1
|
Tavares LS, Mancebo BD, Santana LN, Adelson do Nascimento Silva A, Silva RLDO, Benko-Iseppon AM, Ramos MV, Monteiro do Nascimento CT, Grangeiro TB, Sousa JS, Mota RA, Júnior VADS, Lima-Filho JV. Recombinant osmotin inclusion bodies from Calotropis procera produced in E. coli BL21(DE3) prevent acute inflammation in a mouse model of listeriosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 102:154186. [PMID: 35617890 DOI: 10.1016/j.phymed.2022.154186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The osmotin from the medicinal plant Calotropis procera (CpOsm) has characteristics similar to adiponectin, a human protein with immunoregulatory actions. PURPOSE This study aimed to investigate whether recombinant osmotin inclusion bodies from C. procera (IB/rCpOsm) produced in E. coli BL21(DE3) can prevent infection-induced inflammation. A virulent strain of Listeria monocytogenes was used as an infection model. METHODS Cells of E. coli BL21(DE3) carrying the plasmid pET303-CpOsm were used to express the recombinant osmotin, which accumulated at reasonable levels as inclusion bodies (IB/rCpOsm). IB/rCpOsm were purified from induced cells and SDS-polyacrylamide gel electrophoresis followed by mass spectrometry analyses confirmed the identity of the major protein band (23 kDa apparent molecular mass) as CpOsm. Peritoneal macrophages (pMØ) from Swiss mice were cultured with IB/rCpOsm (1 or 10 µg/ml) in 96-well plates and then infected with L. monocytogenes. IB/rCpOsm (0.1, 1 or 10 mg/kg) was also administered intravenously to Swiss mice, which were then infected intraperitoneally with L. monocytogenes. RESULTS Pretreatment of the pMØ with IB/rCpOsm significantly increased cell viability after infection and reduced the intracellular bacterial load. The infiltration of neutrophils into the peritoneal cavity of mice pretreated with IB/rCpOsm at 10 mg/kg (but not 0.1 and 1 mg/kg) was reduced after infection. In these mice, the bacterial load was high in the peritoneal fluid and the liver, but histological damage was discrete. The treatments with IB/rCpOsm at 10 mg/kg significantly increased the expression of the anti-inflammatory cytokine IL-10. CONCLUSION This study shows that recombinant osmotin inclusion bodies from C. procera were bioactive and prompted anti-inflammatory actions at therapeutic dosages in the L. monocytogenes infection model.
Collapse
|
2
|
Fei J, Wang YS, Cheng H, Su YB, Zhong Y, Zheng L. Cloning and characterization of KoOsmotin from mangrove plant Kandelia obovata under cold stress. BMC PLANT BIOLOGY 2021; 21:10. [PMID: 33407136 PMCID: PMC7789355 DOI: 10.1186/s12870-020-02746-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 11/17/2020] [Indexed: 05/02/2023]
Abstract
BACKGROUND Low temperature is a major abiotic stress that seriously limits mangrove productivity and distribution. Kandelia obovata is the most cold-resistance specie in mangrove plants, but little is known about the molecular mechanism underlying its resistance to cold. Osmotin is a key protein associated with abiotic and biotic stress response in plants but no information about this gene in K. obovata was reported. RESULTS In this study, a cDNA sequence encoding osmotin, KoOsmotin (GenBank accession no. KP267758), was cloned from mangrove plant K. obovata. The KoOsmotin protein was composed of 221 amino acids and showed a calculated molecular mass of 24.11 kDa with pI 4.92. The KoOsmotin contained sixteen cysteine residues and an N-terminal signal peptide, which were common signatures to most osmotins and pathogenesis-related 5 proteins. The three-dimensional (3D) model of KoOsmotin, contained one α-helix and eleven β-strands, was formed by three characteristic domains. Database comparisons of the KoOsmotin showed the closest identity (55.75%) with the osmotin 34 from Theobroma cacao. The phylogenetic tree also revealed that the KoOsmotin was clustered in the branch of osmotin/OLP (osmotin-like protien). The KoOsmotin protein was proved to be localized to both the plasma membrane and cytoplasm by the subcellular localization analysis. Gene expression showed that the KoOsmotin was induced primarily and highly in the leaves of K. obovata, but less abundantly in stems and roots. The overexpressing of KoOsmotin conferred cold tolerance in Escherichia coli cells. CONCLUSION As we known, this is the first study to explore the osmotin of K. obovata. Our study provided valuable clues for further exploring the function of KoOsmotin response to stress.
Collapse
Affiliation(s)
- Jiao Fei
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - You-Shao Wang
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China.
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China.
| | - Hao Cheng
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China.
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China.
| | - Yu-Bin Su
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Yongjia Zhong
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lei Zheng
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
3
|
Ramos MV, de Oliveira RSB, Pereira HM, Moreno FBMB, Lobo MDP, Rebelo LM, Brandão-Neto J, de Sousa JS, Monteiro-Moreira ACO, Freitas CDT, Grangeiro TB. Crystal structure of an antifungal osmotin-like protein from Calotropis procera and its effects on Fusarium solani spores, as revealed by atomic force microscopy: Insights into the mechanism of action. PHYTOCHEMISTRY 2015; 119:5-18. [PMID: 26456062 DOI: 10.1016/j.phytochem.2015.09.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/25/2015] [Accepted: 09/30/2015] [Indexed: 05/11/2023]
Abstract
CpOsm is an antifungal osmotin/thaumatin-like protein purified from the latex of Calotropis procera. The protein is relatively thermostable and retains its antifungal activity over a wide pH range; therefore, it may be useful in the development of new antifungal drugs or transgenic crops with enhanced resistance to phytopathogenic fungi. To gain further insight into the mechanism of action of CpOsm, its three-dimensional structure was determined, and the effects of the protein on Fusarium solani spores were investigated by atomic force microscopy (AFM). The atomic structure of CpOsm was solved at a resolution of 1.61Å, and it contained 205 amino acid residues and 192 water molecules, with a final R-factor of 18.12% and an Rfree of 21.59%. The CpOsm structure belongs to the thaumatin superfamily fold and is characterized by three domains stabilized by eight disulfide bonds and a prominent charged cleft, which runs the length of the front side of the molecule. Similarly to other antifungal thaumatin-like proteins, the cleft of CpOsm is predominantly acidic. AFM images of F. solani spores treated with CpOsm resulted in striking morphological changes being induced by the protein. Spores treated with CpOsm were wrinkled, and the volume of these cells was reduced by approximately 80%. Treated cells were covered by a shell of CpOsm molecules, and the leakage of cytoplasmic content from these cells was also observed. Based on the structural features of CpOsm and the effects that the protein produces on F. solani spores, a possible mechanism of action is suggested and discussed.
Collapse
Affiliation(s)
- Marcio V Ramos
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Raquel S B de Oliveira
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Humberto M Pereira
- Instituto de Física de São Carlos, Universidade de São Paulo, 13563-120 São Carlos, São Paulo, Brazil
| | | | - Marina D P Lobo
- Núcleo de Biologia Experimental, Universidade de Fortaleza, Fortaleza, Ceará, Brazil
| | - Luciana M Rebelo
- Departamento de Física, Centro de Ciências, Universidade Federal do Ceará, Caixa Postal 6030, Campus do Pici, 60440-900 Fortaleza, Ceará, Brazil
| | - José Brandão-Neto
- Diamond Light Source, Harwell Science and Innovation Campus Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Jeanlex S de Sousa
- Departamento de Física, Centro de Ciências, Universidade Federal do Ceará, Caixa Postal 6030, Campus do Pici, 60440-900 Fortaleza, Ceará, Brazil
| | | | - Cléverson D T Freitas
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Thalles Barbosa Grangeiro
- Departamento de Biologia, Centro de Ciências, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil.
| |
Collapse
|