1
|
Ou C, Dong Z, Zheng X, Cheng W, Chang E, Yao X. Functional Characterization of the PoWHY1 Gene from Platycladus orientalis and Its Role in Abiotic Stress Tolerance in Transgenic Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2025; 14:218. [PMID: 39861571 PMCID: PMC11768397 DOI: 10.3390/plants14020218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025]
Abstract
The frequent occurrence of extreme weather conditions in the world has brought many unfavorable factors to plant growth, causing the growth and development of plants to be hindered and even leading to plant death, with abiotic stress hindering the growth and metabolism of plants due to severe uncontrollability. The WHY1 transcription factor plays a critical role in regulating gene expression in plants, influencing chlorophyll biosynthesis, plant growth, and development, as well as responses to environmental stresses. The important role of the PoWHY1 gene in regulating plant growth and adaptation to environmental stress has become a hot research topic. However, the mechanism of the PoWHY1 gene in Platycladus orientalis under abiotic stress is still unclear. Here, the PoWHY1 gene was analyzed bioinformatically using P. orientalis as study material, and the role of the gene against abiotic stress conditions in Arabidopsis thaliana was verified using transgenic technology. It was found that overexpression of PoWHY1 increased seed germination, decreased malondialdehyde accumulation, increased proline content, and delayed the senescence process under salt stress. The expression levels of JAZ1, LOX1, ABI1, and ABI2 were decreased, while the expression levels of RAB18, APX1, GSTF6, and DREB2A were increased, indicating that overexpression of PoWHY1 enhanced the salt stress tolerance of A. thaliana. Furthermore, PoWHY1 overexpression also increased drought tolerance in A. thaliana. From the above results, it can be concluded that maintaining high PoWHY1 expression levels in the leaves of P. orientalis can improve their environmental adaptability. The results provide a scientific basis for understanding the gene function of the PoWHY1 gene of P. orientalis under stress conditions and lay the foundation for further research on the function of the PoWHY1 gene.
Collapse
Affiliation(s)
- Chun Ou
- Fuyang Normal University—Funan Rural Revitalization Collaborative Technology Service Center, School of Biology and Food Engineering, Fuyang Normal University, Fuyang 236037, China; (Z.D.); (X.Z.); (W.C.)
| | - Zhiyu Dong
- Fuyang Normal University—Funan Rural Revitalization Collaborative Technology Service Center, School of Biology and Food Engineering, Fuyang Normal University, Fuyang 236037, China; (Z.D.); (X.Z.); (W.C.)
| | - Xudong Zheng
- Fuyang Normal University—Funan Rural Revitalization Collaborative Technology Service Center, School of Biology and Food Engineering, Fuyang Normal University, Fuyang 236037, China; (Z.D.); (X.Z.); (W.C.)
| | - Wenhui Cheng
- Fuyang Normal University—Funan Rural Revitalization Collaborative Technology Service Center, School of Biology and Food Engineering, Fuyang Normal University, Fuyang 236037, China; (Z.D.); (X.Z.); (W.C.)
| | - Ermei Chang
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Xiamei Yao
- School of Architecture and Urban Planning, Anhui Jianzhu University, Hefei 230601, China
| |
Collapse
|
2
|
Lin W, Huang D, Li M, Ren Y, Zheng X, Wu B, Miao Y. WHIRLY proteins, multi-layer regulators linking the nucleus and organelles in developmental and stress-induced senescence of plants. ANNALS OF BOTANY 2024; 134:521-536. [PMID: 38845347 PMCID: PMC11523626 DOI: 10.1093/aob/mcae092] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/03/2024] [Indexed: 11/01/2024]
Abstract
Plant senescence is an integrated programme of plant development that aims to remobilize nutrients and energy from senescing tissues to developing organs under developmental and stress-induced conditions. Upstream in the regulatory network, a small family of single-stranded DNA/RNA-binding proteins known as WHIRLYs occupy a central node, acting at multiple regulatory levels and via trans-localization between the nucleus and organelles. In this review, we summarize the current progress on the role of WHIRLY members in plant development and stress-induced senescence. WHIRLY proteins can be traced back in evolution to green algae. WHIRLY proteins trade off the balance of plant developmental senescence and stress-induced senescence through maintaining organelle genome stability via R-loop homeostasis, repressing the transcription at a configuration condition, and recruiting RNA to impact organelle RNA editing and splicing, as evidenced in several species. WHIRLY proteins also act as retrograde signal transducers between organelles and the nucleus through protein modification and stromule or vesicle trafficking. In addition, WHIRLY proteins interact with hormones, reactive oxygen species and environmental signals to orchestrate cell fate in an age-dependent manner. Finally, prospects for further research and promotion to improve crop production under environmental constraints are highlighted.
Collapse
Affiliation(s)
- Wenfang Lin
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Dongmei Huang
- Department of Biochemistry and Molecular Biology, Xiamen Medical College, Xiamen 361023, China
| | - Mengsi Li
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Yujun Ren
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Xiangzi Zheng
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Binghua Wu
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Ying Miao
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| |
Collapse
|
3
|
Li Z, Zhai X, Zhang L, Yang Y, Zhu H, Lü H, Xiong E, Chu S, Zhang X, Zhang D, Hu D. Genome-Wide Identification of the Whirly Gene Family and Its Potential Function in Low Phosphate Stress in Soybean ( Glycine max). Genes (Basel) 2024; 15:833. [PMID: 39062612 PMCID: PMC11275625 DOI: 10.3390/genes15070833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
The Whirly (WHY) gene family, functioning as transcription factors, plays an essential role in the regulation of plant metabolic responses, which has been demonstrated across multiple species. However, the WHY gene family and its functions in soybean remains unclear. In this paper, we conducted genome-wide screening and identification to characterize the WHY gene family. Seven WHY members were identified and randomly distributed across six chromosomes. The phylogenetic evolutionary tree of WHY genes in soybean and other species was divided into five clades. An in-depth analysis revealed that segmental duplications significantly contributed to the expansion of GmWHYs, and the GmWHY gene members may have experienced evolutionary pressure for purifying selection in soybeans. The analysis of promoter Cis-elements in GmWHYs suggested their potential significance in addressing diverse stress conditions. The expression patterns of GmWHYs exhibited tissue-specific variations throughout the different stages of soybean development. Additionally, six GmWHY genes exhibited different responses to low phosphate stress. These findings will provide a theoretical basis and valuable reference for the future exploration of WHY gene function.
Collapse
Affiliation(s)
- Zhimin Li
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (Z.L.); (X.Z.); (L.Z.); (Y.Y.); (H.Z.); (E.X.); (S.C.); (X.Z.); (D.Z.)
| | - Xuhao Zhai
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (Z.L.); (X.Z.); (L.Z.); (Y.Y.); (H.Z.); (E.X.); (S.C.); (X.Z.); (D.Z.)
| | - Lina Zhang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (Z.L.); (X.Z.); (L.Z.); (Y.Y.); (H.Z.); (E.X.); (S.C.); (X.Z.); (D.Z.)
| | - Yifei Yang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (Z.L.); (X.Z.); (L.Z.); (Y.Y.); (H.Z.); (E.X.); (S.C.); (X.Z.); (D.Z.)
| | - Hongqing Zhu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (Z.L.); (X.Z.); (L.Z.); (Y.Y.); (H.Z.); (E.X.); (S.C.); (X.Z.); (D.Z.)
| | - Haiyan Lü
- College of Information and Management Science, Henan Agricultural University, Zhengzhou 450046, China;
| | - Erhui Xiong
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (Z.L.); (X.Z.); (L.Z.); (Y.Y.); (H.Z.); (E.X.); (S.C.); (X.Z.); (D.Z.)
| | - Shanshan Chu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (Z.L.); (X.Z.); (L.Z.); (Y.Y.); (H.Z.); (E.X.); (S.C.); (X.Z.); (D.Z.)
| | - Xingguo Zhang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (Z.L.); (X.Z.); (L.Z.); (Y.Y.); (H.Z.); (E.X.); (S.C.); (X.Z.); (D.Z.)
| | - Dan Zhang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (Z.L.); (X.Z.); (L.Z.); (Y.Y.); (H.Z.); (E.X.); (S.C.); (X.Z.); (D.Z.)
| | - Dandan Hu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (Z.L.); (X.Z.); (L.Z.); (Y.Y.); (H.Z.); (E.X.); (S.C.); (X.Z.); (D.Z.)
| |
Collapse
|
4
|
Liu H, Wang X, Yang W, Liu W, Wang Y, Wang Q, Zhao Y. Identification of Whirly transcription factors in Triticeae species and functional analysis of TaWHY1-7D in response to osmotic stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1297228. [PMID: 38116153 PMCID: PMC10728677 DOI: 10.3389/fpls.2023.1297228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023]
Abstract
Osmotic stress poses a threat to the production and quality of crops. Whirly transcription factors have been investigated to enhance stress tolerance. In this study, a total of 18 Whirly genes were identified from six Triticeae species, which were classified into Whirly1 and Whirly2. The exon-intron structure, conserved motif, chromosomal location, collinearity, and regulatory network of Whirly genes were also analyzed. Real-time PCR results indicated that TaWHY1 genes exhibited higher expression levels in leaf sheaths and leaves during the seedling stage, while TaWHY2 genes were predominantly expressed in roots. Under PEG stress, the expression levels of TaWHY1-7A, TaWHY2-6A, TaWHY2-6B, and TaWHY2-6D were increased, TaWHY1-7D was reduced, and TaWHY1-4A had no significant change. All TaWHY genes were significantly up-regulated in response to NaCl stress treatment. In addition, TaWHY1-7A and TaWHY1-7D mainly enhanced the tolerance to oxidative stress in yeast cells. TaWHY2s mainly improved NaCl stress tolerance and were sensitive to oxidative stress in yeast cells. All TaWHYs slightly improved the yeast tolerance to d-sorbitol stress. The heterologous expression of TaWHY1-7D greatly improved drought and salt tolerance in transgenic Arabidopsis. In conclusion, these results provide the foundation for further functional study of Whirly genes aimed at improving osmotic stress tolerance in wheat.
Collapse
Affiliation(s)
- Hao Liu
- College of Agriculture, Ludong University, Yantai, China
| | - Xiaoyu Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, China
| | - Wenbo Yang
- Institute of Cereal Crops, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Wenyan Liu
- College of Agriculture, Ludong University, Yantai, China
| | - Yanfang Wang
- College of Life Science, Ludong University, Yantai, China
| | - Qin Wang
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, China
| | - Yanhong Zhao
- College of Agriculture, Ludong University, Yantai, China
| |
Collapse
|
5
|
Taylor RE, West CE, Foyer CH. WHIRLY protein functions in plants. Food Energy Secur 2023; 12:e379. [PMID: 38440693 PMCID: PMC10909546 DOI: 10.1002/fes3.379] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 02/22/2022] [Accepted: 03/04/2022] [Indexed: 03/06/2024] Open
Abstract
Environmental stresses pose a significant threat to food security. Understanding the function of proteins that regulate plant responses to biotic and abiotic stresses is therefore pivotal in developing strategies for crop improvement. The WHIRLY (WHY) family of DNA-binding proteins are important in this regard because they fulfil a portfolio of important functions in organelles and nuclei. The WHY1 and WHY2 proteins function as transcription factors in the nucleus regulating phytohormone synthesis and associated growth and stress responses, as well as fulfilling crucial roles in DNA and RNA metabolism in plastids and mitochondria. WHY1, WHY2 (and WHY3 proteins in Arabidopsis) maintain organelle genome stability and serve as auxiliary factors for homologous recombination and double-strand break repair. Our understanding of WHY protein functions has greatly increased in recent years, as has our knowledge of the flexibility of their localization and overlap of functions but there is no review of the topic in the literature. Our aim in this review was therefore to provide a comprehensive overview of the topic, discussing WHY protein functions in nuclei and organelles and highlighting roles in plant development and stress responses. In particular, we consider areas of uncertainty such as the flexible localization of WHY proteins in terms of retrograde signalling connecting mitochondria, plastids, and the nucleus. Moreover, we identify WHY proteins as important targets in plant breeding programmes designed to increase stress tolerance and the sustainability of crop yield in a changing climate.
Collapse
Affiliation(s)
- Rachel E. Taylor
- Faculty of Biological SciencesThe Centre for Plant SciencesUniversity of LeedsLeedsUK
| | - Christopher E. West
- Faculty of Biological SciencesThe Centre for Plant SciencesUniversity of LeedsLeedsUK
| | - Christine H. Foyer
- School of BiosciencesCollege of Life and Environmental SciencesUniversity of BirminghamBirminghamUK
| |
Collapse
|
6
|
Ruan Q, Wang Y, Xu H, Wang B, Zhu X, Wei B, Wei X. Genome-wide identification, phylogenetic, and expression analysis under abiotic stress conditions of Whirly (WHY) gene family in Medicago sativa L. Sci Rep 2022; 12:18676. [PMID: 36333411 PMCID: PMC9636397 DOI: 10.1038/s41598-022-22658-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
The WHY family is a group of plant-specific transcription factors, that can bind to single-stranded DNA molecules and play a variety of functions in plant nuclei and organelles, participating in the regulation of plant leaf senescence. It has been identified and analyzed in many species, however, the systematic identification and analysis of the WHY genes family have not yet been reported in alfalfa (Medicago sativa L.). Therefore, to explore the function of alfalfa the WHY genes, and 10 MsWHY genes were identified and further characterized their evolutionary relationship and expression patterns by analyzing the recently published genome of alfalfa. Comprehensive analysis of the chromosome location, physicochemical properties of the protein, evolutionary relationship, conserved motifs, and responses to abiotic stresses of the WHY gene family in alfalfa using bioinformatics methods. The results showed that 10 MsWHY genes were distributed on 10 chromosomes, and collinearity analysis showed that many MsWHYs might be derived from segmental duplications, and these genes are under purifying selection. Based on phylogenetic analyses, the WHY gene family of alfalfa can be divided into four subfamilies: I-IV subfamily, and approximately all the WHY genes within the same subfamily share similar gene structures. The 10 MsWHY gene family members contained 10 motifs, of which motif 2 and motif 4 are the conserved motifs shared by these genes. Furthermore, the analysis of cis-regulatory elements indicated that regulatory elements related to transcription, cell cycle, development, hormone, and stress response are abundant in the promoter sequence of the MsWHY genes. Real-time quantitative PCR demonstrated that MsWHYs gene expression is induced by drought, salt, and methyl jasmonate. The present study serves as a basic foundation for future functional studies on the alfalfa WHY family.
Collapse
Affiliation(s)
- Qian Ruan
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Lanzhou, 730070, China
- Gansu Key Laboratory of Arid Habitat Crop Science, Lanzhou, 730070, China
| | - Yizhen Wang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Lanzhou, 730070, China
- Gansu Key Laboratory of Arid Habitat Crop Science, Lanzhou, 730070, China
| | - Haoyu Xu
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Lanzhou, 730070, China
- Gansu Key Laboratory of Arid Habitat Crop Science, Lanzhou, 730070, China
| | - Baoqiang Wang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Lanzhou, 730070, China
- Gansu Key Laboratory of Arid Habitat Crop Science, Lanzhou, 730070, China
| | - Xiaolin Zhu
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Lanzhou, 730070, China
- Gansu Key Laboratory of Arid Habitat Crop Science, Lanzhou, 730070, China
| | - Bochuang Wei
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Lanzhou, 730070, China
- Gansu Key Laboratory of Arid Habitat Crop Science, Lanzhou, 730070, China
| | - Xiaohong Wei
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Lanzhou, 730070, China.
- Gansu Key Laboratory of Arid Habitat Crop Science, Lanzhou, 730070, China.
| |
Collapse
|
7
|
Krupinska K, Desel C, Frank S, Hensel G. WHIRLIES Are Multifunctional DNA-Binding Proteins With Impact on Plant Development and Stress Resistance. FRONTIERS IN PLANT SCIENCE 2022; 13:880423. [PMID: 35528945 PMCID: PMC9070903 DOI: 10.3389/fpls.2022.880423] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/24/2022] [Indexed: 06/01/2023]
Abstract
WHIRLIES are plant-specific proteins binding to DNA in plastids, mitochondria, and nucleus. They have been identified as significant components of nucleoids in the organelles where they regulate the structure of the nucleoids and diverse DNA-associated processes. WHIRLIES also fulfil roles in the nucleus by interacting with telomers and various transcription factors, among them members of the WRKY family. While most plants have two WHIRLY proteins, additional WHIRLY proteins evolved by gene duplication in some dicot families. All WHIRLY proteins share a conserved WHIRLY domain responsible for ssDNA binding. Structural analyses revealed that WHIRLY proteins form tetramers and higher-order complexes upon binding to DNA. An outstanding feature is the parallel localization of WHIRLY proteins in two or three cell compartments. Because they translocate from organelles to the nucleus, WHIRLY proteins are excellent candidates for transducing signals between organelles and nucleus to allow for coordinated activities of the different genomes. Developmental cues and environmental factors control the expression of WHIRLY genes. Mutants and plants with a reduced abundance of WHIRLY proteins gave insight into their multiple functionalities. In chloroplasts, a reduction of the WHIRLY level leads to changes in replication, transcription, RNA processing, and DNA repair. Furthermore, chloroplast development, ribosome formation, and photosynthesis are impaired in monocots. In mitochondria, a low level of WHIRLIES coincides with a reduced number of cristae and a low rate of respiration. The WHIRLY proteins are involved in the plants' resistance toward abiotic and biotic stress. Plants with low levels of WHIRLIES show reduced responsiveness toward diverse environmental factors, such as light and drought. Consequently, because such plants are impaired in acclimation, they accumulate reactive oxygen species under stress conditions. In contrast, several plant species overexpressing WHIRLIES were shown to have a higher resistance toward stress and pathogen attacks. By their multiple interactions with organelle proteins and nuclear transcription factors maybe a comma can be inserted here? and their participation in organelle-nucleus communication, WHIRLY proteins are proposed to serve plant development and stress resistance by coordinating processes at different levels. It is proposed that the multifunctionality of WHIRLY proteins is linked to the plasticity of land plants that develop and function in a continuously changing environment.
Collapse
Affiliation(s)
- Karin Krupinska
- Institute of Botany, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Christine Desel
- Institute of Botany, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Susann Frank
- Institute of Botany, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Götz Hensel
- Centre for Plant Genome Engineering, Institute of Plant Biochemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Olomouc, Czechia
| |
Collapse
|
8
|
Ren Y, Li M, Wang W, Lan W, Schenke D, Cai D, Miao Y. MicroRNA840 (MIR840) accelerates leaf senescence by targeting the overlapping 3'UTRs of PPR and WHIRLY3 in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:126-143. [PMID: 34724261 DOI: 10.1111/tpj.15559] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/13/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
MicroRNAs negatively regulate gene expression by promoting target mRNA cleavage and/or impairing its translation, thereby playing a crucial role in plant development and environmental stress responses. In Arabidopsis, the MIR840 gene is located within the overlapping 3'UTR of the PPR and WHIRLY3 (WHY3) genes, both being predicted targets of miR840* and miR840, the short maturation products of MIR840. Gain- and loss-of-function of MIR840 in Arabidopsis resulted in opposite senescence phenotypes. The highest expression levels of the MIR840 precursor transcript pre-miR840 were observed at senescence initiation, and pre-miR840 expression is significantly correlated with a reduction in PPR, but not WHY3, transcript levels. Although a reduction of transcript level of PPR, but not WHY3 transcript levels were not significantly affected by MIR840 overexpression, its protein levels were strongly reduced. Mutating the cleavage sites or replacing the target sequences abolishes the miR840*/miR840-mediated degradation of PPR transcripts and accumulation of WHY3 protein. In support for this, concurrent knockdown of both PPR and WHY3 in wild-type plants resulted in a senescence phenotype resembling that of the MIR840-overexpressing plant. This indicates that both PRR and WHY3 are targets in the MIR840-mediated senescence pathway. Moreover, single knockout mutants of PPR and WHY3 show a convergent upregulated subset of senescence-associated genes, which are also found among those induced by MIR840 overexpression. Our data provide evidence for a regulatory role of MIR840 in plant senescence.
Collapse
Affiliation(s)
- Yujun Ren
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mengsi Li
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wanzhen Wang
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wei Lan
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dirk Schenke
- Department of Molecular Phytopathology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Daguang Cai
- Department of Molecular Phytopathology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Ying Miao
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
9
|
Graña E, Díaz-Tielas C, Sánchez-Moreiras AM, Reigosa MJ, Celeiro M, Abagyan R, Teijeira M, Duke MV, Clerk T, Pan Z, Duke SO. Transcriptome and binding data indicate that citral inhibits single strand DNA-binding proteins. PHYSIOLOGIA PLANTARUM 2020; 169:99-109. [PMID: 31828797 DOI: 10.1111/ppl.13055] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 11/28/2019] [Indexed: 06/10/2023]
Abstract
The mechanism of phytotoxicity of citral was probed in Arabidopsis thaliana using RNA-Seq and in silico binding analyses. Inhibition of growth by 50% by citral downregulated transcription of 9156 and 5541 genes in roots and shoots, respectively, after 1 h. Only 56 and 62 genes in roots and shoots, respectively, were upregulated. In the shoots, the downregulation increased at 3 h (6239 genes downregulated, vs 66 upregulated). Of all genes affected in roots at 1 h (time of greatest effect), 7.69% of affected genes were for nucleic acid binding functions. Genes for single strand DNA binding proteins (SSBP) WHY1, WHY 2 and WHY3 were strongly downregulated in the shoot up until 12 h after citral exposure. Effects were strong in the root at just 1 h after the treatment and then at 12 and 24 h. Similar effects occurred with the transcription factors MYC-2, ANAC and SCR-SHR, which were also significantly downregulated for the first hour of treatment, and downregulation occurred again after 12 and 24 h treatment. Downregulation of ANAC in the first hour of treatment was significantly (P < 0.0001) decreased more than eight times compared to the control. In silico molecular docking analysis suggests binding of citral isomers to the SSBPs WHY1, WHY2, and WHY3, as well as with other transcription factors such as MYC-2, ANAC and SCR-SHR. Such effects could account for the profound and unusual effects of citral on downregulation of gene transcription.
Collapse
Affiliation(s)
- Elisa Graña
- Department of Plant Biology and Soil Science, University of Vigo, Vigo, 36310, Spain
| | - Carla Díaz-Tielas
- Department of Plant Biology and Soil Science, University of Vigo, Vigo, 36310, Spain
| | - Adela M Sánchez-Moreiras
- Department of Plant Biology and Soil Science, University of Vigo, Vigo, 36310, Spain
- Agri-Food Research and Transfer Centre of the Water Campus (CITACA), University of Vigo, Vigo, Spain
| | - Manuel J Reigosa
- Department of Plant Biology and Soil Science, University of Vigo, Vigo, 36310, Spain
- Agri-Food Research and Transfer Centre of the Water Campus (CITACA), University of Vigo, Vigo, Spain
| | - María Celeiro
- Department of Organic Chemistry, University of Vigo, Vigo, 36310, Spain
- Institute of Health of Southern Galicia, University of Vigo, Vigo, 36310, Spain
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Ruben Abagyan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Marta Teijeira
- Department of Organic Chemistry, University of Vigo, Vigo, 36310, Spain
- Institute of Health of Southern Galicia, University of Vigo, Vigo, 36310, Spain
| | - Mary V Duke
- USDA, ARS, Genomics and Bioinformatics Research Unit, Stoneville, MS, 38776, USA
| | - Tracy Clerk
- USDA, ARS, Genomics and Bioinformatics Research Unit, Stoneville, MS, 38776, USA
| | - Zhiqiang Pan
- USDA, ARS, Natural Products Utilization Research Unit, Oxford, MS, 38677, USA
| | - Stephen O Duke
- USDA, ARS, Natural Products Utilization Research Unit, Oxford, MS, 38677, USA
| |
Collapse
|
10
|
Golin S, Negroni YL, Bennewitz B, Klösgen RB, Mulisch M, La Rocca N, Cantele F, Vigani G, Lo Schiavo F, Krupinska K, Zottini M. WHIRLY2 plays a key role in mitochondria morphology, dynamics, and functionality in Arabidopsis thaliana. PLANT DIRECT 2020; 4:e00229. [PMID: 32490348 PMCID: PMC7261051 DOI: 10.1002/pld3.229] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/18/2020] [Accepted: 04/24/2020] [Indexed: 06/02/2023]
Abstract
WHIRLY2 is a single-stranded DNA binding protein associated with mitochondrial nucleoids. In the why 2-1 mutant of Arabidopsis thaliana, a major proportion of leaf mitochondria has an aberrant structure characterized by disorganized nucleoids, reduced abundance of cristae, and a low matrix density despite the fact that the macroscopic phenotype during vegetative growth is not different from wild type. These features coincide with an impairment of the functionality and dynamics of mitochondria that have been characterized in detail in wild-type and why 2-1 mutant cell cultures. In contrast to the development of the vegetative parts, seed germination is compromised in the why 2-1 mutant. In line with that, the expression level of why 2 in seeds of wild-type plants is higher than that of why 3, whereas in adult plant no difference is found. Intriguingly, in early stages of shoots development of the why 2-1 mutant, although not in seeds, the expression level of why 3 is enhanced. These results suggest that WHIRLY3 is a potential candidate to compensate for the lack of WHIRLY2 in the why 2-1 mutant. Such compensation is possible only if the two proteins are localized in the same organelle. Indeed, in organello protein transport experiments using intact mitochondria and chloroplasts revealed that WHIRLY3 can be dually targeted into both, chloroplasts and mitochondria. Together, these data indicate that the alterations of mitochondria nucleoids are tightly linked to alterations of mitochondria morphology and functionality. This is even more evident in those phases of plant life when mitochondrial activity is particularly high, such as seed germination. Moreover, our results indicate that the differential expression of why 2 and why 3 predetermines the functional replacement of WHIRLY2 by WHIRLY3, which is restricted though to the vegetative parts of the plant.
Collapse
Affiliation(s)
- Serena Golin
- Department of Biology University of Padova Padova Italy
| | | | - Bationa Bennewitz
- Institute of Biology-Plant Physiology Martin Luther University Halle-Wittenberg Halle (Saale) Germany
| | - Ralf B Klösgen
- Institute of Biology-Plant Physiology Martin Luther University Halle-Wittenberg Halle (Saale) Germany
| | - Maria Mulisch
- Institute of Botany Christian-Albrechts University of Kiel Kiel Germany
| | | | | | - Gianpiero Vigani
- Department of Life Science and Systems Biology University of Turin Turin Italy
| | | | - Karin Krupinska
- Institute of Botany Christian-Albrechts University of Kiel Kiel Germany
| | | |
Collapse
|
11
|
Huang D, Lan W, Li D, Deng B, Lin W, Ren Y, Miao Y. WHIRLY1 Occupancy Affects Histone Lysine Modification and WRKY53 Transcription in Arabidopsis Developmental Manner. FRONTIERS IN PLANT SCIENCE 2018; 9:1503. [PMID: 30405658 PMCID: PMC6202938 DOI: 10.3389/fpls.2018.01503] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 09/26/2018] [Indexed: 05/21/2023]
Abstract
Single-stranded DNA-binding proteins (SSBs) are assumed to involve in DNA replication, DNA repairmen, and gene transcription. Here, we provide the direct evidence on the functionality of an Arabidopsis SSB, WHIRLY1, by using loss- or gain-of-function lines. We show that WHIRLY1 binding to the promoter of WRKY53 represses the enrichment of H3K4me3, but enhances the enrichment of H3K9ac at the region contained WHIRLY1-binding sequences and TATA box or the translation start region of WRKY53, coincided with a recruitment of RNAPII. In vitro ChIP assays confirm that WHIRLY1 inhibits H3K4me3 enrichment at the preinitiation complex formation stage, while promotes H3K9ac enrichment and RNAPII recruitment at the elongation stage, consequently affecting the transcription of WRKY53. These results further explore the molecular actions underlying SSB-mediated gene transcription through epigenetic regulation in plant senescence.
Collapse
|
12
|
Huang D, Lin W, Deng B, Ren Y, Miao Y. Dual-Located WHIRLY1 Interacting with LHCA1 Alters Photochemical Activities of Photosystem I and Is Involved in Light Adaptation in Arabidopsis. Int J Mol Sci 2017; 18:E2352. [PMID: 29112140 PMCID: PMC5713321 DOI: 10.3390/ijms18112352] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 10/27/2017] [Accepted: 11/02/2017] [Indexed: 12/20/2022] Open
Abstract
Plastid-nucleus-located WHIRLY1 protein plays a role in regulating leaf senescence and is believed to associate with the increase of reactive oxygen species delivered from redox state of the photosynthetic electron transport chain. In order to make sure whether WHIRLY1 plays a role in photosynthesis, in this study, the performances of photosynthesis were detected in Arabidopsis whirly1 knockout (kowhy1) and plastid localized WHIRLY1 overexpression (oepWHY1) plants. Loss of WHIRLY1 leads to a higher photochemical quantum yield of photosystem I Y(I) and electron transport rate (ETR) and a lower non-photochemical quenching (NPQ) involved in the thermal dissipation of excitation energy of chlorophyll fluorescence than the wild type. Further analyses showed that WHIRLY1 interacts with Light-harvesting protein complex I (LHCA1) and affects the expression of genes encoding photosystem I (PSI) and light harvest complexes (LHCI). Moreover, loss of WHIRLY1 decreases chloroplast NAD(P)H dehydrogenase-like complex (NDH) activity and the accumulation of NDH supercomplex. Several genes encoding the PSI-NDH complexes are also up-regulated in kowhy1 and the whirly1whirly3 double mutant (ko1/3) but steady in oepWHY1 plants. However, under high light conditions (800 μmol m-2 s-1), both kowhy1 and ko1/3 plants show lower ETR than wild-type which are contrary to that under normal light condition. Moreover, the expression of several PSI-NDH encoding genes and ERF109 which is related to jasmonate (JA) response varied in kowhy1 under different light conditions. These results indicate that WHIRLY1 is involved in the alteration of ETR by affecting the activities of PSI and supercomplex formation of PSI with LHCI or NDH and may acting as a communicator between the plastids and the nucleus.
Collapse
Affiliation(s)
- Dongmei Huang
- Center for Molecular Cell and Systems Biology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Wenfang Lin
- Center for Molecular Cell and Systems Biology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Ban Deng
- Center for Molecular Cell and Systems Biology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yujun Ren
- Center for Molecular Cell and Systems Biology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Ying Miao
- Center for Molecular Cell and Systems Biology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
13
|
Zhang J, Ruhlman TA, Sabir JSM, Blazier JC, Weng ML, Park S, Jansen RK. Coevolution between Nuclear-Encoded DNA Replication, Recombination, and Repair Genes and Plastid Genome Complexity. Genome Biol Evol 2016; 8:622-34. [PMID: 26893456 PMCID: PMC4824065 DOI: 10.1093/gbe/evw033] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Disruption of DNA replication, recombination, and repair (DNA-RRR) systems has been hypothesized to cause highly elevated nucleotide substitution rates and genome rearrangements in the plastids of angiosperms, but this theory remains untested. To investigate nuclear–plastid genome (plastome) coevolution in Geraniaceae, four different measures of plastome complexity (rearrangements, repeats, nucleotide insertions/deletions, and substitution rates) were evaluated along with substitution rates of 12 nuclear-encoded, plastid-targeted DNA-RRR genes from 27 Geraniales species. Significant correlations were detected for nonsynonymous (dN) but not synonymous (dS) substitution rates for three DNA-RRR genes (uvrB/C, why1, and gyrA) supporting a role for these genes in accelerated plastid genome evolution in Geraniaceae. Furthermore, correlation between dN of uvrB/C and plastome complexity suggests the presence of nucleotide excision repair system in plastids. Significant correlations were also detected between plastome complexity and 13 of the 90 nuclear-encoded organelle-targeted genes investigated. Comparisons revealed significant acceleration of dN in plastid-targeted genes of Geraniales relative to Brassicales suggesting this correlation may be an artifact of elevated rates in this gene set in Geraniaceae. Correlation between dN of plastid-targeted DNA-RRR genes and plastome complexity supports the hypothesis that the aberrant patterns in angiosperm plastome evolution could be caused by dysfunction in DNA-RRR systems.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Integrative Biology, University of Texas at Austin
| | - Tracey A Ruhlman
- Department of Integrative Biology, University of Texas at Austin
| | - Jamal S M Sabir
- The Biotechnology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | | | - Mao-Lun Weng
- Department of Integrative Biology, University of Texas at Austin
| | - Seongjun Park
- Department of Integrative Biology, University of Texas at Austin
| | - Robert K Jansen
- Department of Integrative Biology, University of Texas at Austin The Biotechnology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| |
Collapse
|
14
|
Tan K, Johnson PM, Stols L, Boubion B, Eschenfeldt W, Babnigg G, Hayes CS, Joachimiak A, Goulding CW. The structure of a contact-dependent growth-inhibition (CDI) immunity protein from Neisseria meningitidis MC58. Acta Crystallogr F Struct Biol Commun 2015; 71:702-9. [PMID: 26057799 PMCID: PMC4461334 DOI: 10.1107/s2053230x15006585] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 03/31/2015] [Indexed: 01/01/2023] Open
Abstract
Contact-dependent growth inhibition (CDI) is an important mechanism of intercellular competition between neighboring Gram-negative bacteria. CDI systems encode large surface-exposed CdiA effector proteins that carry a variety of C-terminal toxin domains (CdiA-CTs). All CDI(+) bacteria also produce CdiI immunity proteins that specifically bind to the cognate CdiA-CT and neutralize its toxin activity to prevent auto-inhibition. Here, the X-ray crystal structure of a CdiI immunity protein from Neisseria meningitidis MC58 is presented at 1.45 Å resolution. The CdiI protein has structural homology to the Whirly family of RNA-binding proteins, but appears to lack the characteristic nucleic acid-binding motif of this family. Sequence homology suggests that the cognate CdiA-CT is related to the eukaryotic EndoU family of RNA-processing enzymes. A homology model is presented of the CdiA-CT based on the structure of the XendoU nuclease from Xenopus laevis. Molecular-docking simulations predict that the CdiA-CT toxin active site is occluded upon binding to the CdiI immunity protein. Together, these observations suggest that the immunity protein neutralizes toxin activity by preventing access to RNA substrates.
Collapse
Affiliation(s)
- Kemin Tan
- Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, IL 60439, USA
- Structural Biology Center, Biosciences, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Parker M. Johnson
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Lucy Stols
- Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Bryan Boubion
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697, USA
| | - William Eschenfeldt
- Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Gyorgy Babnigg
- Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Christopher S. Hayes
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
- Biomolecular Science and Engineering Program, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Andrezj Joachimiak
- Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, IL 60439, USA
- Structural Biology Center, Biosciences, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Celia W. Goulding
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697, USA
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|