1
|
Schumann A, Gaballa A, Yang H, Yu D, Ernst RK, Wiedmann M. Site-selective modifications by lipid A phosphoethanolamine transferases linked to colistin resistance and bacterial fitness. mSphere 2024; 9:e0073124. [PMID: 39611852 DOI: 10.1128/msphere.00731-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/05/2024] [Indexed: 11/30/2024] Open
Abstract
Genes encoding lipid A modifying phosphoethanolamine transferases (PETs) are genetically diverse and can confer resistance to colistin and antimicrobial peptides. To better understand the functional diversity of PETs, we characterized three canonical mobile colistin resistance (mcr) alleles (mcr-1, -3, -9), one intrinsic pet (eptA), and two mcr-like genes (petB, petC) in Escherichia coli. Using an isogenic expression system, we show that mcr-1 and mcr-3 confer similar phenotypes of decreased colistin susceptibility with low fitness costs. mcr-9, which is phylogenetically closely related to mcr-3, and eptA only provide fitness advantages in the presence of sub-inhibitory concentrations of colistin and significantly reduce fitness in media without colistin. PET-B and PET-C were phenotypically distinct from bonafide PETs; neither impacted colistin susceptibility nor caused considerable fitness cost. Strikingly, we found for the first time that different PETs selectively modify different phosphates of lipid A; MCR-1, MCR-3, and PET-C selectively modify the 4'-phosphate, whereas MCR-9 and EptA modify the 1-phosphate. However, 4'-phosphate modifications facilitated by MCR-1 and -3 are associated with lowered colistin susceptibility and low toxicity. Our results suggest that PETs have a wide phenotypic diversity and that increased colistin resistance is associated with specific lipid A modification patterns that have been largely unexplored thus far. IMPORTANCE Rising levels of resistance to increasing numbers of antimicrobials have led to the revival of last resort antibiotic colistin. Unfortunately, resistance to colistin is also spreading in the form of mcr genes, making it essential to (i) improve the identification of resistant bacteria to allow clinicians to prescribe effective drug regimens and (ii) develop new combination therapies effective at targeting resistant bacteria. Our results demonstrate that PETs, including MCR variants, are site-selective in Escherichia coli and that site-selectivity correlates with the level of susceptibility and fitness costs conferred by certain PETs. Site selectivity associated with a given PET may not only help predict colistin resistance phenotypes but may also provide an avenue to (i) improve drug regimens and (ii) develop new combination therapies to better combat colistin-resistant bacteria.
Collapse
Affiliation(s)
- Anna Schumann
- Department of Food Science, Cornell University, Ithaca, New York, USA
- Graduate Field of Biomedical and Biological Sciences, Cornell University, Ithaca, New York, USA
| | - Ahmed Gaballa
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Hyojik Yang
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland Baltimore, Baltimore, Maryland, USA
| | - Di Yu
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland Baltimore, Baltimore, Maryland, USA
| | - Robert K Ernst
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland Baltimore, Baltimore, Maryland, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
2
|
Schumann A, Gaballa A, Wiedmann M. The multifaceted roles of phosphoethanolamine-modified lipopolysaccharides: from stress response and virulence to cationic antimicrobial resistance. Microbiol Mol Biol Rev 2024; 88:e0019323. [PMID: 39382292 DOI: 10.1128/mmbr.00193-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
SUMMARYLipopolysaccharides (LPS) are an integral part of the outer membrane of Gram-negative bacteria and play essential structural and functional roles in maintaining membrane integrity as well as in stress response and virulence. LPS comprises a membrane-anchored lipid A group, a sugar-based core region, and an O-antigen formed by repeating oligosaccharide units. 3-Deoxy-D-manno-octulosonic acid-lipid A (Kdo2-lipid A) is the minimum LPS component required for bacterial survival. While LPS modifications are not essential, they play multifaceted roles in stress response and host-pathogen interactions. Gram-negative bacteria encode several distinct LPS-modifying phosphoethanolamine transferases (PET) that add phosphoethanolamine (pEtN) to lipid A or the core region of LPS. The pet genes differ in their genomic locations, regulation mechanisms, and modification targets of the encoded enzyme, consistent with their various roles in different growth niches and under varied stress conditions. The discovery of mobile colistin resistance genes, which represent lipid A-modifying pet genes that are encoded on mobile elements and associated with resistance to the last-resort antibiotic colistin, has led to substantial interest in PETs and pEtN-modified LPS over the last decade. Here, we will review the current knowledge of the functional diversity of pEtN-based LPS modifications, including possible roles in niche-specific fitness advantages and resistance to host-produced antimicrobial peptides, and discuss how the genetic and structural diversities of PETs may impact their function. An improved understanding of the PET group will further enhance our comprehension of the stress response and virulence of Gram-negative bacteria and help contextualize host-pathogen interactions.
Collapse
Affiliation(s)
- Anna Schumann
- Department of Food Science, Cornell University, Ithaca, New York, USA
- Graduate Field of Biomedical and Biological Sciences, Cornell University, Ithaca, New York, USA
| | - Ahmed Gaballa
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
3
|
Ma Z, Nang SC, Liu Z, Zhu J, Mu K, Xu L, Xiao M, Wang L, Li J, Jiang X. Membrane lipid homeostasis dually regulates conformational transition of phosphoethanolamine transferase EptA. Nat Commun 2024; 15:10166. [PMID: 39580503 PMCID: PMC11585620 DOI: 10.1038/s41467-024-54607-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 11/15/2024] [Indexed: 11/25/2024] Open
Abstract
The phosphoethanolamine transferase EptA utilizes phosphatidylethanolamine (PE) in the bacterial cell membrane to modify the structure of lipopolysaccharide, thereby conferring antimicrobial resistance on Gram-negative pathogens. Previous studies have indicated that excessive consumption of PE can disrupt the cell membrane, leading to cell death. This implies the presence of a regulatory mechanism for EptA catalysis to maintain a balance between antimicrobial resistance and bacterial growth. Through microsecond-scale all-atom molecular dynamics simulations, we demonstrate that membrane lipid homeostasis modulates the conformational transition and catalytic activation of EptA. The conformation of EptA oscillates between closed and open states, ensuring the precise spatiotemporal sequence of substrates binding. Interestingly, the conformation of EptA is significantly influenced by its surrounding lipid microenvironment, particularly the PE proportion in the membrane. PE-rich membrane conditions initiate and stabilize the open conformation of EptA through both orthosteric and allosteric effects. Importantly, the reaction mediated by EptA gradually depletes PE in the membrane, ultimately hindering its conformational transition and catalytic activation. These findings collectively establish a self-promoted model, illustrating the regulatory mechanism of EptA during the development of antibiotic resistance.
Collapse
Affiliation(s)
- Zhenyu Ma
- National Glycoengineering Research Center, Shandong University, Qingdao, China
| | - Sue C Nang
- Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Zhuo Liu
- National Glycoengineering Research Center, Shandong University, Qingdao, China
| | - Jingyi Zhu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Kaijie Mu
- Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Limei Xu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Min Xiao
- National Glycoengineering Research Center, Shandong University, Qingdao, China
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Jian Li
- Biomedicine Discovery Institute, Monash University, Melbourne, Australia.
| | - Xukai Jiang
- National Glycoengineering Research Center, Shandong University, Qingdao, China.
| |
Collapse
|
4
|
Ghaedizadeh S, Zeinali M, Dabirmanesh B, Rasekh B, Khajeh K, Banaei-Moghaddam AM. Rational design engineering of a more thermostable Sulfurihydrogenibium yellowstonense carbonic anhydrase for potential application in carbon dioxide capture technologies. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:140962. [PMID: 37716447 DOI: 10.1016/j.bbapap.2023.140962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/18/2023] [Accepted: 09/06/2023] [Indexed: 09/18/2023]
Abstract
Implementing hyperthermostable carbonic anhydrases into CO2 capture and storage technologies in order to increase the rate of CO2 absorption from the industrial flue gases is of great importance from technical and economical points of view. The present study employed a combination of in silico tools to further improve thermostability of a known thermostable carbonic anhydrase from Sulfurihydrogenibium yellowstonense. Experimental results showed that our rationally engineered K100G mutant not only retained the overall structure and catalytic efficiency but also showed a 3 °C increase in the melting temperature and a two-fold improvement in the enzyme half-life at 85 °C. Based on the molecular dynamics simulation results, rearrangement of salt bridges and hydrogen interactions network causes a reduction in local flexibility of the K100G variant. In conclusion, our study demonstrated that thermostability can be improved through imposing local structural rigidity by engineering a single-point mutation on the surface of the enzyme.
Collapse
Affiliation(s)
- Shima Ghaedizadeh
- Laboratory of Genomics and Epigenomics (LGE), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Majid Zeinali
- Microbiology and Biotechnology Research Group, Research Institute of Petroleum Industry (RIPI), Tehran, Iran.
| | - Bahareh Dabirmanesh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Behnam Rasekh
- Microbiology and Biotechnology Research Group, Research Institute of Petroleum Industry (RIPI), Tehran, Iran
| | - Khosrow Khajeh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Mohammad Banaei-Moghaddam
- Laboratory of Genomics and Epigenomics (LGE), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
5
|
Materon IC, Palzkill T. Structural biology of MCR-1-mediated resistance to polymyxin antibiotics. Curr Opin Struct Biol 2023; 82:102647. [PMID: 37399693 PMCID: PMC10527939 DOI: 10.1016/j.sbi.2023.102647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/30/2023] [Accepted: 06/07/2023] [Indexed: 07/05/2023]
Abstract
Polymyxins, a last resort antibiotic, target the outer membrane of pathogens and are used to address the increasing prevalence of multidrug-resistant Gram-negative bacteria. The plasmid-encoded enzyme MCR-1 confers polymyxin resistance to bacteria by modifying the outer membrane. Transferable resistance to polymyxins is a major concern; therefore, MCR-1 is an important drug target. In this review, we discuss recent structural and mechanistic aspects of MCR-1 function, its variants and homologs, and how they are relevant to polymyxin resistance. Specifically, we discuss work on polymyxin-mediated disruption of the outer and inner membranes, computational studies on the catalytic mechanism of MCR-1, mutagenesis and structural analysis concerning residues important for substrate binding in MCR-1, and finally, advancements in inhibitors targeting MCR-1.
Collapse
Affiliation(s)
- Isabel Cristina Materon
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Timothy Palzkill
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
6
|
Gaballa A, Wiedmann M, Carroll LM. More than mcr: canonical plasmid- and transposon-encoded mobilized colistin resistance genes represent a subset of phosphoethanolamine transferases. Front Cell Infect Microbiol 2023; 13:1060519. [PMID: 37360531 PMCID: PMC10285318 DOI: 10.3389/fcimb.2023.1060519] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 05/19/2023] [Indexed: 06/28/2023] Open
Abstract
Mobilized colistin resistance genes (mcr) may confer resistance to the last-resort antimicrobial colistin and can often be transmitted horizontally. mcr encode phosphoethanolamine transferases (PET), which are closely related to chromosomally encoded, intrinsic lipid modification PET (i-PET; e.g., EptA, EptB, CptA). To gain insight into the evolution of mcr within the context of i-PET, we identified 69,814 MCR-like proteins present across 256 bacterial genera (obtained by querying known MCR family representatives against the National Center for Biotechnology Information [NCBI] non-redundant protein database via protein BLAST). We subsequently identified 125 putative novel mcr-like genes, which were located on the same contig as (i) ≥1 plasmid replicon and (ii) ≥1 additional antimicrobial resistance gene (obtained by querying the PlasmidFinder database and NCBI's National Database of Antibiotic Resistant Organisms, respectively, via nucleotide BLAST). At 80% amino acid identity, these putative novel MCR-like proteins formed 13 clusters, five of which represented putative novel MCR families. Sequence similarity and a maximum likelihood phylogeny of mcr, putative novel mcr-like, and ipet genes indicated that sequence similarity was insufficient to discriminate mcr from ipet genes. A mixed-effect model of evolution (MEME) indicated that site- and branch-specific positive selection played a role in the evolution of alleles within the mcr-2 and mcr-9 families. MEME suggested that positive selection played a role in the diversification of several residues in structurally important regions, including (i) a bridging region that connects the membrane-bound and catalytic periplasmic domains, and (ii) a periplasmic loop juxtaposing the substrate entry tunnel. Moreover, eptA and mcr were localized within different genomic contexts. Canonical eptA genes were typically chromosomally encoded in an operon with a two-component regulatory system or adjacent to a TetR-type regulator. Conversely, mcr were represented by single-gene operons or adjacent to pap2 and dgkA, which encode a PAP2 family lipid A phosphatase and diacylglycerol kinase, respectively. Our data suggest that eptA can give rise to "colistin resistance genes" through various mechanisms, including mobilization, selection, and diversification of genomic context and regulatory pathways. These mechanisms likely altered gene expression levels and enzyme activity, allowing bona fide eptA to evolve to function in colistin resistance.
Collapse
Affiliation(s)
- Ahmed Gaballa
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Laura M. Carroll
- Department of Clinical Microbiology, SciLifeLab, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
- Integrated Science Lab, Umeå University, Umeå, Sweden
| |
Collapse
|
7
|
Rosignoli S, Paiardini A. Boosting the Full Potential of PyMOL with Structural Biology Plugins. Biomolecules 2022; 12:biom12121764. [PMID: 36551192 PMCID: PMC9775141 DOI: 10.3390/biom12121764] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Over the past few decades, the number of available structural bioinformatics pipelines, libraries, plugins, web resources and software has increased exponentially and become accessible to the broad realm of life scientists. This expansion has shaped the field as a tangled network of methods, algorithms and user interfaces. In recent years PyMOL, widely used software for biomolecules visualization and analysis, has started to play a key role in providing an open platform for the successful implementation of expert knowledge into an easy-to-use molecular graphics tool. This review outlines the plugins and features that make PyMOL an eligible environment for supporting structural bioinformatics analyses.
Collapse
|