1
|
Indergaard JA, Mahmood K, Gabriel L, Zhong G, Lastovka A, McLeod MJ, Thorne RE. Instrumentation and methods for efficient time-resolved X-ray crystallography of biomolecular systems with sub-10 ms time resolution. IUCRJ 2025; 12:372-383. [PMID: 40277177 PMCID: PMC12044851 DOI: 10.1107/s205225252500288x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 03/28/2025] [Indexed: 04/26/2025]
Abstract
Time-resolved X-ray crystallography has great promise to illuminate structure-function relations and key steps of enzymatic reactions with atomic resolution. The dominant methods for chemically-initiated reactions require complex instrumentation at the X-ray beamline, significant effort to operate and maintain this instrumentation, and enormous numbers (∼105-109) of crystals per time point. We describe instrumentation and methods that enable high-throughput time-resolved study of biomolecular systems using standard crystallography sample supports and mail-in X-ray data collection at standard high-throughput cryocrystallography synchrotron beamlines. The instrumentation allows rapid reaction initiation by mixing of crystals and substrate/ligand solution, rapid capture of structural states via thermal quenching with no pre-cooling perturbations, and yields time resolutions in the single-millisecond range, comparable to the best achieved by any non-photo-initiated method in both crystallography and cryo-electron microscopy. Our approach to reaction initiation has the advantages of simplicity, robustness, low cost, adaptability to diverse ligand solutions and small minimum volume requirements, making it well suited to routine laboratory use and to high-throughput screening. We report the detailed characterization of instrument performance, present structures of binding of N-acetylglucosamine to lysozyme at time points from 8 ms to 2 s determined using only one crystal per time point, and discuss additional improvements that will push time resolution toward 1 ms.
Collapse
Affiliation(s)
| | - Kashfia Mahmood
- Physics DepartmentCornell University142 Sciences DriveIthacaNY14850USA
- Mechanical and Mechatronics EngineeringUniversity of Waterloo200 University Avenue WestWaterlooOntarioN2L 3G1Canada
| | - Leo Gabriel
- Physics DepartmentCornell University142 Sciences DriveIthacaNY14850USA
- Mechanical and Mechatronics EngineeringUniversity of Waterloo200 University Avenue WestWaterlooOntarioN2L 3G1Canada
| | - Gary Zhong
- Physics DepartmentCornell University142 Sciences DriveIthacaNY14850USA
- Mechanical and Mechatronics EngineeringUniversity of Waterloo200 University Avenue WestWaterlooOntarioN2L 3G1Canada
| | - Adam Lastovka
- Physics DepartmentCornell University142 Sciences DriveIthacaNY14850USA
- Mechanical and Mechatronics EngineeringUniversity of Waterloo200 University Avenue WestWaterlooOntarioN2L 3G1Canada
| | - Matthew J. McLeod
- Physics DepartmentCornell University142 Sciences DriveIthacaNY14850USA
| | - Robert E. Thorne
- Physics DepartmentCornell University142 Sciences DriveIthacaNY14850USA
| |
Collapse
|
2
|
Abdelhady AW, Mittan-Moreau DW, Crane PL, McLeod MJ, Cheong SH, Thorne RE. Ice formation and its elimination in cryopreservation of oocytes. Sci Rep 2024; 14:18809. [PMID: 39138273 PMCID: PMC11322307 DOI: 10.1038/s41598-024-69528-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
Damage from ice and potential toxicity of ice-inhibiting cryoprotective agents (CPAs) are key issues in assisted reproduction of humans, domestic and research animals, and endangered species using cryopreserved oocytes and embryos. The nature of ice formed in bovine oocytes (similar in size to oocytes of humans and most other mammals) after rapid cooling and during rapid warming was examined using synchrotron-based time-resolved x-ray diffraction. Using cooling rates, warming rates and CPA concentrations of current practice, oocytes show no ice after cooling but always develop large ice fractions-consistent with crystallization of most free water-during warming, so most ice-related damage must occur during warming. The detailed behavior of ice at warming depended on the nature of ice formed during cooling. Increasing cooling rates allows oocytes soaked as in current practice to remain essentially ice free during both cooling and warming. Much larger convective warming rates are demonstrated and will allow routine ice-free cryopreservation with smaller CPA concentrations. These results clarify the roles of cooling, warming, and CPA concentration in generating ice in oocytes and establish the structure and grain size of ice formed. Ice formation can be eliminated as a factor affecting post-warming oocyte viability and development in many species, improving outcomes and allowing other deleterious effects of the cryopreservation cycle to be independently studied.
Collapse
Affiliation(s)
- Abdallah W Abdelhady
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - David W Mittan-Moreau
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Patrick L Crane
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | | | - Soon Hon Cheong
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| | - Robert E Thorne
- Physics Department, Cornell University, Ithaca, NY, 14853, USA.
- MiTeGen, LLC, Ithaca, NY, 14850, USA.
| |
Collapse
|
3
|
Huang CY, Aumonier S, Olieric V, Wang M. Cryo2RT: a high-throughput method for room-temperature macromolecular crystallography from cryo-cooled crystals. Acta Crystallogr D Struct Biol 2024; 80:620-628. [PMID: 39052318 DOI: 10.1107/s2059798324006697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024] Open
Abstract
Advances in structural biology have relied heavily on synchrotron cryo-crystallography and cryogenic electron microscopy to elucidate biological processes and for drug discovery. However, disparities between cryogenic and room-temperature (RT) crystal structures pose challenges. Here, Cryo2RT, a high-throughput RT data-collection method from cryo-cooled crystals that leverages the cryo-crystallography workflow, is introduced. Tested on endothiapepsin crystals with four soaked fragments, thaumatin and SARS-CoV-2 3CLpro, Cryo2RT reveals unique ligand-binding poses, offers a comparable throughput to cryo-crystallography and eases the exploration of structural dynamics at various temperatures.
Collapse
Affiliation(s)
- Chia Ying Huang
- Swiss Light Source, Center for Photon Science, Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Sylvain Aumonier
- Swiss Light Source, Center for Photon Science, Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Vincent Olieric
- Swiss Light Source, Center for Photon Science, Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Meitian Wang
- Swiss Light Source, Center for Photon Science, Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| |
Collapse
|
4
|
Gießelmann NC, Lenz P, Meinert SM, Simon T, Bauer RPC, Jo W, Claas S, Köhn C, Striker NN, Fröba M, Lehmkühler F. The structure of ice under confinement in periodic mesoporous organosilicas (PMOs). J Chem Phys 2024; 161:034508. [PMID: 39017429 DOI: 10.1063/5.0216697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/30/2024] [Indexed: 07/18/2024] Open
Abstract
We investigated the structure of ice under nanoporous confinement in periodic mesoporous organosilicas (PMOs) with different organic functionalities and pore diameters between 3.4 and 4.9 nm. X-ray scattering measurements of the system were performed at temperatures between 290 and 150 K. We report the emergence of ice I with both hexagonal and cubic characteristics in different porous materials, as well as an alteration of the lattice parameters when compared to bulk ice. This effect is dependent on the pore diameter and the surface chemistry of the respective PMO. Investigations regarding the orientation of hexagonal ice crystals relative to the pore wall using x-ray cross correlation analysis reveal one or more discrete preferred orientation in most of the samples. For a pore diameter of around 3.8 nm, stronger correlation peaks are present in more hydrophilically functionalized pores and seem to be connected to stronger shifts in the lattice parameters.
Collapse
Affiliation(s)
- Niels C Gießelmann
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Philip Lenz
- Institute of Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Sophia-Marie Meinert
- Institute of Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Tamás Simon
- Institute of Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Robert P C Bauer
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Freiberg Center for Water Research, Technische Universität Bergakademie Freiberg, Winklerstraße 8, 09599 Freiberg, Germany
| | - Wonhyuk Jo
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Sarah Claas
- Institute of Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Christian Köhn
- Institute of Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Nele N Striker
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Michael Fröba
- Institute of Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Felix Lehmkühler
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
5
|
Abdelhady AW, Mittan-Moreau DW, Crane PL, McLeod MJ, Cheong SH, Thorne RE. Ice formation and its elimination in cryopreservation of oocytes. RESEARCH SQUARE 2024:rs.3.rs-4144933. [PMID: 38826214 PMCID: PMC11142364 DOI: 10.21203/rs.3.rs-4144933/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Damage from ice and potential toxicity of ice-inhibiting cryoprotective agents (CPAs) are key issues in assisted reproduction of humans, domestic and research animals, and endangered species using cryopreserved oocytes and embryos. The nature of ice formed in bovine oocytes (similar in size to oocytes of humans and most other mammals) after rapid cooling and during rapid warming were examined using synchrotron-based time-resolved x-ray diffraction. Using cooling rates, warming rates and CPA concentrations of current practice, oocytes show no ice after cooling but always develop large ice fractions - consistent with crystallization of most free water - during warming, so most ice-related damage must occur during warming. The detailed behavior of ice at warming depended on the nature of ice formed during cooling. Increasing cooling rates allows oocytes soaked as in current practice to remain essentially ice free during both cooling and warming. Much larger convective warming rates are demonstrated and will allow routine ice-free cryopreservation with smaller CPA concentrations. These results clarify the roles of cooling, warming, and CPA concentration in generating ice in oocytes and establish the structure and grain size of ice formed. Ice formation can be eliminated as a factor affecting post-thaw oocyte viability and development in many species, improving outcomes and allowing other deleterious effects of the cryopreservation cycle to be independently studied.
Collapse
Affiliation(s)
- Abdallah W Abdelhady
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - David W Mittan-Moreau
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Patrick L Crane
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | | | - Soon Hon Cheong
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - Robert E Thorne
- Physics Department, Cornell University, Ithaca, NY 14853
- MiTeGen, LLC, Ithaca, NY 14850
| |
Collapse
|
6
|
Jahinge TL, Payne MK, Unruh DK, Jayasinghe AS, Yu P, Forbes TZ. Characterization of Water Structure and Phase Behavior within Metal-Organic Nanotubes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:18899-18908. [PMID: 38081592 PMCID: PMC10753883 DOI: 10.1021/acs.langmuir.3c02786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 12/27/2023]
Abstract
Water behavior under nanoconfinement varies significantly from that in the bulk but also depends on the nature of the pore walls. Hybrid compound offers the ideal system to explore water behavior in complex materials, so a model metal-organic nanotube (UMONT) material was utilized to explore the behavior of water between 100 and 293 K. Single-crystal X-ray and neutron diffraction revealed the formation of a filled Ice-I arrangement that was previously predicted to only occur under high pressures. 17O NMR spectra suggest that the onset of melting for the water in the UMONT channels occurs at 98 K and the presence of ice-like water up to 293 K, indicating that the complete ice-water transition does not occur before dehydration of the material. Overall, the water behavior differs significantly from hydrophobic single-walled carbon nanotubes indicating precise control over water can be achieved through rational design of hybrid materials.
Collapse
Affiliation(s)
- Tiron
H. L. Jahinge
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Maurice K. Payne
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Daniel K. Unruh
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Ashini S. Jayasinghe
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Ping Yu
- Nuclear
Magnetic Resonance Facility, University
of California, Davis, Davis, California 95616, United States
| | - Tori Z. Forbes
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
7
|
Abdelhady AW, Mittan-Moreau DW, Crane PL, McLeod MJ, Cheong SH, Thorne RE. Ice formation and its elimination in cryopreservation of bovine oocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.15.567270. [PMID: 38014098 PMCID: PMC10680738 DOI: 10.1101/2023.11.15.567270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Damage from ice and potential toxicity of ice-inhibiting cryoprotective agents (CPAs) are key issues in assisted reproduction using cryopreserved oocytes and embryos. We use synchrotron-based time-resolved x-ray diffraction and tools from protein cryocrystallography to characterize ice formation within bovine oocytes after cooling at rates between ∼1000 °C/min and ∼600,000°C /min and during warming at rates between 20,000 and 150,000 °C /min. Maximum crystalline ice diffraction intensity, maximum ice volume, and maximum ice grain size are always observed during warming. All decrease with increasing CPA concentration, consistent with the decreasing free water fraction. With the cooling rates, warming rates and CPA concentrations of current practice, oocytes may show no ice after cooling but always develop substantial ice fractions on warming, and modestly reducing CPA concentrations causes substantial ice to form during cooling. With much larger cooling and warming rates achieved using cryocrystallography tools, oocytes soaked as in current practice remain essentially ice free during both cooling and warming, and when soaked in half-strength CPA solution oocytes remain ice free after cooling and develop small grain ice during warming. These results clarify the roles of cooling, warming, and CPA concentration in generating ice in oocytes, establish the character of ice formed, and suggest that substantial further improvements in warming rates are feasible. Ice formation can be eliminated as a factor affecting post-thaw oocyte viability and development, allowing other deleterious effects of the cryopreservation cycle to be studied, and osmotic stress and CPA toxicity reduced. Significance Statement Cryopreservation of oocytes and embryos is critical in assisted reproduction of humans and domestic animals and in preservation of endangered species. Success rates are limited by damage from crystalline ice, toxicity of cryoprotective agents (CPAs), and damage from osmotic stress. Time-resolved x-ray diffraction of bovine oocytes shows that ice forms much more readily during warming than during cooling, that maximum ice fractions always occur during warming, and that the tools and large CPA concentrations of current protocols can at best only prevent ice formation during cooling. Using tools from cryocrystallography that give dramatically larger cooling and warming rates, ice formation can be completely eliminated and required CPA concentrations substantially reduced, expanding the scope for species-specific optimization of post-thaw reproductive outcomes.
Collapse
|
8
|
Baranova I, Angelova A, Shepard WE, Andreasson J, Angelov B. Ice crystallization under cryogenic cooling in lipid membrane nanoconfined geometry: Time-resolved structural dynamics. J Colloid Interface Sci 2023; 634:757-768. [PMID: 36565618 DOI: 10.1016/j.jcis.2022.12.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/17/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Time-resolved structural investigations of crystallization of water in lipid/protein/salt mesophases at cryogenic temperatures are significant for comprehension of ice nanocrystal nucleation kinetics in lipid membranous systems and can lead to a better understanding of how to experimentally retard the ice formation that obstructs the protein crystal structure determination. Here, we present a time-resolved synchrotron microfocus X-ray diffraction (TR-XRD) study based on ∼40,000 frames that revealed the dynamics of water-to-ice crystallization in a lipid/protein/salt mesophase subjected to cryostream cooling at 100 K. The monoolein/hemoglobin/salt/water system was chosen as a model composition related to protein-loaded lipid cubic phases (LCP) broadly used for the crystallization of proteins. Under confinement in the nanoscale geometry, metastable short-living cubic ice (Ic) rapidly crystallized well before the formation of hexagonal ice (Ih). The detected early nanocrystalline states of water-to-ice transformation in multicomponent systems are relevant to a broad spectrum of technologies and understanding of natural phenomena, including crystallization, physics of water nanoconfinement, and rational design of anti-freezing and cryopreservation systems.
Collapse
Affiliation(s)
- Iuliia Baranova
- Institute of Physics, ELI Beamlines, Academy of Sciences of the Czech Republic, CZ-18221 Prague, Czech Republic; MFF, Charles University, CZ-12116 Prague, Czech Republic
| | - Angelina Angelova
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, F-91400 Orsay, France
| | - William E Shepard
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin, BP 48, F-91192 Gif-sur-Yvette, France
| | - Jakob Andreasson
- Institute of Physics, ELI Beamlines, Academy of Sciences of the Czech Republic, CZ-18221 Prague, Czech Republic
| | - Borislav Angelov
- Institute of Physics, ELI Beamlines, Academy of Sciences of the Czech Republic, CZ-18221 Prague, Czech Republic.
| |
Collapse
|
9
|
Thorne RE. Determining biomolecular structures near room temperature using X-ray crystallography: concepts, methods and future optimization. Acta Crystallogr D Struct Biol 2023; 79:78-94. [PMID: 36601809 PMCID: PMC9815097 DOI: 10.1107/s2059798322011652] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/04/2022] [Indexed: 01/05/2023] Open
Abstract
For roughly two decades, cryocrystallography has been the overwhelmingly dominant method for determining high-resolution biomolecular structures. Competition from single-particle cryo-electron microscopy and micro-electron diffraction, increased interest in functionally relevant information that may be missing or corrupted in structures determined at cryogenic temperature, and interest in time-resolved studies of the biomolecular response to chemical and optical stimuli have driven renewed interest in data collection at room temperature and, more generally, at temperatures from the protein-solvent glass transition near 200 K to ∼350 K. Fischer has recently reviewed practical methods for room-temperature data collection and analysis [Fischer (2021), Q. Rev. Biophys. 54, e1]. Here, the key advantages and physical principles of, and methods for, crystallographic data collection at noncryogenic temperatures and some factors relevant to interpreting the resulting data are discussed. For room-temperature data collection to realize its potential within the structural biology toolkit, streamlined and standardized methods for delivering crystals prepared in the home laboratory to the synchrotron and for automated handling and data collection, similar to those for cryocrystallography, should be implemented.
Collapse
Affiliation(s)
- Robert E. Thorne
- Physics Department, Cornell University, Ithaca, NY 14853, USA
- MiTeGen LLC, PO Box 3867, Ithaca, NY 14850, USA
| |
Collapse
|
10
|
Engstrom T, Clinger JA, Spoth KA, Clarke OB, Closs DS, Jayne R, Apker BA, Thorne RE. High-resolution single-particle cryo-EM of samples vitrified in boiling nitro-gen. IUCRJ 2021; 8:867-877. [PMID: 34804541 PMCID: PMC8562666 DOI: 10.1107/s2052252521008095] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/05/2021] [Indexed: 05/24/2023]
Abstract
Based on work by Dubochet and others in the 1980s and 1990s, samples for single-particle cryo-electron microscopy (cryo-EM) have been vitrified using ethane, propane or ethane/propane mixtures. These liquid cryogens have a large difference between their melting and boiling temperatures and so can absorb substantial heat without formation of an insulating vapor layer adjacent to a cooling sample. However, ethane and propane are flammable, they must be liquified in liquid nitro-gen immediately before cryo-EM sample preparation, and cryocooled samples must be transferred to liquid nitro-gen for storage, complicating workflows and increasing the chance of sample damage during handling. Experiments over the last 15 years have shown that cooling rates required to vitrify pure water are only ∼250 000 K s-1, at the low end of earlier estimates, and that the dominant factor that has limited cooling rates of small samples in liquid nitro-gen is sample precooling in cold gas present above the liquid cryogen surface, not the Leidenfrost effect. Using an automated cryocooling instrument developed for cryocrystallography that combines high plunge speeds with efficient removal of cold gas, we show that single-particle cryo-EM samples on commercial grids can be routinely vitrified using only boiling nitro-gen and obtain apoferritin datasets and refined structures with 2.65 Å resolution. The use of liquid nitro-gen as the primary coolant may allow manual and automated workflows to be simplified and may reduce sample stresses that contribute to beam-induced motion.
Collapse
Affiliation(s)
| | | | - Katherine A. Spoth
- Cornell Center for Materials Research, Cornell University, Ithaca, NY 14853, USA
| | - Oliver B. Clarke
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
- Department of Anesthesiology, Columbia University, New York, NY 10032, USA
| | | | - Richard Jayne
- MiTeGen, LLC, PO Box 3867, Ithaca, NY 14850-3867, USA
| | | | - Robert E. Thorne
- MiTeGen, LLC, PO Box 3867, Ithaca, NY 14850-3867, USA
- Physics Department, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
11
|
Moreau DW, Atakisi H, Thorne RE. Ice in biomolecular cryocrystallography. Acta Crystallogr D Struct Biol 2021; 77:540-554. [PMID: 33825714 PMCID: PMC8025888 DOI: 10.1107/s2059798321001170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 02/01/2021] [Indexed: 12/05/2022] Open
Abstract
Diffraction data acquired from cryocooled protein crystals often include diffraction from ice. Analysis of ice diffraction from crystals of three proteins shows that the ice formed within solvent cavities during rapid cooling is comprised of a stacking-disordered mixture of hexagonal and cubic planes, with the cubic plane fraction increasing with increasing cryoprotectant concentration and increasing cooling rate. Building on the work of Thorn and coworkers [Thorn et al. (2017), Acta Cryst. D73, 729-727], a revised metric is defined for detecting ice from deposited protein structure-factor data, and this metric is validated using full-frame diffraction data from the Integrated Resource for Reproducibility in Macromolecular Crystallography. Using this revised metric and improved algorithms, an analysis of structure-factor data from a random sample of 89 827 PDB entries collected at cryogenic temperatures indicates that roughly 16% show evidence of ice contamination, and that this fraction increases with increasing solvent content and maximum solvent-cavity size. By examining the ice diffraction-peak positions at which structure-factor perturbations are observed, it is found that roughly 25% of crystals exhibit ice with primarily hexagonal character, indicating that inadequate cooling rates and/or cryoprotectant concentrations were used, while the remaining 75% show ice with a stacking-disordered or cubic character.
Collapse
Affiliation(s)
- David W. Moreau
- Physics Department, Cornell University, Ithaca, NY 14853, USA
| | - Hakan Atakisi
- Physics Department, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
12
|
Abstract
X-ray crystallography enables detailed structural studies of proteins to understand and modulate their function. Conducting crystallographic experiments at cryogenic temperatures has practical benefits but potentially limits the identification of functionally important alternative protein conformations that can be revealed only at room temperature (RT). This review discusses practical aspects of preparing, acquiring, and analyzing X-ray crystallography data at RT to demystify preconceived impracticalities that freeze progress of routine RT data collection at synchrotron sources. Examples are presented as conceptual and experimental templates to enable the design of RT-inspired studies; they illustrate the diversity and utility of gaining novel insights into protein conformational landscapes. An integrative view of protein conformational dynamics enables opportunities to advance basic and biomedical research.
Collapse
|
13
|
Gavira JA, Rodriguez-Ruiz I, Martinez-Rodriguez S, Basu S, Teychené S, McCarthy AA, Mueller-Dieckman C. Attaining atomic resolution from in situ data collection at room temperature using counter-diffusion-based low-cost microchips. Acta Crystallogr D Struct Biol 2020; 76:751-758. [PMID: 32744257 DOI: 10.1107/s2059798320008475] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/24/2020] [Indexed: 12/16/2022] Open
Abstract
Sample handling and manipulation for cryoprotection currently remain critical factors in X-ray structural determination. While several microchips for macromolecular crystallization have been proposed during the last two decades to partially overcome crystal-manipulation issues, increased background noise originating from the scattering of chip-fabrication materials has so far limited the attainable resolution of diffraction data. Here, the conception and use of low-cost, X-ray-transparent microchips for in situ crystallization and direct data collection, and structure determination at atomic resolution close to 1.0 Å, is presented. The chips are fabricated by a combination of either OSTEMER and Kapton or OSTEMER and Mylar materials for the implementation of counter-diffusion crystallization experiments. Both materials produce a sufficiently low scattering background to permit atomic resolution diffraction data collection at room temperature and the generation of 3D structural models of the tested model proteins lysozyme, thaumatin and glucose isomerase. Although the high symmetry of the three model protein crystals produced almost complete data sets at high resolution, the potential of in-line data merging and scaling of the multiple crystals grown along the microfluidic channels is also presented and discussed.
Collapse
Affiliation(s)
- Jose A Gavira
- Laboratorio de Estudios Cristalográficos, IACT, CSIC-Universidad de Granada, Avenida Las Palmeras 4, 18100 Armilla, Spain
| | - Isaac Rodriguez-Ruiz
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INP, INSA, UPS Toulouse, Toulouse, France
| | - Sergio Martinez-Rodriguez
- Laboratorio de Estudios Cristalográficos, IACT, CSIC-Universidad de Granada, Avenida Las Palmeras 4, 18100 Armilla, Spain
| | - Shibom Basu
- EMBL Grenoble, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble, France
| | - Sébastien Teychené
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INP, INSA, UPS Toulouse, Toulouse, France
| | - Andrew A McCarthy
- EMBL Grenoble, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble, France
| | | |
Collapse
|
14
|
Thorne RE. Hypothesis for a mechanism of beam-induced motion in cryo-electron microscopy. IUCRJ 2020; 7:416-421. [PMID: 32431825 PMCID: PMC7201280 DOI: 10.1107/s2052252520002560] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/24/2020] [Indexed: 05/09/2023]
Abstract
Estimates of heat-transfer rates during plunge-cooling and the patterns of ice observed in cryo-EM samples indicate that the grid bars cool much more slowly than do the support foil and sample near the middle of the grid openings. The resulting transient temperature differences generate transient tensile stresses in the support foil. Most of this foil stress develops while the sample is liquid and cooling toward its glass transition T g, and so does not generate tensile sample stress. As the grid bars continue cooling towards the cryogen temperature and contracting, the tensile stress in the foil is released, placing the sample in compressive stress. Radiation-induced creep in the presence of this compressive stress should generate a doming of the sample in the foil openings, as is observed experimentally. Crude estimates of the magnitude of the doming that may be generated by this mechanism are consistent with observation. Several approaches to reducing beam-induced motion are discussed.
Collapse
|
15
|
Moreau DW, Atakisi H, Thorne RE. Solvent flows, conformation changes and lattice reordering in a cold protein crystal. Acta Crystallogr D Struct Biol 2019; 75:980-994. [PMID: 31692472 PMCID: PMC6834080 DOI: 10.1107/s2059798319013822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 10/10/2019] [Indexed: 11/10/2022] Open
Abstract
When protein crystals are abruptly cooled, the unit-cell, protein and solvent-cavity volumes all contract, but the volume of bulk-like internal solvent may expand. Outflow of this solvent from the unit cell and its accumulation in defective interior crystal regions has been suggested as one cause of the large increase in crystal mosaicity on cooling. It is shown that when apoferritin crystals are abruptly cooled to temperatures between 220 and 260 K, the unit cell contracts, solvent is pushed out and the mosaicity grows. On temperature-dependent timescales of 10 to 200 s, the unit-cell and solvent-cavity volume then expand, solvent flows back in, and the mosaicity and B factor both drop. Expansion and reordering at fixed low temperature are associated with small-amplitude but large-scale changes in the conformation and packing of apoferritin. These results demonstrate that increases in mosaicity on cooling arise due to solvent flows out of or into the unit cell and to incomplete, arrested relaxation of protein conformation. They indicate a critical role for time in variable-temperature crystallographic studies, and the feasibility of probing interactions and cooperative conformational changes that underlie cold denaturation in the presence of liquid solvent at temperatures down to ∼200 K.
Collapse
Affiliation(s)
- David W. Moreau
- Physics Department, Cornell University, Ithaca, NY 14853, USA
| | - Hakan Atakisi
- Physics Department, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|