorganisms. However, the disinfection efficacy and mechanism of PAW on HuNoV has not yet been studied. Murine norovirus 1 (MNV-1) is one of the most commonly used HuNoV surrogates to evaluate the efficacy of disinfectants. In the current study, the inactivation efficacy of MNV-1 by PAW was investigated. The results demonstrated that PAW significantly inactivated MNV-1, reducing the viral titer from approximately 6 log10 TCID50/mL to non-detectable level. The decreased pH, increased oxidation-reduction potential (ORP) and conductivity of PAW were observed compared with that of deionized water. Compositional analysis revealed that hydrogen peroxide (H2O2), nitrate (NO3-) and hydroxyl radical (OH) were the functional reactive species in MNV-1 inactivation. L-histidine could scavenge most of the inactivation effect in a concentration-dependent manner. Moreover, PAW could induce damage to viral proteins. Part of MNV-1 particles was destroyed, while others were structurally intact without infectiousness. After 45 days of storage at 4 °C, PAW generated with 80 % O2 and 100 % O2 could still reduce over 4 log10 TCID50/mL of the viral titer. In addition, PAW prepared using hard water induced approximately 6 log10 TCID50/mL reduction of MNV-1. PAW treatment of MNV-1-inoculated blueberries reduced the viral titer from 3.79 log10 TCID50/mL to non-detectable level. Together, findings of the current study uncovered the crucial reactive species in PAW inactivate MNV-1 and provided a potential disinfection strategy to combat HuNoV in foods, water, and environment.
Collapse
Affiliation(s)
- Fengqing Wang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Zhang
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China
| | - Ran An
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Chenang Lyu
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jialun Xu
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Dapeng Wang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
5
|
Sutter M, Utschig LM, Niklas J, Paul S, Kahan DN, Gupta S, Poluektov OG, Ferlez BH, Tefft NM, TerAvest MA, Hickey DP, Vermaas JV, Ralston CY, Kerfeld CA. Electrochemical cofactor recycling of bacterial microcompartments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.15.603600. [PMID: 39071365 PMCID: PMC11275729 DOI: 10.1101/2024.07.15.603600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Bacterial microcompartments (BMCs) are prokaryotic organelles that consist of a protein shell which sequesters metabolic reactions in its interior. While most of the substrates and products are relatively small and can permeate the shell, many of the encapsulated enzymes require cofactors that must be regenerated inside. We have analyzed the occurrence of an enzyme previously assigned as a cobalamin (vitamin B12) reductase and, curiously, found it in many unrelated BMC types that do not employ B12 cofactors. We propose NAD+ regeneration as a new function of this enzyme and name it MNdh, for Metabolosome NADH dehydrogenase. Its partner shell protein BMC-TSE assists in passing the generated electrons to the outside. We support this hypothesis with bioinformatic analysis, functional assays, EPR spectroscopy, protein voltammetry and structural modeling verified with X-ray footprinting. This discovery represents a new paradigm for the BMC field, identifying a new, widely occurring route for cofactor recycling and a new function for the shell as separating redox environments.
Collapse
Affiliation(s)
- Markus Sutter
- MSU-DOE Plant Research Laboratory, Michigan State University; East Lansing, MI 48824, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory; Berkeley, CA 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory; Berkeley, CA 94720, USA
| | - Lisa M. Utschig
- Chemical Sciences and Engineering Division, Argonne National Laboratory; Lemont, IL 60439, USA
| | - Jens Niklas
- Chemical Sciences and Engineering Division, Argonne National Laboratory; Lemont, IL 60439, USA
| | - Sathi Paul
- Molecular Foundry Division, Lawrence Berkeley National Laboratory; Berkeley, CA 94720, USA
| | - Darren N. Kahan
- Biophysics Graduate Program, University of California; Berkeley, CA, 94720, USA
| | - Sayan Gupta
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory; Berkeley, CA 94720, USA
| | - Oleg G. Poluektov
- Chemical Sciences and Engineering Division, Argonne National Laboratory; Lemont, IL 60439, USA
| | - Bryan H. Ferlez
- MSU-DOE Plant Research Laboratory, Michigan State University; East Lansing, MI 48824, USA
| | - Nicholas M. Tefft
- Department of Biochemistry and Molecular Biology, Michigan State University; East Lansing, MI 48824, USA
| | - Michaela A. TerAvest
- Department of Biochemistry and Molecular Biology, Michigan State University; East Lansing, MI 48824, USA
| | - David P. Hickey
- Department of Chemical Engineering and Materials Science, Michigan State University; East Lansing, MI 48824, USA
| | - Josh V. Vermaas
- MSU-DOE Plant Research Laboratory, Michigan State University; East Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University; East Lansing, MI 48824, USA
| | - Corie Y. Ralston
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory; Berkeley, CA 94720, USA
- Molecular Foundry Division, Lawrence Berkeley National Laboratory; Berkeley, CA 94720, USA
| | - Cheryl A. Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University; East Lansing, MI 48824, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory; Berkeley, CA 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory; Berkeley, CA 94720, USA
- Department of Biochemistry and Molecular Biology, Michigan State University; East Lansing, MI 48824, USA
| |
Collapse
|
6
|
Jain R, Dhillon NS, Kanchustambham VL, Lodowski DT, Farquhar ER, Kiselar J, Chance MR. Evaluating Mass Spectrometry-Based Hydroxyl Radical Protein Footprinting of a Benchtop Flash Oxidation System against a Synchrotron X-ray Beamline. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:476-486. [PMID: 38335063 DOI: 10.1021/jasms.3c00368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Hydroxyl radical protein footprinting (HRPF) using synchrotron X-ray radiation (XFP) and mass spectrometry is a well-validated structural biology method that provides critical insights into macromolecular structural dynamics, such as determining binding sites, measuring affinity, and mapping epitopes. Numerous alternative sources for generating the hydroxyl radicals (•OH) needed for HRPF, such as laser photolysis and plasma irradiation, complement synchrotron-based HRPF, and a recently developed commercially available instrument based on flash lamp photolysis, the FOX system, enables access to laboratory benchtop HRPF. Here, we evaluate performing HRPF experiments in-house with a benchtop FOX instrument compared to synchrotron-based X-ray footprinting at the NSLS-II XFP beamline. Using lactate oxidase (LOx) as a model system, we carried out •OH labeling experiments using both instruments, followed by nanoLC-MS/MS bottom-up peptide mass mapping. Experiments were performed under high glucose concentrations to mimic the highly scavenging conditions present in biological buffers and human clinical samples, where less •OH are available for reaction with the biomolecule(s) of interest. The performance of the FOX and XFP HRPF methods was compared, and we found that tuning the •OH dosage enabled optimal labeling coverage for both setups under physiologically relevant highly scavenging conditions. Our study demonstrates the complementarity of FOX and XFP labeling approaches, demonstrating that benchtop instruments such as the FOX photolysis system can increase both the throughput and the accessibility of the HRPF technique.
Collapse
Affiliation(s)
- Rohit Jain
- Center for Synchrotron Biosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
- Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
- Department of Nutrition, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Nanak S Dhillon
- Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
- Department of Nutrition, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Vijaya Lakshmi Kanchustambham
- Center for Synchrotron Biosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
- Department of Nutrition, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - David T Lodowski
- Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
- Department of Nutrition, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Erik R Farquhar
- Center for Synchrotron Biosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
- Department of Nutrition, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Janna Kiselar
- Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
- Department of Nutrition, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Mark R Chance
- Center for Synchrotron Biosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
- Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
- Department of Nutrition, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| |
Collapse
|
7
|
Gupta S, Inman JL, De Chant J, Obst-Huebl L, Nakamura K, Costello SM, Marqusee S, Mao JH, Kunz L, Paisley R, Vozenin MC, Snijders AM, Ralston CY. A Novel Platform for Evaluating Dose Rate Effects on Oxidative Damage to Peptides: Toward a High-Throughput Method to Characterize the Mechanisms Underlying the FLASH Effect. Radiat Res 2023; 200:523-530. [PMID: 38014573 PMCID: PMC10754258 DOI: 10.1667/rade-23-00131.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/05/2023] [Indexed: 11/29/2023]
Abstract
High dose rate radiation has gained considerable interest recently as a possible avenue for increasing the therapeutic window in cancer radiation treatment. The sparing of healthy tissue at high dose rates relative to conventional dose rates, while maintaining tumor control, has been termed the FLASH effect. Although the effect has been validated in animal models using multiple radiation sources, it is not yet well understood. Here, we demonstrate a new experimental platform for quantifying oxidative damage to protein sidechains in solution as a function of radiation dose rate and oxygen availability using liquid chromatography mass spectrometry. Using this reductionist approach, we show that for both X-ray and electron sources, isolated peptides in solution are oxidatively modified to different extents as a function of both dose rate and oxygen availability. Our method provides an experimental platform for exploring the parameter space of the dose rate effect on oxidative changes to proteins in solution.
Collapse
Affiliation(s)
- Sayan Gupta
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720
| | - Jamie L. Inman
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720
| | - Jared De Chant
- Accelerator Technology and Applied Physics Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720
| | - Lieselotte Obst-Huebl
- Accelerator Technology and Applied Physics Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720
| | - Kei Nakamura
- Accelerator Technology and Applied Physics Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720
| | - Shawn M. Costello
- Biophysics Graduate Program, Department of Chemistry; California Institute for Quantitative Biosciences, University of California, Berkeley, Califormia; Chan Zuckerberg Biohub, San Francisco, California
| | - Susan Marqusee
- Department of Molecular and Cell Biology, Department of Chemistry; California Institute for Quantitative Biosciences, University of California, Berkeley, Califormia; Chan Zuckerberg Biohub, San Francisco, California
| | - Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720
| | - Louis Kunz
- University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ryan Paisley
- University Hospital and University of Lausanne, Lausanne, Switzerland
| | | | - Antoine M. Snijders
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720
| | - Corie Y. Ralston
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720
| |
Collapse
|
8
|
Gupta S, Raskatov JA, Ralston CY. A Hybrid Structural Method for Investigating Low Molecular Weight Oligomeric Structures of Amyloid Beta. Chembiochem 2022; 23:e202200333. [PMID: 35980391 PMCID: PMC9729406 DOI: 10.1002/cbic.202200333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/16/2022] [Indexed: 01/25/2023]
Abstract
Spurred in part by the failure of recent therapeutics targeting amyloid β plaques in Alzheimer's Disease (AD), attention is increasingly turning to the oligomeric forms of this peptide that form early in the aggregation process. However, while numerous amyloid β fibril structures have been characterized, primarily by NMR spectroscopy and cryo-EM, obtaining structural information on the low molecular weight forms of amyloid β that presumably precede and/or seed fibril formation has proved challenging. These transient forms are heterogeneous, and depend heavily on experimental conditions such as buffer, temperature, concentration, and degree of quiescence during measurement. Here, we present the concept for a new approach to delineating structural features of early-stage low molecular weight amyloid β oligomers, using a solvent accessibility assay in conjunction with simultaneous fluorescence measurements.
Collapse
Affiliation(s)
- Sayan Gupta
- Molecular Foundry Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley CA 94720 (USA)
| | - Jevgenij A. Raskatov
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Physical Science Building 356, 1156 High Street, Santa Cruz, CA 95064 (USA)
| | - Corie Y. Ralston
- Molecular Foundry Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley CA 94720 (USA)
| |
Collapse
|
9
|
Rosi M, Russell B, Kristensen LG, Farquhar ER, Jain R, Abel D, Sullivan M, Costello SM, Dominguez-Martin MA, Chen Y, Marqusee S, Petzold CJ, Kerfeld CA, DePonte DP, Farahmand F, Gupta S, Ralston CY. An automated liquid jet for fluorescence dosimetry and microsecond radiolytic labeling of proteins. Commun Biol 2022; 5:866. [PMID: 36008591 PMCID: PMC9411504 DOI: 10.1038/s42003-022-03775-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 07/27/2022] [Indexed: 12/02/2022] Open
Abstract
X-ray radiolytic labeling uses broadband X-rays for in situ hydroxyl radical labeling to map protein interactions and conformation. High flux density beams are essential to overcome radical scavengers. However, conventional sample delivery environments, such as capillary flow, limit the use of a fully unattenuated focused broadband beam. An alternative is to use a liquid jet, and we have previously demonstrated that use of this form of sample delivery can increase labeling by tenfold at an unfocused X-ray source. Here we report the first use of a liquid jet for automated inline quantitative fluorescence dosage characterization and sample exposure at a high flux density microfocused synchrotron beamline. Our approach enables exposure times in single-digit microseconds while retaining a high level of side-chain labeling. This development significantly boosts the method’s overall effectiveness and efficiency, generates high-quality data, and opens up the arena for high throughput and ultrafast time-resolved in situ hydroxyl radical labeling. A high-speed liquid jet delivery system improves the X-ray footprinting and mass spectrometry method to label proteins for structural studies.
Collapse
Affiliation(s)
- Matthew Rosi
- Sonoma State University, Rohnert Park, Sonoma, CA, 94928, US
| | - Brandon Russell
- Sonoma State University, Rohnert Park, Sonoma, CA, 94928, US
| | - Line G Kristensen
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, US
| | - Erik R Farquhar
- Center for Synchrotron Biosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, US
| | - Rohit Jain
- Center for Synchrotron Biosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, US
| | - Donald Abel
- Center for Synchrotron Biosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, US
| | - Michael Sullivan
- Center for Synchrotron Biosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, US
| | - Shawn M Costello
- Biophysics Graduate Program, University of California, Berkeley, CA, USA
| | - Maria Agustina Dominguez-Martin
- MSU-DOE Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, US.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, US
| | - Yan Chen
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, US
| | - Susan Marqusee
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.,Department of Chemistry, University of California, Berkeley, CA, USA.,California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
| | - Christopher J Petzold
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, US
| | - Cheryl A Kerfeld
- MSU-DOE Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, US.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, US
| | | | - Farid Farahmand
- Sonoma State University, Rohnert Park, Sonoma, CA, 94928, US
| | - Sayan Gupta
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, US.
| | - Corie Y Ralston
- Molecular Foundry Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, US.
| |
Collapse
|
10
|
Garman EF, Weik M. Radiation damage to biological samples: still a pertinent issue. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:1278-1283. [PMID: 34475277 PMCID: PMC8415327 DOI: 10.1107/s1600577521008845] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
An understanding of radiation damage effects suffered by biological samples during structural analysis using both X-rays and electrons is pivotal to obtain reliable molecular models of imaged molecules. This special issue on radiation damage contains six papers reporting analyses of damage from a range of biophysical imaging techniques. For X-ray diffraction, an in-depth study of multi-crystal small-wedge data collection single-wavelength anomalous dispersion phasing protocols is presented, concluding that an absorbed dose of 5 MGy per crystal was optimal to allow reliable phasing. For small-angle X-ray scattering, experiments are reported that evaluate the efficacy of three radical scavengers using a protein designed to give a clear signature of damage in the form of a large conformational change upon the breakage of a disulfide bond. The use of X-rays to induce OH radicals from the radiolysis of water for X-ray footprinting are covered in two papers. In the first, new developments and the data collection pipeline at the NSLS-II high-throughput dedicated synchrotron beamline are described, and, in the second, the X-ray induced changes in three different proteins under aerobic and low-oxygen conditions are investigated and correlated with the absorbed dose. Studies in XFEL science are represented by a report on simulations of ultrafast dynamics in protic ionic liquids, and, lastly, a broad coverage of possible methods for dose efficiency improvement in modalities using electrons is presented. These papers, as well as a brief synopsis of some other relevant literature published since the last Journal of Synchrotron Radiation Special Issue on Radiation Damage in 2019, are summarized below.
Collapse
Affiliation(s)
- Elspeth F. Garman
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Martin Weik
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044 Grenoble, France
| |
Collapse
|