1
|
Mattioli EJ, Rossi J, Meloni M, De Mia M, Marchand CH, Tagliani A, Fanti S, Falini G, Trost P, Lemaire SD, Fermani S, Calvaresi M, Zaffagnini M. Structural snapshots of nitrosoglutathione binding and reactivity underlying S-nitrosylation of photosynthetic GAPDH. Redox Biol 2022; 54:102387. [PMID: 35793584 PMCID: PMC9287727 DOI: 10.1016/j.redox.2022.102387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 06/25/2022] [Indexed: 10/30/2022] Open
Abstract
S-nitrosylation is a redox post-translational modification widely recognized to play an important role in cellular signaling as it can modulate protein function and conformation. At the physiological level, nitrosoglutathione (GSNO) is considered the major physiological NO-releasing compound due to its ability to transfer the NO moiety to protein thiols but the structural determinants regulating its redox specificity are not fully elucidated. In this study, we employed photosynthetic glyceraldehyde-3-phosphate dehydrogenase from Chlamydomonas reinhardtii (CrGAPA) to investigate the molecular mechanisms underlying GSNO-dependent thiol oxidation. We first observed that GSNO causes reversible enzyme inhibition by inducing S-nitrosylation. While the cofactor NADP+ partially protects the enzyme from GSNO-mediated S-nitrosylation, protein inhibition is not observed in the presence of the substrate 1,3-bisphosphoglycerate, indicating that the S-nitrosylation of the catalytic Cys149 is responsible for CrGAPA inactivation. The crystal structures of CrGAPA in complex with NADP+ and NAD+ reveal a general structural similarity with other photosynthetic GAPDH. Starting from the 3D structure, we carried out molecular dynamics simulations to identify the protein residues involved in GSNO binding. The reaction mechanism of GSNO with CrGAPA Cys149 was investigated by quantum mechanical/molecular mechanical calculations, which permitted to disclose the relative contribution of protein residues in modulating the activation barrier of the trans-nitrosylation reaction. Based on our findings, we provide functional and structural insights into the response of CrGAPA to GSNO-dependent regulation, possibly expanding the mechanistic features to other protein cysteines susceptible to be oxidatively modified by GSNO.
Collapse
Affiliation(s)
- Edoardo Jun Mattioli
- Department of Chemistry "G. Ciamician", University of Bologna, I-40126, Bologna, Italy
| | - Jacopo Rossi
- Department of Pharmacy and Biotechnologies, University of Bologna, I-40126, Bologna, Italy
| | - Maria Meloni
- Department of Pharmacy and Biotechnologies, University of Bologna, I-40126, Bologna, Italy
| | - Marcello De Mia
- CNRS, Sorbonne Université, Institut de Biologie Physico-Chimique, UMR8226, F-75005, Paris, France
| | - Christophe H Marchand
- CNRS, Sorbonne Université, Institut de Biologie Physico-Chimique, UMR8226, F-75005, Paris, France; CNRS, Institut de Biologie Physico-Chimique, Plateforme de Protéomique, FR550, F-75005, Paris, France
| | - Andrea Tagliani
- Department of Pharmacy and Biotechnologies, University of Bologna, I-40126, Bologna, Italy; CNRS, Sorbonne Université, Institut de Biologie Physico-Chimique, UMR8226, F-75005, Paris, France
| | - Silvia Fanti
- Department of Chemistry "G. Ciamician", University of Bologna, I-40126, Bologna, Italy
| | - Giuseppe Falini
- Department of Chemistry "G. Ciamician", University of Bologna, I-40126, Bologna, Italy
| | - Paolo Trost
- Department of Pharmacy and Biotechnologies, University of Bologna, I-40126, Bologna, Italy
| | - Stéphane D Lemaire
- CNRS, Sorbonne Université, Institut de Biologie Physico-Chimique, UMR8226, F-75005, Paris, France; Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, UMR7238, F-75005, Paris, France
| | - Simona Fermani
- Department of Chemistry "G. Ciamician", University of Bologna, I-40126, Bologna, Italy; CIRI Health Sciences & Technologies (HST), University of Bologna, I-40064, Bologna, Italy.
| | - Matteo Calvaresi
- Department of Chemistry "G. Ciamician", University of Bologna, I-40126, Bologna, Italy; CIRI Health Sciences & Technologies (HST), University of Bologna, I-40064, Bologna, Italy.
| | - Mirko Zaffagnini
- Department of Pharmacy and Biotechnologies, University of Bologna, I-40126, Bologna, Italy.
| |
Collapse
|
2
|
Kim YJ. A cryoprotectant induces conformational change in glyceraldehyde-3-phosphate dehydrogenase. Acta Crystallogr F Struct Biol Commun 2018; 74:277-282. [PMID: 29717994 PMCID: PMC5931139 DOI: 10.1107/s2053230x18004557] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 03/19/2018] [Indexed: 12/28/2022] Open
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a glycolytic enzyme, catalyses the conversion of D-glyceraldehyde 3-phosphate to 1,3-bisphosphoglycerate. While mammalian and yeast GAPDHs are multifunctional proteins that have additional functions beyond those involved in glycolysis, including reactions related to nuclear RNA transport, DNA replication/repair, membrane fusion and cellular apoptosis, Escherichia coli GAPDH (ecGAPDH) has only been reported to function in glycolysis. The S-loop of GAPDH is required for interaction with its cofactor and with other proteins. In this study, the three-dimensional crystal structure of GAPDH treated with trehalose is reported at 2.0 Å resolution. Trehalose was used as a cryoprotectant for the GAPDH crystals. The structure of trehalose-bound ecGAPDH was compared with the structures of both NAD+-free and NAD+-bound ecGAPDH. At the S-loop, the bound trehalose in the GAPDH structure induces a 2.4° rotation compared with the NAD+-free ecGAPDH structure and a 3.1° rotation compared with the NAD+-bound ecGAPDH structure.
Collapse
Affiliation(s)
- Yong Ju Kim
- Department of Herbal Medicine Resources, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan 54596, Republic of Korea
- Department of Lifestyle, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan 54596, Republic of Korea
| |
Collapse
|
3
|
Guerreiro AC, Penning R, Raaijmakers LM, Axman IM, Heck AJ, Altelaar AM. Monitoring light/dark association dynamics of multi-protein complexes in cyanobacteria using size exclusion chromatography-based proteomics. J Proteomics 2016; 142:33-44. [DOI: 10.1016/j.jprot.2016.04.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 03/11/2016] [Accepted: 04/19/2016] [Indexed: 01/18/2023]
|
4
|
Fermani S, Sparla F, Marri L, Thumiger A, Pupillo P, Falini G, Trost P. Structure of photosynthetic glyceraldehyde-3-phosphate dehydrogenase (isoform A4) from Arabidopsis thaliana in complex with NAD. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:621-6. [PMID: 20516587 DOI: 10.1107/s1744309110013527] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 04/12/2010] [Indexed: 11/10/2022]
Abstract
The crystal structure of the A(4) isoform of photosynthetic glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from Arabidopsis thaliana, expressed in recombinant form and complexed with NAD, is reported. The crystals, which were grown in 2.4 M ammonium sulfate and 0.1 M sodium citrate, belonged to space group I222. The asymmetric unit includes ten subunits, i.e. two independent tetramers plus a dimer that generates a third tetramer by a crystallographic symmetry operation. The crystal structure was solved by molecular replacement and refined to an R factor of 23.7% and an R(free) factor of 28.9% at 2.6 A resolution. In the final model, each subunit binds one NAD(+) molecule and two sulfates, which occupy the P(s) and the P(i) anion-binding sites. Detailed knowledge of this structure is instrumental for structural investigation of supramolecular complexes of A(4)-GAPDH, phosphoribulokinase and CP12, which are involved in the regulation of photosynthesis in the model plant A. thaliana.
Collapse
Affiliation(s)
- Simona Fermani
- Department of Chemistry, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | | | | | | | | | | | | |
Collapse
|