1
|
Acal C, Contreras E, Montero I, Ruiz-Castro JE. A shiny app for modeling the lifetime in primary breast cancer patients through phase-type distributions. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2024; 21:1508-1526. [PMID: 38303475 DOI: 10.3934/mbe.2024065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Phase-type distributions (PHDs), which are defined as the distribution of the lifetime up to the absorption in an absorbent Markov chain, are an appropriate candidate to model the lifetime of any system, since any non-negative probability distribution can be approximated by a PHD with sufficient precision. Despite PHD potential, friendly statistical programs do not have a module implemented in their interfaces to handle PHD. Thus, researchers must consider others statistical software such as R, Matlab or Python that work with the compilation of code chunks and functions. This fact might be an important handicap for those researchers who do not have sufficient knowledge in programming environments. In this paper, a new interactive web application developed with shiny is introduced in order to adjust PHD to an experimental dataset. This open access app does not require any kind of knowledge about programming or major mathematical concepts. Users can easily compare the graphic fit of several PHDs while estimating their parameters and assess the goodness of fit with just several clicks. All these functionalities are exhibited by means of a numerical simulation and modeling the time to live since the diagnostic in primary breast cancer patients.
Collapse
Affiliation(s)
- Christian Acal
- Department of Statistics and O.R. and IMAG, University of Granada, 18071 Granada, Spain
| | | | - Ismael Montero
- Department of Statistics and O.R., University of Cádiz, 11510 Cádiz, Spain
| | - Juan Eloy Ruiz-Castro
- Department of Statistics and O.R. and IMAG, University of Granada, 18071 Granada, Spain
| |
Collapse
|
2
|
Mom K, Langer M, Sixou B. Deep Gauss-Newton for phase retrieval. OPTICS LETTERS 2023; 48:1136-1139. [PMID: 36857232 DOI: 10.1364/ol.484862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
We propose the deep Gauss-Newton (DGN) algorithm. The DGN allows one to take into account the knowledge of the forward model in a deep neural network by unrolling a Gauss-Newton optimization method. No regularization or step size needs to be chosen; they are learned through convolutional neural networks. The proposed algorithm does not require an initial reconstruction and is able to retrieve simultaneously the phase and absorption from a single-distance diffraction pattern. The DGN method was applied to both simulated and experimental data and permitted large improvements of the reconstruction error and of the resolution compared with a state-of-the-art iterative method and another neural-network-based reconstruction algorithm.
Collapse
|
3
|
Mom K, Langer M, Sixou B. Nonlinear primal-dual algorithm for the phase and absorption retrieval from a single phase contrast image. OPTICS LETTERS 2022; 47:5389-5392. [PMID: 36240370 DOI: 10.1364/ol.469174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
We propose a nonlinear primal-dual algorithm for the retrieval of phase shift and absorption from a single x ray in-line phase contrast, or Fresnel diffraction, image. The algorithm permits us to regularize phase and absorption separately. We demonstrate that taking into account the nonlinearity in the reconstruction improves reconstruction compared with linear methods. We also demonstrate that choosing different regularizers for absorption and phase can improve the reconstructions. The use of the total variation and its generalization in a primal-dual approach allows us to exploit the sparsity of the investigated sample. On both simulated and real datasets, the proposed nonlinear primal-dual hybrid gradient (NL-PDHG) method yields reconstructions with considerably fewer artifacts and improved the normalized mean squared error compared with its linearized version.
Collapse
|
4
|
Huhn S, Lohse LM, Lucht J, Salditt T. Fast algorithms for nonlinear and constrained phase retrieval in near-field X-ray holography based on Tikhonov regularization. OPTICS EXPRESS 2022; 30:32871-32886. [PMID: 36242340 DOI: 10.1364/oe.462368] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/02/2022] [Indexed: 06/16/2023]
Abstract
Based on phase retrieval, lensless coherent imaging and in particular holography offers quantitative phase and amplitude images. This is of particular importance for spectral ranges where suitable lenses are challenging, such as for hard x-rays. Here, we propose a phase retrieval approach for inline x-ray holography based on Tikhonov regularization applied to the full nonlinear forward model of image formation. The approach can be seen as a nonlinear generalization of the well-established contrast transfer function (CTF) reconstruction method. While similar methods have been proposed before, the current work achieves nonlinear, constrained phase retrieval at competitive computation times. We thus enable high-throughput imaging of optically strong objects beyond the scope of CTF. Using different examples of inline holograms obtained from illumination by a x-ray waveguide-source, we demonstrate superior image quality even for samples which do not obey the assumption of a weakly varying phase. Since the presented approach does not rely on linearization, we expect it to be well suited also for other probes such as visible light or electrons, which often exhibit strong phase interaction.
Collapse
|
5
|
Sala S, Zhang Y, De La Rosa N, Dreier T, Kahnt M, Langer M, Dahlin LB, Bech M, Villanueva-Perez P, Kalbfleisch S. Dose-efficient multimodal microscopy of human tissue at a hard X-ray nanoprobe beamline. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:807-815. [PMID: 35511013 PMCID: PMC9070709 DOI: 10.1107/s1600577522001874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
X-ray fluorescence microscopy performed at nanofocusing synchrotron beamlines produces quantitative elemental distribution maps at unprecedented resolution (down to a few tens of nanometres), at the expense of relatively long measuring times and high absorbed doses. In this work, a method was implemented in which fast low-dose in-line holography was used to produce quantitative electron density maps at the mesoscale prior to nanoscale X-ray fluorescence acquisition. These maps ensure more efficient fluorescence scans and the reduction of the total absorbed dose, often relevant for radiation-sensitive (e.g. biological) samples. This multimodal microscopy approach was demonstrated on human sural nerve tissue. The two imaging modes provide complementary information at a comparable resolution, ultimately limited by the focal spot size. The experimental setup presented allows the user to swap between them in a flexible and reproducible fashion, as well as to easily adapt the scanning parameters during an experiment to fine-tune resolution and field of view.
Collapse
Affiliation(s)
- Simone Sala
- MAX IV Laboratory, Lund University, 22100 Lund, Sweden
| | - Yuhe Zhang
- Division of Synchrotron Radiation Research and NanoLund, Department of Physics, Lund University, 22100 Lund, Sweden
| | - Nathaly De La Rosa
- Department of Medical Radiation Physics, Clinical Sciences Lund, Lund University, 22185 Lund, Sweden
| | - Till Dreier
- Department of Medical Radiation Physics, Clinical Sciences Lund, Lund University, 22185 Lund, Sweden
- Excillum AB, 16440 Kista, Sweden
| | - Maik Kahnt
- MAX IV Laboratory, Lund University, 22100 Lund, Sweden
| | - Max Langer
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, 69621 Villeurbanne, France
| | - Lars B. Dahlin
- Department of Translational Medicine – Hand Surgery, Lund University, Malmö, Sweden
- Department of Hand Surgery, Skåne University Hospital, Malmö, Sweden
| | - Martin Bech
- Department of Medical Radiation Physics, Clinical Sciences Lund, Lund University, 22185 Lund, Sweden
| | - Pablo Villanueva-Perez
- Division of Synchrotron Radiation Research and NanoLund, Department of Physics, Lund University, 22100 Lund, Sweden
| | | |
Collapse
|
6
|
Mom K, Sixou B, Langer M. Mixed scale dense convolutional networks for x-ray phase contrast imaging. APPLIED OPTICS 2022; 61:2497-2505. [PMID: 35471314 DOI: 10.1364/ao.443330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
X-ray in-line phase contrast imaging relies on the measurement of Fresnel diffraction intensity patterns due to the phase shift and the attenuation induced by the object. The recovery of phase and attenuation from one or several diffraction patterns is a nonlinear ill-posed inverse problem. In this work, we propose supervised learning approaches using mixed scale dense (MS-D) convolutional neural networks to simultaneously retrieve the phase and the attenuation from x-ray phase contrast images. This network architecture uses dilated convolutions to capture features at different image scales and densely connects all feature maps. The long range information in images becomes quickly available, and greater receptive field size can be obtained without losing resolution. This network architecture seems to account for the effect of the Fresnel operator very efficiently. We train the networks using simulated data of objects consisting of either homogeneous components, characterized by a fixed ratio of the induced refractive phase shifts and attenuation, or heterogeneous components, consisting of various materials. We also train the networks in the image domain by applying a simple initial reconstruction using the adjoint of the Fréchet derivative. We compare the results obtained with the MS-D network to reconstructions using U-Net, another popular network architecture, as well as to reconstructions using the contrast transfer function method, a direct phase and attenuation retrieval method based on linearization of the direct problem. The networks are evaluated using simulated noisy data as well as images acquired at NanoMAX (MAX IV, Lund, Sweden). In all cases, large improvements of the reconstruction errors are obtained on simulated data compared to the linearized method. Moreover, on experimental data, the networks improve the reconstruction quantitatively, improving the low-frequency behavior and the resolution.
Collapse
|
7
|
An In-House Cone-Beam Tomographic Reconstruction Package for Laboratory X-ray Phase-Contrast Imaging. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Phase-contrast, and in general, multi-modal, X-ray micro-tomography is proven to be very useful for low-density, low-attention samples enabling much better contrast than its attenuation-based pendant. Therefore, it is increasingly applied in bio- and life sciences primarily dealing with such samples. Although there is a plethora of literature regarding phase-retrieval algorithms, access to implementations of those algorithms is relatively limited and very few packages combining phase-retrieval methods with the full tomographic reconstruction pipeline are available. This is especially the case for laboratory-based phase-contrast imaging typically featuring cone-beam geometry. We present here an in-house cone-beam tomographic reconstruction package for laboratory X-ray phase-contrast imaging. It covers different phase-contrast techniques and phase retrieval methods. The paper explains their implementation and integration in the filtered back projection chain. Their functionality and efficiency will be demonstrated through applications on a few dedicated samples.
Collapse
|
8
|
Kalbfleisch S, Zhang Y, Kahnt M, Buakor K, Langer M, Dreier T, Dierks H, Stjärneblad P, Larsson E, Gordeyeva K, Chayanun L, Söderberg D, Wallentin J, Bech M, Villanueva-Perez P. X-ray in-line holography and holotomography at the NanoMAX beamline. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:224-229. [PMID: 34985439 PMCID: PMC8733976 DOI: 10.1107/s1600577521012200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 11/17/2021] [Indexed: 05/29/2023]
Abstract
Coherent X-ray imaging techniques, such as in-line holography, exploit the high brilliance provided by diffraction-limited storage rings to perform imaging sensitive to the electron density through contrast due to the phase shift, rather than conventional attenuation contrast. Thus, coherent X-ray imaging techniques enable high-sensitivity and low-dose imaging, especially for low-atomic-number (Z) chemical elements and materials with similar attenuation contrast. Here, the first implementation of in-line holography at the NanoMAX beamline is presented, which benefits from the exceptional focusing capabilities and the high brilliance provided by MAX IV, the first operational diffraction-limited storage ring up to approximately 300 eV. It is demonstrated that in-line holography at NanoMAX can provide 2D diffraction-limited images, where the achievable resolution is only limited by the 70 nm focal spot at 13 keV X-ray energy. Also, the 3D capabilities of this instrument are demonstrated by performing holotomography on a chalk sample at a mesoscale resolution of around 155 nm. It is foreseen that in-line holography will broaden the spectra of capabilities of MAX IV by providing fast 2D and 3D electron density images from mesoscale down to nanoscale resolution.
Collapse
Affiliation(s)
| | - Yuhe Zhang
- Division of Synchrotron Radiation Research and NanoLund, Department of Physics, Lund University, 22100 Lund, Sweden
| | - Maik Kahnt
- MAX IV Laboratory, Lund University, 22100 Lund, Sweden
| | - Khachiwan Buakor
- Division of Synchrotron Radiation Research and NanoLund, Department of Physics, Lund University, 22100 Lund, Sweden
| | - Max Langer
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| | - Till Dreier
- Department for Medical Radiation Physics, Clinical Sciences Lund, Lund University, 221 85 Lund, Sweden
- Excillum AB, Jan Stenbecks Torg 17, 16440 Kista, Sweden
| | - Hanna Dierks
- Division of Synchrotron Radiation Research and NanoLund, Department of Physics, Lund University, 22100 Lund, Sweden
| | - Philip Stjärneblad
- Division of Synchrotron Radiation Research and NanoLund, Department of Physics, Lund University, 22100 Lund, Sweden
| | - Emanuel Larsson
- Division of Solid Mechanics and LUNARC, Department of Construction Sciences, Lund University, 22100 Lund, Sweden
| | - Korneliya Gordeyeva
- Wallenberg Wood Science Center, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
| | - Lert Chayanun
- Division of Synchrotron Radiation Research and NanoLund, Department of Physics, Lund University, 22100 Lund, Sweden
| | - Daniel Söderberg
- Wallenberg Wood Science Center, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
| | - Jesper Wallentin
- Division of Synchrotron Radiation Research and NanoLund, Department of Physics, Lund University, 22100 Lund, Sweden
| | - Martin Bech
- Department for Medical Radiation Physics, Clinical Sciences Lund, Lund University, 221 85 Lund, Sweden
| | - Pablo Villanueva-Perez
- Division of Synchrotron Radiation Research and NanoLund, Department of Physics, Lund University, 22100 Lund, Sweden
| |
Collapse
|