1
|
Allen AJ. IUCrJ on passing its tenth anniversary and entering its second decade: progress, current status and prospects for the future. IUCRJ 2025; 12:1-3. [PMID: 39704730 PMCID: PMC11707694 DOI: 10.1107/s205225252401217x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
This Editorial briefly celebrates the history and progress of IUCrJ in its first decade, reviews its present status, and suggests some pointers for the future.
Collapse
Affiliation(s)
- Andrew. J. Allen
- Materials Measurement Science DivisionNational Institute of Standards and Technology100 Bureau DriveGaithersburgMD 20899-8520USA
| |
Collapse
|
2
|
Wlodawer A, Dauter Z, Lubkowski J, Loch JI, Brzezinski D, Gilski M, Jaskolski M. Towards a dependable data set of structures for L-asparaginase research. Acta Crystallogr D Struct Biol 2024; 80:506-527. [PMID: 38935343 PMCID: PMC11220836 DOI: 10.1107/s2059798324005461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
The Protein Data Bank (PDB) includes a carefully curated treasury of experimentally derived structural data on biological macromolecules and their various complexes. Such information is fundamental for a multitude of projects that involve large-scale data mining and/or detailed evaluation of individual structures of importance to chemistry, biology and, most of all, to medicine, where it provides the foundation for structure-based drug discovery. However, despite extensive validation mechanisms, it is almost inevitable that among the ∼215 000 entries there will occasionally be suboptimal or incorrect structure models. It is thus vital to apply careful verification procedures to those segments of the PDB that are of direct medicinal interest. Here, such an analysis was carried out for crystallographic models of L-asparaginases, enzymes that include approved drugs for the treatment of certain types of leukemia. The focus was on the adherence of the atomic coordinates to the rules of stereochemistry and their agreement with the experimental electron-density maps. Whereas the current clinical application of L-asparaginases is limited to two bacterial proteins and their chemical modifications, the field of investigations of such enzymes has expanded tremendously in recent years with the discovery of three entirely different structural classes and with numerous reports, not always quite reliable, of the anticancer properties of L-asparaginases of different origins.
Collapse
Affiliation(s)
- Alexander Wlodawer
- Center for Structural Biology, Center for Cancer ResearchNational Cancer InstituteMarylandUSA
| | - Zbigniew Dauter
- Center for Structural Biology, Center for Cancer ResearchNational Cancer InstituteMarylandUSA
| | - Jacek Lubkowski
- Center for Structural Biology, Center for Cancer ResearchNational Cancer InstituteMarylandUSA
| | - Joanna I. Loch
- Department of Crystal Chemistry and Crystal Physics, Faculty of ChemistryJagiellonian UniversityCracowPoland
| | - Dariusz Brzezinski
- Institute of Computing SciencePoznan University of TechnologyPoznanPoland
| | - Miroslaw Gilski
- Institute of Bioorganic ChemistryPolish Academy of SciencesPoznanPoland
- Department of Crystallography, Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland
| | - Mariusz Jaskolski
- Institute of Bioorganic ChemistryPolish Academy of SciencesPoznanPoland
- Department of Crystallography, Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
3
|
Westberg M, Su Y, Zou X, Huang P, Rustagi A, Garhyan J, Patel PB, Fernandez D, Wu Y, Hao C, Lo CW, Karim M, Ning L, Beck A, Saenkham-Huntsinger P, Tat V, Drelich A, Peng BH, Einav S, Tseng CTK, Blish C, Lin MZ. An orally bioavailable SARS-CoV-2 main protease inhibitor exhibits improved affinity and reduced sensitivity to mutations. Sci Transl Med 2024; 16:eadi0979. [PMID: 38478629 PMCID: PMC11193659 DOI: 10.1126/scitranslmed.adi0979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 02/21/2024] [Indexed: 05/09/2024]
Abstract
Inhibitors of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro) such as nirmatrelvir (NTV) and ensitrelvir (ETV) have proven effective in reducing the severity of COVID-19, but the presence of resistance-conferring mutations in sequenced viral genomes raises concerns about future drug resistance. Second-generation oral drugs that retain function against these mutants are thus urgently needed. We hypothesized that the covalent hepatitis C virus protease inhibitor boceprevir (BPV) could serve as the basis for orally bioavailable drugs that inhibit SARS-CoV-2 Mpro more efficiently than existing drugs. Performing structure-guided modifications of BPV, we developed a picomolar-affinity inhibitor, ML2006a4, with antiviral activity, oral pharmacokinetics, and therapeutic efficacy similar or superior to those of NTV. A crucial feature of ML2006a4 is a derivatization of the ketoamide reactive group that improves cell permeability and oral bioavailability. Last, ML2006a4 was found to be less sensitive to several mutations that cause resistance to NTV or ETV and occur in the natural SARS-CoV-2 population. Thus, anticipatory design can preemptively address potential resistance mechanisms to expand future treatment options against coronavirus variants.
Collapse
Affiliation(s)
- Michael Westberg
- Department of Neurobiology, Stanford University; Stanford, CA 94305, USA
- Department of Chemistry, Aarhus University; 8000 Aarhus C, Denmark
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University; 8000 Aarhus C, Denmark
| | - Yichi Su
- Department of Neurobiology, Stanford University; Stanford, CA 94305, USA
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Xinzhi Zou
- Department of Bioengineering, Stanford University; Stanford, CA 94305, USA
| | - Pinghan Huang
- Department of Microbiology and Immunology, The University of Texas Medical Branch; Galveston, TX 77555, USA
| | - Arjun Rustagi
- Department of Medicine, Stanford University; Stanford, CA 94305, USA
| | - Jaishree Garhyan
- Stanford In Vitro Biosafety Level 3 Service Center, Stanford University; Stanford, CA 94305, USA
| | - Puja Bhavesh Patel
- Stanford In Vitro Biosafety Level 3 Service Center, Stanford University; Stanford, CA 94305, USA
| | - Daniel Fernandez
- Program in Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford University; Stanford, CA 94305, USA
- Sarafan ChEM-H, Macromolecular Structure Knowledge Center, Stanford University; Stanford, CA 94305, USA
| | - Yan Wu
- Department of Bioengineering, Stanford University; Stanford, CA 94305, USA
| | - Chenzhou Hao
- Department of Neurobiology, Stanford University; Stanford, CA 94305, USA
| | - Chieh-Wen Lo
- Department of Medicine, Stanford University; Stanford, CA 94305, USA
| | - Marwah Karim
- Department of Medicine, Stanford University; Stanford, CA 94305, USA
| | - Lin Ning
- Department of Neurobiology, Stanford University; Stanford, CA 94305, USA
| | - Aimee Beck
- Department of Medicine, Stanford University; Stanford, CA 94305, USA
| | | | - Vivian Tat
- Department of Pathology, The University of Texas Medical Branch; Galveston, TX 77555, USA
| | - Aleksandra Drelich
- Department of Microbiology and Immunology, The University of Texas Medical Branch; Galveston, TX 77555, USA
| | - Bi-Hung Peng
- Department of Neuroscience, Cell Biology, and Anatomy, The University of Texas Medical Branch; Galveston, TX 77555, USA
| | - Shirit Einav
- Department of Medicine, Stanford University; Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University; Stanford, CA 94305, USA
- Chan Zuckerberg Biohub; San Francisco, CA 94158, USA
| | - Chien-Te K. Tseng
- Department of Microbiology and Immunology, The University of Texas Medical Branch; Galveston, TX 77555, USA
- Department of Pathology, The University of Texas Medical Branch; Galveston, TX 77555, USA
- Department of Neuroscience, Cell Biology, and Anatomy, The University of Texas Medical Branch; Galveston, TX 77555, USA
| | - Catherine Blish
- Department of Medicine, Stanford University; Stanford, CA 94305, USA
- Chan Zuckerberg Biohub; San Francisco, CA 94158, USA
| | - Michael Z. Lin
- Department of Neurobiology, Stanford University; Stanford, CA 94305, USA
- Department of Bioengineering, Stanford University; Stanford, CA 94305, USA
- Department of Chemical and Systems Biology, Stanford University; Stanford, CA 94305, USA
| |
Collapse
|
4
|
Medrano FJ, de la Hoz-Rodríguez S, Martí S, Arafet K, Schirmeister T, Hammerschmidt SJ, Müller C, González-Martínez Á, Santillana E, Ziebuhr J, Romero A, Zimmer C, Weldert A, Zimmermann R, Lodola A, Świderek K, Moliner V, González FV. Peptidyl nitroalkene inhibitors of main protease rationalized by computational and crystallographic investigations as antivirals against SARS-CoV-2. Commun Chem 2024; 7:15. [PMID: 38238420 PMCID: PMC10796436 DOI: 10.1038/s42004-024-01104-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 01/09/2024] [Indexed: 01/22/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic continues to represent a global public health issue. The viral main protease (Mpro) represents one of the most attractive targets for the development of antiviral drugs. Herein we report peptidyl nitroalkenes exhibiting enzyme inhibitory activity against Mpro (Ki: 1-10 μM) good anti-SARS-CoV-2 infection activity in the low micromolar range (EC50: 1-12 μM) without significant toxicity. Additional kinetic studies of compounds FGA145, FGA146 and FGA147 show that all three compounds inhibit cathepsin L, denoting a possible multitarget effect of these compounds in the antiviral activity. Structural analysis shows the binding mode of FGA146 and FGA147 to the active site of the protein. Furthermore, our results illustrate that peptidyl nitroalkenes are effective covalent reversible inhibitors of the Mpro and cathepsin L, and that inhibitors FGA145, FGA146 and FGA147 prevent infection against SARS-CoV-2.
Collapse
Affiliation(s)
- Francisco J Medrano
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain.
| | | | - Sergio Martí
- Departament de Química Física i Analítica, Universitat Jaume I, 12071, Castelló, Spain
| | - Kemel Arafet
- Departament de Química Física i Analítica, Universitat Jaume I, 12071, Castelló, Spain
| | - Tanja Schirmeister
- Institute of Pharmaceutical and BiomedicalSciences, Johannes Gutenberg-University Mainz, Staudinger Weg 5, 55128, Mainz, Germany
| | - Stefan J Hammerschmidt
- Institute of Pharmaceutical and BiomedicalSciences, Johannes Gutenberg-University Mainz, Staudinger Weg 5, 55128, Mainz, Germany
| | - Christin Müller
- Institute of Medical Virology, Justus Liebig University Giessen, Schubertstrasse 81, 35392, Giessen, Germany
| | - Águeda González-Martínez
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Elena Santillana
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - John Ziebuhr
- Institute of Medical Virology, Justus Liebig University Giessen, Schubertstrasse 81, 35392, Giessen, Germany
| | - Antonio Romero
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Collin Zimmer
- Institute of Pharmaceutical and BiomedicalSciences, Johannes Gutenberg-University Mainz, Staudinger Weg 5, 55128, Mainz, Germany
| | - Annabelle Weldert
- Institute of Pharmaceutical and BiomedicalSciences, Johannes Gutenberg-University Mainz, Staudinger Weg 5, 55128, Mainz, Germany
| | - Robert Zimmermann
- Institute of Pharmaceutical and BiomedicalSciences, Johannes Gutenberg-University Mainz, Staudinger Weg 5, 55128, Mainz, Germany
| | - Alessio Lodola
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parma, Italy
| | - Katarzyna Świderek
- Departament de Química Física i Analítica, Universitat Jaume I, 12071, Castelló, Spain
| | - Vicent Moliner
- Departament de Química Física i Analítica, Universitat Jaume I, 12071, Castelló, Spain.
| | - Florenci V González
- Departament de Química Inorgànica i Orgànica, Universitat Jaume I, 12071, Castelló, Spain.
| |
Collapse
|
5
|
Schake P, Dishnica K, Kaiser F, Leberecht C, Haupt VJ, Schroeder M. An interaction-based drug discovery screen explains known SARS-CoV-2 inhibitors and predicts new compound scaffolds. Sci Rep 2023; 13:9204. [PMID: 37280244 DOI: 10.1038/s41598-023-35671-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 05/19/2023] [Indexed: 06/08/2023] Open
Abstract
The recent outbreak of the COVID-19 pandemic caused by severe acute respiratory syndrome-Coronavirus-2 (SARS-CoV-2) has shown the necessity for fast and broad drug discovery methods to enable us to react quickly to novel and highly infectious diseases. A well-known SARS-CoV-2 target is the viral main 3-chymotrypsin-like cysteine protease (Mpro), known to control coronavirus replication, which is essential for the viral life cycle. Here, we applied an interaction-based drug repositioning algorithm on all protein-compound complexes available in the protein database (PDB) to identify Mpro inhibitors and potential novel compound scaffolds against SARS-CoV-2. The screen revealed a heterogeneous set of 692 potential Mpro inhibitors containing known ones such as Dasatinib, Amodiaquine, and Flavin mononucleotide, as well as so far untested chemical scaffolds. In a follow-up evaluation, we used publicly available data published almost two years after the screen to validate our results. In total, we are able to validate 17% of the top 100 predictions with publicly available data and can furthermore show that predicted compounds do cover scaffolds that are yet not associated with Mpro. Finally, we detected a potentially important binding pattern consisting of 3 hydrogen bonds with hydrogen donors of an oxyanion hole within the active side of Mpro. Overall, these results give hope that we will be better prepared for future pandemics and that drug development will become more efficient in the upcoming years.
Collapse
Affiliation(s)
- Philipp Schake
- Bioinformatics, Biotechnology Center (BIOTEC), Technische Universität Dresden, Dresden, Saxony, Germany.
| | | | | | | | | | - Michael Schroeder
- Bioinformatics, Biotechnology Center (BIOTEC), Technische Universität Dresden, Dresden, Saxony, Germany
| |
Collapse
|
6
|
Heilmann E, Costacurta F, Moghadasi SA, Ye C, Pavan M, Bassani D, Volland A, Ascher C, Weiss AKH, Bante D, Harris RS, Moro S, Rupp B, Martinez-Sobrido L, von Laer D. SARS-CoV-2 3CL pro mutations selected in a VSV-based system confer resistance to nirmatrelvir, ensitrelvir, and GC376. Sci Transl Med 2023; 15:eabq7360. [PMID: 36194133 PMCID: PMC9765458 DOI: 10.1126/scitranslmed.abq7360] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/18/2022] [Accepted: 09/21/2022] [Indexed: 01/14/2023]
Abstract
Protease inhibitors are among the most powerful antiviral drugs. Nirmatrelvir is the first protease inhibitor specifically developed against the SARS-CoV-2 protease 3CLpro that has been licensed for clinical use. To identify mutations that confer resistance to this protease inhibitor, we engineered a chimeric vesicular stomatitis virus (VSV) that expressed a polyprotein composed of the VSV glycoprotein (G), the SARS-CoV-2 3CLpro, and the VSV polymerase (L). Viral replication was thus dependent on the autocatalytic processing of this precursor protein by 3CLpro and release of the functional viral proteins G and L, and replication of this chimeric VSV was effectively inhibited by nirmatrelvir. Using this system, we applied nirmatrelvir to select for resistance mutations. Resistance was confirmed by retesting nirmatrelvir against the selected mutations in additional VSV-based systems, in an independently developed cellular system, in a biochemical assay, and in a recombinant SARS-CoV-2 system. We demonstrate that some mutants are cross-resistant to ensitrelvir and GC376, whereas others are less resistant to these compounds. Furthermore, we found that most of these resistance mutations already existed in SARS-CoV-2 sequences that have been deposited in the NCBI and GISAID databases, indicating that these mutations were present in circulating SARS-CoV-2 strains.
Collapse
Affiliation(s)
- Emmanuel Heilmann
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020, Austria
| | - Francesco Costacurta
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020, Austria
| | - Seyed Arad Moghadasi
- Department of Biochemistry, Molecular Biology and Biophysics, Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, United States
| | - Chengjin Ye
- Texas Biomedical Research Institute, San Antonio, TX 78229, USA
| | - Matteo Pavan
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via F. Marzolo 5, 35131, Padova, Italy
| | - Davide Bassani
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via F. Marzolo 5, 35131, Padova, Italy
| | - Andre Volland
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020, Austria
| | - Claudia Ascher
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, 6020, Austria
| | | | - David Bante
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020, Austria
| | - Reuben S. Harris
- Department of Biochemistry, Molecular Biology and Biophysics, Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, United States
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, United States
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX 78229, United States
| | - Stefano Moro
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via F. Marzolo 5, 35131, Padova, Italy
| | - Bernhard Rupp
- Division of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, 6020, Austria
- k.-k. Hofkristallamt, San Diego, CA 92084, United States
| | | | - Dorothee von Laer
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020, Austria
| |
Collapse
|
7
|
Helliwell JR, Massera C. The four Rs and crystal structure analysis: reliability, reproducibility, replicability and reusability. J Appl Crystallogr 2022; 55:1351-1358. [PMID: 36249510 PMCID: PMC9533758 DOI: 10.1107/s1600576722007208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/12/2022] [Indexed: 11/10/2022] Open
Abstract
Within science, of which crystallography is a key part, there are questions posed to all fields that challenge the trust in results. The US National Academies of Sciences, Engineering and Medicine published a thorough report in 2019 on the Reproducibility and Replicability of Science: replicability being where a totally new study attempts to confirm if a phenomenon can be seen independently of another study. Data reuse is a key term in the FAIR data accord [Wilkinson et al. (2016). Sci. Data, 3, 160018], where the acronym FAIR means findable, accessible, interoperable and reusable. In the social sciences, the acronym FACT (namely fairness, accuracy, confidentiality and transparency) has emerged, the idea being that data should be FACTual to ensure trust [van der Aalst et al. (2017). Bus. Inf. Syst. Eng. 59, 311-313]. A distinction also must be made between accuracy and precision; indeed, the authors' lectures at the European Crystallography School ECS6 independently emphasized the need for use of other methods as well as crystal structure analysis to establish accuracy in biological and chemical/material functional contexts. The efforts by disparate science communities to introduce new terms to ensure trust have merit for discussion in crystallographic teaching commissions and possible adoption by crystallographers too.
Collapse
Affiliation(s)
- John R. Helliwell
- Department of Chemistry, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Chiara Massera
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Viale delle Scienze 17/A, Parma 43124, Italy
| |
Collapse
|
8
|
Hameedi MA, T Prates E, Garvin MR, Mathews II, Amos BK, Demerdash O, Bechthold M, Iyer M, Rahighi S, Kneller DW, Kovalevsky A, Irle S, Vuong VQ, Mitchell JC, Labbe A, Galanie S, Wakatsuki S, Jacobson D. Structural and functional characterization of NEMO cleavage by SARS-CoV-2 3CLpro. Nat Commun 2022; 13:5285. [PMID: 36075915 PMCID: PMC9453703 DOI: 10.1038/s41467-022-32922-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 08/23/2022] [Indexed: 11/15/2022] Open
Abstract
In addition to its essential role in viral polyprotein processing, the SARS-CoV-2 3C-like protease (3CLpro) can cleave human immune signaling proteins, like NF-κB Essential Modulator (NEMO) and deregulate the host immune response. Here, in vitro assays show that SARS-CoV-2 3CLpro cleaves NEMO with fine-tuned efficiency. Analysis of the 2.50 Å resolution crystal structure of 3CLpro C145S bound to NEMO226-234 reveals subsites that tolerate a range of viral and host substrates through main chain hydrogen bonds while also enforcing specificity using side chain hydrogen bonds and hydrophobic contacts. Machine learning- and physics-based computational methods predict that variation in key binding residues of 3CLpro-NEMO helps explain the high fitness of SARS-CoV-2 in humans. We posit that cleavage of NEMO is an important piece of information to be accounted for, in the pathology of COVID-19.
Collapse
Affiliation(s)
- Mikhail A Hameedi
- SLAC National Accelerator Laboratory, Stanford Synchrotron Radiation Lightsource, Structural Molecular Biology, Menlo Park, CA, 94025, USA
- SLAC National Accelerator Laboratory, Stanford Synchrotron Radiation Lightsource, Biosciences, Menlo Park, CA, 94025, USA
- Department of Structural Biology, Stanford University, Stanford, CA, 94305, USA
- National Virtual Biotechnology Laboratory, US Department of Energy, Washington, DC, USA
| | - Erica T Prates
- National Virtual Biotechnology Laboratory, US Department of Energy, Washington, DC, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Michael R Garvin
- National Virtual Biotechnology Laboratory, US Department of Energy, Washington, DC, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Irimpan I Mathews
- SLAC National Accelerator Laboratory, Stanford Synchrotron Radiation Lightsource, Structural Molecular Biology, Menlo Park, CA, 94025, USA
| | - B Kirtley Amos
- Department of Horticulture, University of Kentucky, Lexington, KY, USA
| | - Omar Demerdash
- National Virtual Biotechnology Laboratory, US Department of Energy, Washington, DC, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Mark Bechthold
- Department of Structural Biology, Stanford University, Stanford, CA, 94305, USA
| | - Mamta Iyer
- Chapman University School of Pharmacy, Irvine, CA, 92618, USA
| | - Simin Rahighi
- Chapman University School of Pharmacy, Irvine, CA, 92618, USA
| | - Daniel W Kneller
- National Virtual Biotechnology Laboratory, US Department of Energy, Washington, DC, USA
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Andrey Kovalevsky
- National Virtual Biotechnology Laboratory, US Department of Energy, Washington, DC, USA
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Stephan Irle
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Van-Quan Vuong
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee Knoxville, Knoxville, TN, USA
| | - Julie C Mitchell
- National Virtual Biotechnology Laboratory, US Department of Energy, Washington, DC, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Audrey Labbe
- National Virtual Biotechnology Laboratory, US Department of Energy, Washington, DC, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Stephanie Galanie
- National Virtual Biotechnology Laboratory, US Department of Energy, Washington, DC, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Department of Process Research and Development, Merck & Co., Inc., Rahway, NJ, 07065, USA
| | - Soichi Wakatsuki
- SLAC National Accelerator Laboratory, Stanford Synchrotron Radiation Lightsource, Structural Molecular Biology, Menlo Park, CA, 94025, USA.
- SLAC National Accelerator Laboratory, Stanford Synchrotron Radiation Lightsource, Biosciences, Menlo Park, CA, 94025, USA.
- Department of Structural Biology, Stanford University, Stanford, CA, 94305, USA.
- National Virtual Biotechnology Laboratory, US Department of Energy, Washington, DC, USA.
| | - Daniel Jacobson
- National Virtual Biotechnology Laboratory, US Department of Energy, Washington, DC, USA.
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| |
Collapse
|
9
|
Ebrahim A, Riley BT, Kumaran D, Andi B, Fuchs MR, McSweeney S, Keedy DA. The temperature-dependent conformational ensemble of SARS-CoV-2 main protease (M pro). IUCRJ 2022; 9:682-694. [PMID: 36071812 PMCID: PMC9438506 DOI: 10.1107/s2052252522007497] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/21/2022] [Indexed: 05/12/2023]
Abstract
The COVID-19 pandemic, instigated by the SARS-CoV-2 coronavirus, continues to plague the globe. The SARS-CoV-2 main protease, or Mpro, is a promising target for the development of novel antiviral therapeutics. Previous X-ray crystal structures of Mpro were obtained at cryogenic tem-per-ature or room tem-per-ature only. Here we report a series of high-resolution crystal structures of unliganded Mpro across multiple tem-per-atures from cryogenic to physiological, and another at high humidity. We inter-rogate these data sets with parsimonious multiconformer models, multi-copy ensemble models, and isomorphous difference density maps. Our analysis reveals a perturbation-dependent conformational landscape for Mpro, including a mobile zinc ion inter-leaved between the catalytic dyad, mercurial conformational heterogeneity at various sites including a key substrate-binding loop, and a far-reaching intra-molecular network bridging the active site and dimer inter-face. Our results may inspire new strategies for antiviral drug development to aid preparation for future coronavirus pandemics.
Collapse
Affiliation(s)
- Ali Ebrahim
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, England, United Kingdom
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031, USA
| | - Blake T. Riley
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031, USA
| | - Desigan Kumaran
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Babak Andi
- Center for BioMolecular Structure, NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
- National Virtual Biotechnology Laboratory (NVBL), US Department of Energy, Washington, DC, USA
| | - Martin R. Fuchs
- Center for BioMolecular Structure, NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Sean McSweeney
- Center for BioMolecular Structure, NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
- National Virtual Biotechnology Laboratory (NVBL), US Department of Energy, Washington, DC, USA
| | - Daniel A. Keedy
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031, USA
- Department of Chemistry and Biochemistry, City College of New York, New York, NY 10031, USA
- PhD Programs in Biochemistry, Biology, and Chemistry, The Graduate Center–City University of New York, New York, NY 10016, USA
| |
Collapse
|
10
|
Yorur Goreci C. Synthesis and comparative spectroscopic studies, HOMO–LUMO analysis and molecular docking studies of 3,3′-(1,4-phenylene)bis[2-(6-chloropyridin-3-yl)prop‑2-enenitrile] based on DFT. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Production of a functionally active recombinant SARS-CoV-2 (COVID-19) 3C-Like protease and a soluble inactive 3C-like protease-RBD chimeric in a prokaryotic expression system. Epidemiol Infect 2022; 150:e128. [PMID: 35723031 PMCID: PMC9300977 DOI: 10.1017/s0950268822001078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
During the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) intracellular life-cycle, two large polyproteins, pp1a and pp1ab, are produced. Processing of these by viral cysteine proteases, the papain-like protease (PLpro) and the chymotrypsin-like 3C-like protease (3CL-pro) release non-structural proteins necessary for the establishment of the viral replication and transcription complex (RTC), crucial for viral replication. Hence, these proteases are considered prime targets against which anti-coronavirus disease 2019 (COVID-19) drugs could be developed. Here, we describe the expression of a highly soluble and functionally active recombinant 3CL-pro using Escherichia coli BL21 cells. We show that the enzyme functions in a dimeric form and exhibits an unexpected inhibitory profile because its activity is potently blocked by serine rather than cysteine protease inhibitors. In addition, we assessed the ability of our 3CL-pro to function as a carrier for the receptor binding domain (RBD) of the Spike protein. The co-expressed chimeric protein, 3CLpro-RBD, did not exhibit 3CL-pro activity, but its enhanced solubility made purification easier and improved RBD antigenicity when tested against serum from vaccinated individuals in ELISAs. Chimeric proteins containing the 3CL-pro could represent an innovative approach to developing new COVID-19 vaccines.
Collapse
|
12
|
Fornasier E, Macchia ML, Giachin G, Sosic A, Pavan M, Sturlese M, Salata C, Moro S, Gatto B, Bellanda M, Battistutta R. A new inactive conformation of SARS-CoV-2 main protease. Acta Crystallogr D Struct Biol 2022; 78:363-378. [PMID: 35234150 PMCID: PMC8900819 DOI: 10.1107/s2059798322000948] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/27/2022] [Indexed: 11/26/2022] Open
Abstract
The SARS-CoV-2 main protease (Mpro) has a pivotal role in mediating viral genome replication and transcription of the coronavirus, making it a promising target for drugs against the COVID-19 pandemic. Here, a crystal structure is presented in which Mpro adopts an inactive state that has never been observed before, called new-inactive. It is shown that the oxyanion loop, which is involved in substrate recognition and enzymatic activity, adopts a new catalytically incompetent conformation and that many of the key interactions of the active conformation of the enzyme around the active site are lost. Solvation/desolvation energetic contributions play an important role in the transition from the inactive to the active state, with Phe140 moving from an exposed to a buried environment and Asn142 moving from a buried environment to an exposed environment. In new-inactive Mpro a new cavity is present near the S2' subsite, and the N-terminal and C-terminal tails, as well as the dimeric interface, are perturbed, with partial destabilization of the dimeric assembly. This novel conformation is relevant both for comprehension of the mechanism of action of Mpro within the catalytic cycle and for the successful structure-based drug design of antiviral drugs.
Collapse
Affiliation(s)
- Emanuele Fornasier
- University of PaduaDepartment of Chemical SciencesVia F. Marzolo 1Padova35131Italy
| | - Maria Ludovica Macchia
- University of PaduaDepartment of Pharmaceutical and Pharmacological SciencesVia F. Marzolo 5Padova35131Italy
| | - Gabriele Giachin
- University of PaduaDepartment of Chemical SciencesVia F. Marzolo 1Padova35131Italy
| | - Alice Sosic
- University of PaduaDepartment of Pharmaceutical and Pharmacological SciencesVia F. Marzolo 5Padova35131Italy
| | - Matteo Pavan
- University of PaduaMolecular Modeling Section, Department of Pharmaceutical and Pharmacological SciencesVia F. Marzolo 5Padova35131Italy
| | - Mattia Sturlese
- University of PaduaMolecular Modeling Section, Department of Pharmaceutical and Pharmacological SciencesVia F. Marzolo 5Padova35131Italy
| | - Cristiano Salata
- University of PaduaDepartment of Molecular MedicineVia Gabelli 63Padova35121Italy
| | - Stefano Moro
- University of PaduaMolecular Modeling Section, Department of Pharmaceutical and Pharmacological SciencesVia F. Marzolo 5Padova35131Italy
| | - Barbara Gatto
- University of PaduaDepartment of Pharmaceutical and Pharmacological SciencesVia F. Marzolo 5Padova35131Italy
| | - Massimo Bellanda
- University of PaduaDepartment of Chemical SciencesVia F. Marzolo 1Padova35131Italy
- Institute of Biomolecular Chemistry of CNRPadua UnitVia F. Marzolo 1Padova35131Italy
| | - Roberto Battistutta
- University of PaduaDepartment of Chemical SciencesVia F. Marzolo 1Padova35131Italy
- Institute of Biomolecular Chemistry of CNRPadua UnitVia F. Marzolo 1Padova35131Italy
| |
Collapse
|
13
|
Abstract
Tremendous efforts are being made around the world to develop efficient ways to prevent/treat the novel β-coronavirus disease (COVID-19) caused by SARS-CoV-2. There are currently many studies and clinical trials (either based on computational predictions or clinical experiences), in progress, focusing on finding relevant protein targets and medications anti-COVID-19. In the present study, we report a hydrogel drug delivery system based on Laponite® RD (Lap) entrapped in a poly(vinyl alcohol) (PVA) matrix obtained by freezing/thawing method. The PVA/Lap hydrogels were characterized in terms of their morphological, rheological, and swelling properties. Moreover, in vitro drug delivery investigations were performed with a promising drug, Rifampicin (Rif). Rif is an antitubercular drug and was selected for this study in order to demonstrate its efficacy as an anti-COVID-19 repurposed drug. In vitro studies were supplemented by in silico molecular docking simulations of Rif capacity of inhibition against SARS-CoV-2 target protein 3-chymotrypsin-like protease (3CLpro). The results obtained in this study are encouraging and we propose the Rif loaded PVA/Lap hydrogels as promising drug delivery systems for COVID-19 treatment, promoting a synergistic therapeutic effect by dual targeting of viral 3CLpro and S proteins.
Collapse
|
14
|
Hameedi MA, Prates ET, Garvin MR, Mathews I, Kirtley Amos B, Demerdash O, Bechthold M, Iyer M, Rahighi S, Kneller DW, Kovalevsky A, Irle S, Vuong V, Mitchell JC, Labbe A, Galanie S, Wakatsuki S, Jacobson D. Structural and functional characterization of NEMO cleavage by SARS-CoV-2 3CLpro.. [PMID: 34816264 PMCID: PMC8609902 DOI: 10.1101/2021.11.11.468228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In addition to its essential role in viral polyprotein processing, the SARS-CoV-2 3C-like (3CLpro) protease can cleave human immune signaling proteins, like NF-κB Essential Modulator (NEMO) and deregulate the host immune response. Here, in vitro assays show that SARS-CoV-2 3CLpro cleaves NEMO with fine-tuned efficiency. Analysis of the 2.14 Å resolution crystal structure of 3CLpro C145S bound to NEMO226–235 reveals subsites that tolerate a range of viral and host substrates through main chain hydrogen bonds while also enforcing specificity using side chain hydrogen bonds and hydrophobic contacts. Machine learning- and physics-based computational methods predict that variation in key binding residues of 3CLpro-NEMO helps explain the high fitness of SARS-CoV-2 in humans. We posit that cleavage of NEMO is an important piece of information to be accounted for in the pathology of COVID-19.
Collapse
|
15
|
Ebrahim A, Riley BT, Kumaran D, Andi B, Fuchs MR, McSweeney S, Keedy DA. The temperature-dependent conformational ensemble of SARS-CoV-2 main protease (M pro). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.05.03.437411. [PMID: 33972941 PMCID: PMC8109201 DOI: 10.1101/2021.05.03.437411] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The COVID-19 pandemic, instigated by the SARS-CoV-2 coronavirus, continues to plague the globe. The SARS-CoV-2 main protease, or Mpro, is a promising target for development of novel antiviral therapeutics. Previous X-ray crystal structures of Mpro were obtained at cryogenic temperature or room temperature only. Here we report a series of high-resolution crystal structures of unliganded Mpro across multiple temperatures from cryogenic to physiological, and another at high humidity. We interrogate these datasets with parsimonious multiconformer models, multi-copy ensemble models, and isomorphous difference density maps. Our analysis reveals a temperature-dependent conformational landscape for Mpro, including mobile solvent interleaved between the catalytic dyad, mercurial conformational heterogeneity in a key substrate-binding loop, and a far-reaching intramolecular network bridging the active site and dimer interface. Our results may inspire new strategies for antiviral drug development to counter-punch COVID-19 and combat future coronavirus pandemics.
Collapse
Affiliation(s)
- Ali Ebrahim
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031
| | - Blake T. Riley
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031
| | - Desigan Kumaran
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973
| | - Babak Andi
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973
- National Virtual Biotechnology Laboratory (NVBL), US Department of Energy, Washington, DC, United States
| | - Martin R. Fuchs
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973
| | - Sean McSweeney
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973
- National Virtual Biotechnology Laboratory (NVBL), US Department of Energy, Washington, DC, United States
| | - Daniel A. Keedy
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031
- Department of Chemistry and Biochemistry, City College of New York, New York, NY 10031
- Ph.D. Programs in Biochemistry, Biology, and Chemistry, The Graduate Center – City University of New York, New York, NY 10016
| |
Collapse
|
16
|
Characterization of the non-covalent interaction between the PF-07321332 inhibitor and the SARS-CoV-2 main protease. J Mol Graph Model 2021; 110:108042. [PMID: 34653812 PMCID: PMC8491126 DOI: 10.1016/j.jmgm.2021.108042] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022]
Abstract
We have studied the non-covalent interaction between PF-07321332 and SARS-CoV-2 main protease at the atomic level using a computational approach based on extensive molecular dynamics simulations with explicit solvent. PF-07321332, whose chemical structure has been recently disclosed, is a promising oral antiviral clinical candidate with well-established anti-SARS-CoV-2 activity in vitro. The drug, currently in phase III clinical trials in combination with ritonavir, relies on the electrophilic attack of a nitrile warhead to the catalytic cysteine of the protease. Nonbonded interaction between the inhibitor and the residues of the binding pocket, as well as with water molecules on the protein surface, have been characterized using two different force fields and the two possible protonation states of the main protease catalytic dyad HIS41-CYS145. When the catalytic dyad is in the neutral state, the non-covalent binding is likely to be stronger. Molecular dynamics simulations seems to lend support for an inhibitory mechanism in two steps: a first non-covalent addition with the dyad in neutral form and then the formation of the thiolate-imidazolium ion pair and the ligand relocation for finalising the electrophilic attack.
Collapse
|
17
|
Precursors of Viral Proteases as Distinct Drug Targets. Viruses 2021; 13:v13101981. [PMID: 34696411 PMCID: PMC8537868 DOI: 10.3390/v13101981] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/25/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022] Open
Abstract
Viral proteases are indispensable for successful virion maturation, thus making them a prominent drug target. Their enzyme activity is tightly spatiotemporally regulated by expression in the precursor form with little or no activity, followed by activation via autoprocessing. These cleavage events are frequently triggered upon transportation to a specific compartment inside the host cell. Typically, precursor oligomerization or the presence of a co-factor is needed for activation. A detailed understanding of these mechanisms will allow ligands with non-canonical mechanisms of action to be designed, which would specifically modulate the initial irreversible steps of viral protease autoactivation. Binding sites exclusive to the precursor, including binding sites beyond the protease domain, can be exploited. Both inhibition and up-regulation of the proteolytic activity of viral proteases can be detrimental for the virus. All these possibilities are discussed using examples of medically relevant viruses including herpesviruses, adenoviruses, retroviruses, picornaviruses, caliciviruses, togaviruses, flaviviruses, and coronaviruses.
Collapse
|
18
|
Minor W, Jaskolski M, Martin SJ, Dauter Z. Dr. Alexander Wlodawer-celebrating five decades of service to the structural biology community. FEBS J 2021; 288:4160-4164. [PMID: 34286923 DOI: 10.1111/febs.16064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 11/28/2022]
Abstract
This 75th birthday tribute to our Editorial Board member Alexander Wlodawer recounts his decades-long service to the community of structural biology researchers. His former and current colleagues tell the story of his upbringing and education, followed by an account of his dedication to quality and rigor in crystallography and structural science. The FEBS Journal Editor-in-Chief Seamus Martin further highlights Alex's outstanding contributions to the journal's success over many years.
Collapse
Affiliation(s)
- Wladek Minor
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Mariusz Jaskolski
- Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University and Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Seamus J Martin
- Department of Genetics, The Smurfit Institute, Trinity College, Dublin, Ireland
| | - Zbigniew Dauter
- Center for Structural Biology, National Cancer Institute, Frederick, MD, USA
| |
Collapse
|
19
|
Jukič M, Škrlj B, Tomšič G, Pleško S, Podlipnik Č, Bren U. Prioritisation of Compounds for 3CL pro Inhibitor Development on SARS-CoV-2 Variants. Molecules 2021; 26:molecules26103003. [PMID: 34070140 PMCID: PMC8158358 DOI: 10.3390/molecules26103003] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 12/15/2022] Open
Abstract
COVID-19 represents a new potentially life-threatening illness caused by severe acute respiratory syndrome coronavirus 2 or SARS-CoV-2 pathogen. In 2021, new variants of the virus with multiple key mutations have emerged, such as B.1.1.7, B.1.351, P.1 and B.1.617, and are threatening to render available vaccines or potential drugs ineffective. In this regard, we highlight 3CLpro, the main viral protease, as a valuable therapeutic target that possesses no mutations in the described pandemically relevant variants. 3CLpro could therefore provide trans-variant effectiveness that is supported by structural studies and possesses readily available biological evaluation experiments. With this in mind, we performed a high throughput virtual screening experiment using CmDock and the "In-Stock" chemical library to prepare prioritisation lists of compounds for further studies. We coupled the virtual screening experiment to a machine learning-supported classification and activity regression study to bring maximal enrichment and available structural data on known 3CLpro inhibitors to the prepared focused libraries. All virtual screening hits are classified according to 3CLpro inhibitor, viral cysteine protease or remaining chemical space based on the calculated set of 208 chemical descriptors. Last but not least, we analysed if the current set of 3CLpro inhibitors could be used in activity prediction and observed that the field of 3CLpro inhibitors is drastically under-represented compared to the chemical space of viral cysteine protease inhibitors. We postulate that this methodology of 3CLpro inhibitor library preparation and compound prioritisation far surpass the selection of compounds from available commercial "corona focused libraries".
Collapse
Affiliation(s)
- Marko Jukič
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia;
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, SI-6000 Koper, Slovenia
| | - Blaž Škrlj
- Institute Jožef Stefan, Jamova cesta 39, SI-1000 Ljubljana, Slovenia;
| | - Gašper Tomšič
- Independent Researcher, Cesta Cirila Kosmača 66, SI-1000 Ljubljana, Slovenia;
| | | | - Črtomir Podlipnik
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
- Correspondence: (Č.P.); (U.B.); Tel.: +386-41-440-198 (Č.P.); +386-2-22-94-421 (U.B.)
| | - Urban Bren
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia;
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, SI-6000 Koper, Slovenia
- Correspondence: (Č.P.); (U.B.); Tel.: +386-41-440-198 (Č.P.); +386-2-22-94-421 (U.B.)
| |
Collapse
|
20
|
Abstract
Biomedical challenges such as the present COVID-19 pandemic require both good science and excellent communication between scientists and the general public. This underscores the importance of presenting our science in innovative ways that make it accessible to all.
Collapse
Affiliation(s)
- Edward N. Baker
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
21
|
Helliwell JR. Combining X-rays, neutrons and electrons, and NMR, for precision and accuracy in structure-function studies. Acta Crystallogr A Found Adv 2021; 77:173-185. [PMID: 33944796 PMCID: PMC8127390 DOI: 10.1107/s205327332100317x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 03/25/2021] [Indexed: 02/02/2023] Open
Abstract
The distinctive features of the physics-based probes used in understanding the structure of matter focusing on biological sciences, but not exclusively, are described in the modern context. This is set in a wider scope of holistic biology and the scepticism about `reductionism', what is called the `molecular level', and how to respond constructively. These topics will be set alongside the principles of accuracy and precision, and their boundaries. The combination of probes and their application together is the usual way of realizing accuracy. The distinction between precision and accuracy can be blurred by the predictive force of a precise structure, thereby lending confidence in its potential accuracy. These descriptions will be applied to the comparison of cryo and room-temperature protein crystal structures as well as the solid state of a crystal and the same molecules studied by small-angle X-ray scattering in solution and by electron microscopy on a sample grid. Examples will include: time-resolved X-ray Laue crystallography of an enzyme Michaelis complex formed directly in a crystal equivalent to in vivo; a new iodoplatin for radiation therapy predicted from studies of platin crystal structures; and the field of colouration of carotenoids, as an effective assay of function, i.e. their colouration, when unbound and bound to a protein. The complementarity of probes, as well as their combinatory use, is then at the foundation of real (biologically relevant), probe-artefacts-free, structure-function studies. The foundations of our methodologies are being transformed by colossal improvements in technologies of X-ray and neutron sources and their beamline instruments, as well as improved electron microscopes and NMR spectrometers. The success of protein structure prediction from gene sequence recently reported by CASP14 also opens new doors to change and extend the foundations of the structural sciences.
Collapse
Affiliation(s)
- John R. Helliwell
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, United Kingdom
| |
Collapse
|