1
|
Nicolas WJ, Gillman C, Weaver SJ, Clabbers MTB, Shiriaeva A, Her AS, Martynowycz MW, Gonen T. Comprehensive microcrystal electron diffraction sample preparation for cryo-EM. Nat Protoc 2024:10.1038/s41596-024-01088-7. [PMID: 39706914 DOI: 10.1038/s41596-024-01088-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 10/09/2024] [Indexed: 12/23/2024]
Abstract
Microcrystal electron diffraction (MicroED) has advanced structural methods across a range of sample types, from small molecules to proteins. This cryogenic electron microscopy (cryo-EM) technique involves the continuous rotation of small 3D crystals in the electron beam, while a high-speed camera captures diffraction data in the form of a movie. The crystal structure is subsequently determined by using established X-ray crystallographic software. MicroED is a technique still under development, and hands-on expertise in sample preparation, data acquisition and processing is not always readily accessible. This comprehensive guide on MicroED sample preparation addresses commonly used methods for various sample categories, including room temperature solid-state small molecules and soluble and membrane protein crystals. Beyond detailing the steps of sample preparation for new users, and because every crystal requires unique growth and sample-preparation conditions, this resource provides instructions and optimization strategies for MicroED sample preparation. The protocol is suitable for users with expertise in biochemistry, crystallography, general cryo-EM and crystallography data processing. MicroED experiments, from sample vitrification to final structure, can take anywhere from one workday to multiple weeks, especially when cryogenic focused ion beam milling is involved.
Collapse
Affiliation(s)
- William J Nicolas
- Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Cody Gillman
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Sara J Weaver
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Max T B Clabbers
- Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Anna Shiriaeva
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Ampon Sae Her
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Michael W Martynowycz
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Tamir Gonen
- Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California, Los Angeles, CA, USA.
- Department of Physiology, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Abdelhady AW, Mittan-Moreau DW, Crane PL, McLeod MJ, Cheong SH, Thorne RE. Ice formation and its elimination in cryopreservation of oocytes. Sci Rep 2024; 14:18809. [PMID: 39138273 PMCID: PMC11322307 DOI: 10.1038/s41598-024-69528-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
Damage from ice and potential toxicity of ice-inhibiting cryoprotective agents (CPAs) are key issues in assisted reproduction of humans, domestic and research animals, and endangered species using cryopreserved oocytes and embryos. The nature of ice formed in bovine oocytes (similar in size to oocytes of humans and most other mammals) after rapid cooling and during rapid warming was examined using synchrotron-based time-resolved x-ray diffraction. Using cooling rates, warming rates and CPA concentrations of current practice, oocytes show no ice after cooling but always develop large ice fractions-consistent with crystallization of most free water-during warming, so most ice-related damage must occur during warming. The detailed behavior of ice at warming depended on the nature of ice formed during cooling. Increasing cooling rates allows oocytes soaked as in current practice to remain essentially ice free during both cooling and warming. Much larger convective warming rates are demonstrated and will allow routine ice-free cryopreservation with smaller CPA concentrations. These results clarify the roles of cooling, warming, and CPA concentration in generating ice in oocytes and establish the structure and grain size of ice formed. Ice formation can be eliminated as a factor affecting post-warming oocyte viability and development in many species, improving outcomes and allowing other deleterious effects of the cryopreservation cycle to be independently studied.
Collapse
Affiliation(s)
- Abdallah W Abdelhady
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - David W Mittan-Moreau
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Patrick L Crane
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | | | - Soon Hon Cheong
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| | - Robert E Thorne
- Physics Department, Cornell University, Ithaca, NY, 14853, USA.
- MiTeGen, LLC, Ithaca, NY, 14850, USA.
| |
Collapse
|
3
|
Sazzed S. Determining Protein Secondary Structures in Heterogeneous Medium-Resolution Cryo-EM Images Using CryoSSESeg. ACS OMEGA 2024; 9:26409-26416. [PMID: 38911779 PMCID: PMC11191131 DOI: 10.1021/acsomega.4c02608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 06/25/2024]
Abstract
While the acquisition of cryo-electron microscopy (cryo-EM) at near-atomic resolution is becoming more prevalent, a considerable number of density maps are still resolved only at intermediate resolutions (5-10 Å). Due to the large variation in quality among these medium-resolution density maps, extracting structural information from them remains a challenging task. This study introduces a convolutional neural network (CNN)-based framework, cryoSSESeg, to determine the organization of protein secondary structure elements in medium-resolution cryo-EM images. CryoSSESeg is trained on approximately 1300 protein chains derived from around 500 experimental cryo-EM density maps of varied quality. It demonstrates strong performance with residue-level F 1 scores of 0.76 for helix detection and 0.60 for β-sheet detection on average across a set of testing chains. In comparison to traditional image processing tools like SSETracer, which demand significant manual intervention and preprocessing steps, cryoSSESeg demonstrates comparable or superior performance. Additionally, it demonstrates competitive performance alongside another deep learning-based model, Emap2sec. Furthermore, this study underscores the importance of secondary structure quality, particularly adherence to expected shapes, in detection performance, emphasizing the necessity for careful evaluation of the data quality.
Collapse
|
4
|
Abdelhady AW, Mittan-Moreau DW, Crane PL, McLeod MJ, Cheong SH, Thorne RE. Ice formation and its elimination in cryopreservation of oocytes. RESEARCH SQUARE 2024:rs.3.rs-4144933. [PMID: 38826214 PMCID: PMC11142364 DOI: 10.21203/rs.3.rs-4144933/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Damage from ice and potential toxicity of ice-inhibiting cryoprotective agents (CPAs) are key issues in assisted reproduction of humans, domestic and research animals, and endangered species using cryopreserved oocytes and embryos. The nature of ice formed in bovine oocytes (similar in size to oocytes of humans and most other mammals) after rapid cooling and during rapid warming were examined using synchrotron-based time-resolved x-ray diffraction. Using cooling rates, warming rates and CPA concentrations of current practice, oocytes show no ice after cooling but always develop large ice fractions - consistent with crystallization of most free water - during warming, so most ice-related damage must occur during warming. The detailed behavior of ice at warming depended on the nature of ice formed during cooling. Increasing cooling rates allows oocytes soaked as in current practice to remain essentially ice free during both cooling and warming. Much larger convective warming rates are demonstrated and will allow routine ice-free cryopreservation with smaller CPA concentrations. These results clarify the roles of cooling, warming, and CPA concentration in generating ice in oocytes and establish the structure and grain size of ice formed. Ice formation can be eliminated as a factor affecting post-thaw oocyte viability and development in many species, improving outcomes and allowing other deleterious effects of the cryopreservation cycle to be independently studied.
Collapse
Affiliation(s)
- Abdallah W Abdelhady
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - David W Mittan-Moreau
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Patrick L Crane
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | | | - Soon Hon Cheong
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - Robert E Thorne
- Physics Department, Cornell University, Ithaca, NY 14853
- MiTeGen, LLC, Ithaca, NY 14850
| |
Collapse
|
5
|
Rolle K, Okotrub KA, Evmenova EA, Kuznetsov AG, Babin SA, Surovtsev NV. Reversal of crystallization in cryoprotected samples by laser editing. J Chem Phys 2024; 160:184506. [PMID: 38743430 DOI: 10.1063/5.0206117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
Advances in cryobiology techniques commonly target either the cooling or the warming cycle, while little thought has been given to ≪repair≫ protocols applicable during cold storage. In particular, crystallization is the dominant threat to cryopreserved samples but proceeds from small nuclei that are innocuous if further growth is forestalled. To this end, we propose a laser editing technique that locally heats individual crystals above their melting point by a focused nanosecond pulse, followed by amorphization during rapid resolidification. As a reference, we first apply the approach to ice crystals in cryoprotected solution and use Raman confocal mapping to study the deactivation of crystalline order. Then, we examine dimethyl sulfoxide trihydrate crystals that can germinate at low temperatures in maximally freeze concentrated regions, as commonly produced by equilibrium cooling protocols. We show how to uniquely identify this phase from Raman spectra and evidence retarded growth of laser-edited crystals during warming.
Collapse
Affiliation(s)
- K Rolle
- Institute of Automation and Electrometry SB RAS, Academician Koptyug av. 1, Novosibirsk 630090, Russia
| | - K A Okotrub
- Institute of Automation and Electrometry SB RAS, Academician Koptyug av. 1, Novosibirsk 630090, Russia
| | - E A Evmenova
- Institute of Automation and Electrometry SB RAS, Academician Koptyug av. 1, Novosibirsk 630090, Russia
| | - A G Kuznetsov
- Institute of Automation and Electrometry SB RAS, Academician Koptyug av. 1, Novosibirsk 630090, Russia
| | - S A Babin
- Institute of Automation and Electrometry SB RAS, Academician Koptyug av. 1, Novosibirsk 630090, Russia
| | - N V Surovtsev
- Institute of Automation and Electrometry SB RAS, Academician Koptyug av. 1, Novosibirsk 630090, Russia
| |
Collapse
|
6
|
Okada S, Richirt J, Tame A, Nomaki H. Rapid Freezing and Cryo-SEM-EDS Imaging of Foraminifera (Unicellular Eukaryotes) Using a Conductive Viscous Cryogenic Glue. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2024; 30:359-367. [PMID: 38578298 DOI: 10.1093/mam/ozae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/13/2024] [Accepted: 03/05/2024] [Indexed: 04/06/2024]
Abstract
Spatial distribution of water-soluble molecules and ions in living organisms is still challenging to assess. Energy-dispersive X-ray spectroscopy (EDS) via cryogenic scanning electron microscopy (cryo-SEM) is one of the promising methods to study them without loss of dissolved contents. High-resolution cryo-SEM-EDS has challenges in sample preparation, including cross-section exposure and sample drift/charging due to insulative surrounding water. The former becomes problematic for large and inseparable organisms, such as benthic foraminifera, a unicellular eukaryote playing significant roles in marine ecosystems, which often exceed the size limit for the most reliable high-pressure freezing. Here we show graphite oxide dispersed in sucrose solution as a good glue to freeze, expose cross-section by cryo-ultramicrotome, and analyze elemental distribution owing to the glue's high viscosity, adhesion force, and electron conductivity. To demonstrate the effectiveness and applicability of the glue for cryo-SEM-EDS, deep-sea foraminifer Uvigerina akitaensis was sampled during a cruise and plunge frozen directly on the research vessel, where the liquid nitrogen supply is limited. The microstructures were preserved as faithfully in cryo-SEM images as those with the conventional resin-substituted transmission electron micrograph. We found elements colocalized within the cytoplasm originating from water-soluble compounds that can be lost with conventional dehydrative fixation.
Collapse
Affiliation(s)
- Satoshi Okada
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Julien Richirt
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Akihiro Tame
- Marine Works, Japan Ltd., 3-54-1 Oppama-Higashi-cho, Yokosuka, Kanagawa 237-0063, Japan
- Faculty of Medical Sciences, Life Science Research Laboratory, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan
| | - Hidetaka Nomaki
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| |
Collapse
|
7
|
Premageetha GT, Vinothkumar KR, Bose S. Exploring advances in single particle CryoEM with apoferritin: From blobs to true atomic resolution. Int J Biochem Cell Biol 2024; 169:106536. [PMID: 38307321 DOI: 10.1016/j.biocel.2024.106536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/04/2024]
Abstract
Deciphering the three-dimensional structures of macromolecules is of paramount importance for gaining insights into their functions and roles in human health and disease. Single particle cryoEM has emerged as a powerful technique that enables direct visualization of macromolecules and their complexes, and through subsequent averaging, achieve near atomic-level resolution. A major breakthrough was recently achieved with the determination of the apoferritin structure at true atomic resolution. In this review, we discuss the latest technological innovations across the entire single-particle workflow, which have been instrumental in driving the resolution revolution and in transforming cryoEM as a mainstream technique in structural biology. We illustrate these advancements using apoferritin as an example that has served as an excellent benchmark sample for assessing emerging technologies. We further explore whether the existing technology can routinely generate atomic structures of dynamic macromolecules that more accurately represent real-world samples, the limitations in the workflow, and the current approaches employed to overcome them.
Collapse
Affiliation(s)
- Gowtham ThambraRajan Premageetha
- Institute for Stem Cell Science and Regenerative Medicine, GKVK Post, Bangalore 560065, India; Manipal Academy of Higher Education, Tiger Circle Road, Manipal, Karnataka 576104, India.
| | - Kutti R Vinothkumar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Post, Bangalore 560065, India
| | - Sucharita Bose
- Institute for Stem Cell Science and Regenerative Medicine, GKVK Post, Bangalore 560065, India.
| |
Collapse
|
8
|
Henderikx RJM, Mann D, Domanska A, Dong J, Shahzad S, Lak B, Filopoulou A, Ludig D, Grininger M, Momoh J, Laanto E, Oksanen HM, Bisikalo K, Williams PA, Butcher SJ, Peters PJ, Beulen BWAMM. VitroJet: new features and case studies. Acta Crystallogr D Struct Biol 2024; 80:232-246. [PMID: 38488730 PMCID: PMC10994172 DOI: 10.1107/s2059798324001852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/26/2024] [Indexed: 04/05/2024] Open
Abstract
Single-particle cryo-electron microscopy has become a widely adopted method in structural biology due to many recent technological advances in microscopes, detectors and image processing. Before being able to inspect a biological sample in an electron microscope, it needs to be deposited in a thin layer on a grid and rapidly frozen. The VitroJet was designed with this aim, as well as avoiding the delicate manual handling and transfer steps that occur during the conventional grid-preparation process. Since its creation, numerous technical developments have resulted in a device that is now widely utilized in multiple laboratories worldwide. It features plasma treatment, low-volume sample deposition through pin printing, optical ice-thickness measurement and cryofixation of pre-clipped Autogrids through jet vitrification. This paper presents recent technical improvements to the VitroJet and the benefits that it brings to the cryo-EM workflow. A wide variety of applications are shown: membrane proteins, nucleosomes, fatty-acid synthase, Tobacco mosaic virus, lipid nanoparticles, tick-borne encephalitis viruses and bacteriophages. These case studies illustrate the advancement of the VitroJet into an instrument that enables accurate control and reproducibility, demonstrating its suitability for time-efficient cryo-EM structure determination.
Collapse
Affiliation(s)
- Rene J. M. Henderikx
- CryoSol-World, Weert, The Netherlands
- Maastricht Multimodal Molecular Imaging Institute (M4i), Division of Nanoscopy, Maastricht University, Maastricht, The Netherlands
| | - Daniel Mann
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C-3): Structural Biology, Forschungszentrum Jülich, Jülich, Germany
- Institute of Biological Information Processing (IBI-6): Structural Cell Biology, Forschungszentrum Jülich, Jülich, Germany
| | - Aušra Domanska
- Molecular and Integrative Bioscience Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
- Helsinki Life Science Institute–Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Jing Dong
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom
| | - Saba Shahzad
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C-3): Structural Biology, Forschungszentrum Jülich, Jülich, Germany
- Institute of Biological Information Processing (IBI-6): Structural Cell Biology, Forschungszentrum Jülich, Jülich, Germany
| | - Behnam Lak
- Molecular and Integrative Bioscience Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
- Helsinki Life Science Institute–Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Aikaterini Filopoulou
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C-3): Structural Biology, Forschungszentrum Jülich, Jülich, Germany
- Institute of Biological Information Processing (IBI-6): Structural Cell Biology, Forschungszentrum Jülich, Jülich, Germany
| | - Damian Ludig
- Institute of Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Martin Grininger
- Institute of Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jeffrey Momoh
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
| | - Elina Laanto
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - Hanna M. Oksanen
- Molecular and Integrative Bioscience Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
| | - Kyrylo Bisikalo
- Molecular and Integrative Bioscience Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
- Helsinki Life Science Institute–Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Pamela A. Williams
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom
| | - Sarah J. Butcher
- Molecular and Integrative Bioscience Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
- Helsinki Life Science Institute–Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Peter J. Peters
- Maastricht Multimodal Molecular Imaging Institute (M4i), Division of Nanoscopy, Maastricht University, Maastricht, The Netherlands
| | | |
Collapse
|
9
|
Montaño Romero A, Bonin C, Twomey EC. C-SPAM: an open-source time-resolved specimen vitrification device with light-activated molecules. IUCRJ 2024; 11:16-22. [PMID: 38096039 PMCID: PMC10833387 DOI: 10.1107/s2052252523010308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/29/2023] [Indexed: 01/10/2024]
Abstract
Molecular structures can be determined in vitro and in situ with cryo-electron microscopy (cryo-EM). Specimen preparation is a major obstacle in cryo-EM. Typical sample preparation is orders of magnitude slower than biological processes. Time-resolved cryo-EM (TR-cryo-EM) can capture short-lived states. Here, Cryo-EM sample preparation with light-activated molecules (C-SPAM) is presented, an open-source, photochemistry-coupled device for TR-cryo-EM that enables millisecond resolution and tunable timescales across broad biological applications.
Collapse
Affiliation(s)
- Alejandra Montaño Romero
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore MD, USA
| | - Calli Bonin
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore MD, USA
| | - Edward C. Twomey
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore MD, USA
- The Beckman Center for Cryo-EM at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD USA
- Diana Helis Henry Medical Research Foundation, New Orleans, LA USA
| |
Collapse
|
10
|
Lin X, Haller PR, Bavi N, Faruk N, Perozo E, Sosnick TR. Folding of prestin's anion-binding site and the mechanism of outer hair cell electromotility. eLife 2023; 12:RP89635. [PMID: 38054956 PMCID: PMC10699807 DOI: 10.7554/elife.89635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023] Open
Abstract
Prestin responds to transmembrane voltage fluctuations by changing its cross-sectional area, a process underlying the electromotility of outer hair cells and cochlear amplification. Prestin belongs to the SLC26 family of anion transporters yet is the only member capable of displaying electromotility. Prestin's voltage-dependent conformational changes are driven by the putative displacement of residue R399 and a set of sparse charged residues within the transmembrane domain, following the binding of a Cl- anion at a conserved binding site formed by the amino termini of the TM3 and TM10 helices. However, a major conundrum arises as to how an anion that binds in proximity to a positive charge (R399), can promote the voltage sensitivity of prestin. Using hydrogen-deuterium exchange mass spectrometry, we find that prestin displays an unstable anion-binding site, where folding of the amino termini of TM3 and TM10 is coupled to Cl- binding. This event shortens the TM3-TM10 electrostatic gap, thereby connecting the two helices, resulting in reduced cross-sectional area. These folding events upon anion binding are absent in SLC26A9, a non-electromotile transporter closely related to prestin. Dynamics of prestin embedded in a lipid bilayer closely match that in detergent micelle, except for a destabilized lipid-facing helix TM6 that is critical to prestin's mechanical expansion. We observe helix fraying at prestin's anion-binding site but cooperative unfolding of multiple lipid-facing helices, features that may promote prestin's fast electromechanical rearrangements. These results highlight a novel role of the folding equilibrium of the anion-binding site, and help define prestin's unique voltage-sensing mechanism and electromotility.
Collapse
Affiliation(s)
- Xiaoxuan Lin
- Center for Mechanical Excitability, The University of ChicagoChicagoUnited States
- Department of Biochemistry and Molecular Biology, The University of ChicagoChicagoUnited States
| | - Patrick R Haller
- Center for Mechanical Excitability, The University of ChicagoChicagoUnited States
- Department of Biochemistry and Molecular Biology, The University of ChicagoChicagoUnited States
| | - Navid Bavi
- Center for Mechanical Excitability, The University of ChicagoChicagoUnited States
- Department of Biochemistry and Molecular Biology, The University of ChicagoChicagoUnited States
| | - Nabil Faruk
- Department of Biochemistry and Molecular Biology, The University of ChicagoChicagoUnited States
| | - Eduardo Perozo
- Center for Mechanical Excitability, The University of ChicagoChicagoUnited States
- Department of Biochemistry and Molecular Biology, The University of ChicagoChicagoUnited States
- Institute for Neuroscience, The University of ChicagoChicagoUnited States
- Institute for Biophysical Dynamics, The University of ChicagoChicagoUnited States
| | - Tobin R Sosnick
- Center for Mechanical Excitability, The University of ChicagoChicagoUnited States
- Department of Biochemistry and Molecular Biology, The University of ChicagoChicagoUnited States
- Institute for Biophysical Dynamics, The University of ChicagoChicagoUnited States
- Prizker School for Molecular Engineering, The University of ChicagoChicagoUnited States
| |
Collapse
|
11
|
Sharma KD, Heberle FA, Waxham MN. Visualizing lipid membrane structure with cryo-EM: past, present, and future. Emerg Top Life Sci 2023; 7:55-65. [PMID: 36606590 PMCID: PMC10355340 DOI: 10.1042/etls20220090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 01/07/2023]
Abstract
The development of electron cryomicroscopy (cryo-EM) has evolved immensely in the last several decades and is now well-established in the analysis of protein structure both in isolation and in their cellular context. This review focuses on the history and application of cryo-EM to the analysis of membrane architecture. Parallels between the levels of organization of protein structure are useful in organizing the discussion of the unique parameters that influence membrane structure and function. Importantly, the timescales of lipid motion in bilayers with respect to the timescales of sample vitrification is discussed and reveals what types of membrane structure can be reliably extracted in cryo-EM images of vitrified samples. Appreciating these limitations, a review of the application of cryo-EM to examine the lateral organization of ordered and disordered domains in reconstituted and biologically derived membranes is provided. Finally, a brief outlook for further development and application of cryo-EM to the analysis of membrane architecture is provided.
Collapse
Affiliation(s)
- Karan D. Sharma
- Department of Chemistry, University of Tennessee, Knoxville, TN
| | | | - M. Neal Waxham
- Department of Neurobiology and Anatomy, University of Texas Health Science Center, Houston, TX
| |
Collapse
|
12
|
Cheng J, Liu T, You X, Zhang F, Sui SF, Wan X, Zhang X. Determining protein structures in cellular lamella at pseudo-atomic resolution by GisSPA. Nat Commun 2023; 14:1282. [PMID: 36922493 PMCID: PMC10017804 DOI: 10.1038/s41467-023-36175-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 01/18/2023] [Indexed: 03/17/2023] Open
Abstract
Cryo-electron tomography is a major tool used to study the structure of protein complexes in situ. However, the throughput of tilt-series image data collection is still quite low. Here, we show that GisSPA, a GPU accelerated program, can translationally and rotationally localize the target protein complex in cellular lamellae, as prepared with a focused ion beam, using single cryo-electron microscopy images without tilt-series, and reconstruct the protein complex at near-atomic resolution. GisSPA allows high-throughput data collection without the acquisition of tilt-series images and reconstruction of the tomogram, which is essential for high-resolution reconstruction of asymmetric or low-symmetry protein complexes. We demonstrate the power of GisSPA with 3.4-Å and 3.9-Å resolutions of resolving phycobilisome and tetrameric photosystem II complex structures in cellular lamellae, respectively. In this work, we present GisSPA as a practical tool that facilitates high-resolution in situ protein structure determination.
Collapse
Affiliation(s)
- Jing Cheng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tong Liu
- High Performance Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xin You
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Fa Zhang
- Beijing Institute of Technology, Beijing, 100081, China
| | - Sen-Fang Sui
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiaohua Wan
- Beijing Institute of Technology, Beijing, 100081, China.
| | - Xinzheng Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
13
|
Shi H, Wu C, Zhang X. Addressing compressive deformation of proteins embedded in crystalline ice. Structure 2023; 31:213-220.e3. [PMID: 36586403 DOI: 10.1016/j.str.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/09/2022] [Accepted: 11/29/2022] [Indexed: 12/31/2022]
Abstract
For cryoelectron microscopy (cryo-EM), high cooling rates have been required for preparation of protein samples to vitrify the surrounding water and avoid formation of damaging crystalline ice. Whether and how crystalline ice affects single-particle cryo-EM is still unclear. Here, single-particle cryo-EM was used to analyze three-dimensional structures of various proteins and viruses embedded in crystalline ice formed at various cooling rates. Low cooling rates led to shrinkage deformation and density distortions on samples having loose structures. Higher cooling rates reduced deformations. Deformation-free proteins in crystalline ice were obtained by modifying the freezing conditions, and reconstructions from these samples revealed a marked improvement over vitreous ice. This procedure also increased the efficiency of cryo-EM structure determinations and was essential for high-resolution reconstructions.
Collapse
Affiliation(s)
- Huigang Shi
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences (CAS), Beijing 100101, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Chunling Wu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences (CAS), Beijing 100101, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xinzheng Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences (CAS), Beijing 100101, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China.
| |
Collapse
|
14
|
Thorne RE. Determining biomolecular structures near room temperature using X-ray crystallography: concepts, methods and future optimization. Acta Crystallogr D Struct Biol 2023; 79:78-94. [PMID: 36601809 PMCID: PMC9815097 DOI: 10.1107/s2059798322011652] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/04/2022] [Indexed: 01/05/2023] Open
Abstract
For roughly two decades, cryocrystallography has been the overwhelmingly dominant method for determining high-resolution biomolecular structures. Competition from single-particle cryo-electron microscopy and micro-electron diffraction, increased interest in functionally relevant information that may be missing or corrupted in structures determined at cryogenic temperature, and interest in time-resolved studies of the biomolecular response to chemical and optical stimuli have driven renewed interest in data collection at room temperature and, more generally, at temperatures from the protein-solvent glass transition near 200 K to ∼350 K. Fischer has recently reviewed practical methods for room-temperature data collection and analysis [Fischer (2021), Q. Rev. Biophys. 54, e1]. Here, the key advantages and physical principles of, and methods for, crystallographic data collection at noncryogenic temperatures and some factors relevant to interpreting the resulting data are discussed. For room-temperature data collection to realize its potential within the structural biology toolkit, streamlined and standardized methods for delivering crystals prepared in the home laboratory to the synchrotron and for automated handling and data collection, similar to those for cryocrystallography, should be implemented.
Collapse
Affiliation(s)
- Robert E. Thorne
- Physics Department, Cornell University, Ithaca, NY 14853, USA
- MiTeGen LLC, PO Box 3867, Ithaca, NY 14850, USA
| |
Collapse
|
15
|
Petretto E, Ong QK, Olgiati F, Mao T, Campomanes P, Stellacci F, Vanni S. Monovalent ion-mediated charge-charge interactions drive aggregation of surface-functionalized gold nanoparticles. NANOSCALE 2022; 14:15181-15192. [PMID: 36214308 PMCID: PMC9585526 DOI: 10.1039/d2nr02824g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Monolayer-protected metal nanoparticles (NPs) are not only promising materials with a wide range of potential industrial and biological applications, but they are also a powerful tool to investigate the behaviour of matter at nanoscopic scales, including the stability of dispersions and colloidal systems. This stability is dependent on a delicate balance between attractive and repulsive interactions that occur in the solution, and it is described in quantitative terms by the classic Derjaguin-Landau-Vewey-Overbeek (DLVO) theory, that posits that aggregation between NPs is driven by van der Waals interactions and opposed by electrostatic interactions. To investigate the limits of this theory at the nanoscale, where the continuum assumptions required by the DLVO theory break down, here we investigate NP dimerization by computing the Potential of Mean Force (PMF) of this process using fully atomistic MD simulations. Serendipitously, we find that electrostatic interactions can lead to the formation of metastable NP dimers at physiological ion concentrations. These dimers are stabilized by complexes formed by negatively charged ligands belonging to distinct NPs that are bridged by positively charged monovalent ions present in solution. We validate our findings by collecting tomographic EM images of NPs in solution and by quantifying their radial distribution function, that shows a marked peak at interparticle distance comparable with that of MD simulations. Taken together, our results suggest that not only van der Waals interactions, but also electrostatic interactions mediated by monovalent ions at physiological concentrations, contribute to attraction between nano-sized charged objects at very short length scales.
Collapse
Affiliation(s)
- Emanuele Petretto
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland.
| | - Quy K Ong
- Institute of Materials, Ecole Polytechnique Federale de Lausanne, 1015 Lausanne, Switzerland
| | - Francesca Olgiati
- Institute of Materials, Ecole Polytechnique Federale de Lausanne, 1015 Lausanne, Switzerland
| | - Ting Mao
- Institute of Materials, Ecole Polytechnique Federale de Lausanne, 1015 Lausanne, Switzerland
| | - Pablo Campomanes
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland.
| | - Francesco Stellacci
- Institute of Materials, Ecole Polytechnique Federale de Lausanne, 1015 Lausanne, Switzerland
| | - Stefano Vanni
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland.
| |
Collapse
|
16
|
Naydenova K, Kamegawa A, Peet MJ, Henderson R, Fujiyoshi Y, Russo CJ. On the reduction in the effects of radiation damage to two-dimensional crystals of organic and biological molecules at liquid-helium temperature. Ultramicroscopy 2022; 237:113512. [PMID: 35367901 PMCID: PMC9355890 DOI: 10.1016/j.ultramic.2022.113512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/24/2022] [Accepted: 03/06/2022] [Indexed: 11/17/2022]
Abstract
We have studied the fading of electron diffraction spots from two-dimensional (2D) crystals of paraffin (C44H90), purple membrane (bacteriorhodopsin) and aquaporin 4 (AQP4) at stage temperatures between 4K and 100K. We observed that the diffraction spots at resolutions between 3 Å and 20 Å fade more slowly at liquid-helium temperatures compared to liquid-nitrogen temperatures, by a factor of between 1.2 and 1.8, depending on the specimens. If the reduction in the effective rate of radiation damage for 2D crystals at liquid-helium temperature (as measured by spot fading) can be shown to extend to macromolecular assemblies embedded in amorphous ice, this would suggest that valuable improvements to electron cryomicroscopy (cryoEM) of biological specimens could be made by reducing the temperature of the specimens under irradiation below what is obtainable using standard liquid-nitrogen cryostats.
Collapse
Affiliation(s)
- Katerina Naydenova
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Akiko Kamegawa
- Cellular and Structural Physiology Laboratory (CeSPL), Tokyo Medical and Dental University, Yushima, Bunkyo-ku, Tokyo, Japan
| | - Mathew J Peet
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Richard Henderson
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Yoshinori Fujiyoshi
- Cellular and Structural Physiology Laboratory (CeSPL), Tokyo Medical and Dental University, Yushima, Bunkyo-ku, Tokyo, Japan
| | - Christopher J Russo
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
17
|
Harder OF, Voss JM, Olshin PK, Drabbels M, Lorenz UJ. Microsecond melting and revitrification of cryo samples: protein structure and beam-induced motion. Acta Crystallogr D Struct Biol 2022; 78:883-889. [PMID: 35775987 PMCID: PMC9248841 DOI: 10.1107/s205979832200554x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/21/2022] [Indexed: 11/10/2022] Open
Abstract
A novel approach to time-resolved cryo-electron microscopy (cryo-EM) has recently been introduced that involves melting a cryo sample with a laser beam to allow protein dynamics to briefly occur in the liquid, before trapping the particles in their transient configurations by rapidly revitrifying the sample. With a time resolution of just a few microseconds, this approach is notably fast enough to study the domain motions that are typically associated with the activity of proteins but which have previously remained inaccessible. Here, crucial details are added to the characterization of the method. It is shown that single-particle reconstructions of apoferritin and Cowpea chlorotic mottle virus from revitrified samples are indistinguishable from those from conventional samples, demonstrating that melting and revitrification leaves the particles intact and that they do not undergo structural changes within the spatial resolution afforded by the instrument. How rapid revitrification affects the properties of the ice is also characterized, showing that revitrified samples exhibit comparable amounts of beam-induced motion. The results pave the way for microsecond time-resolved studies of the conformational dynamics of proteins and open up new avenues to study the vitrification process and to address beam-induced specimen movement.
Collapse
Affiliation(s)
- Oliver F. Harder
- Laboratory of Molecular Nanodynamics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jonathan M. Voss
- Laboratory of Molecular Nanodynamics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Pavel K. Olshin
- Laboratory of Molecular Nanodynamics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Marcel Drabbels
- Laboratory of Molecular Nanodynamics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Ulrich J. Lorenz
- Laboratory of Molecular Nanodynamics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
18
|
Chua EYD, Mendez JH, Rapp M, Ilca SL, Tan YZ, Maruthi K, Kuang H, Zimanyi CM, Cheng A, Eng ET, Noble AJ, Potter CS, Carragher B. Better, Faster, Cheaper: Recent Advances in Cryo-Electron Microscopy. Annu Rev Biochem 2022; 91:1-32. [PMID: 35320683 PMCID: PMC10393189 DOI: 10.1146/annurev-biochem-032620-110705] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cryo-electron microscopy (cryo-EM) continues its remarkable growth as a method for visualizing biological objects, which has been driven by advances across the entire pipeline. Developments in both single-particle analysis and in situ tomography have enabled more structures to be imaged and determined to better resolutions, at faster speeds, and with more scientists having improved access. This review highlights recent advances at each stageof the cryo-EM pipeline and provides examples of how these techniques have been used to investigate real-world problems, including antibody development against the SARS-CoV-2 spike during the recent COVID-19 pandemic.
Collapse
Affiliation(s)
- Eugene Y D Chua
- New York Structural Biology Center, New York, NY, USA; , , , , , , , , , , ,
- Simons Electron Microscopy Center, New York, NY, USA
- National Center for CryoEM Access and Training, New York, NY, USA
| | - Joshua H Mendez
- New York Structural Biology Center, New York, NY, USA; , , , , , , , , , , ,
- Simons Electron Microscopy Center, New York, NY, USA
- National Center for CryoEM Access and Training, New York, NY, USA
| | - Micah Rapp
- New York Structural Biology Center, New York, NY, USA; , , , , , , , , , , ,
- Simons Electron Microscopy Center, New York, NY, USA
| | - Serban L Ilca
- New York Structural Biology Center, New York, NY, USA; , , , , , , , , , , ,
- Simons Electron Microscopy Center, New York, NY, USA
| | - Yong Zi Tan
- Department of Biological Sciences, National University of Singapore, Singapore;
- Disease Intervention Technology Laboratory, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Kashyap Maruthi
- New York Structural Biology Center, New York, NY, USA; , , , , , , , , , , ,
- Simons Electron Microscopy Center, New York, NY, USA
- National Resource for Automated Molecular Microscopy, New York, NY, USA
| | - Huihui Kuang
- New York Structural Biology Center, New York, NY, USA; , , , , , , , , , , ,
- Simons Electron Microscopy Center, New York, NY, USA
- National Resource for Automated Molecular Microscopy, New York, NY, USA
| | - Christina M Zimanyi
- New York Structural Biology Center, New York, NY, USA; , , , , , , , , , , ,
- Simons Electron Microscopy Center, New York, NY, USA
- National Center for CryoEM Access and Training, New York, NY, USA
| | - Anchi Cheng
- New York Structural Biology Center, New York, NY, USA; , , , , , , , , , , ,
- Simons Electron Microscopy Center, New York, NY, USA
- National Resource for Automated Molecular Microscopy, New York, NY, USA
| | - Edward T Eng
- New York Structural Biology Center, New York, NY, USA; , , , , , , , , , , ,
- Simons Electron Microscopy Center, New York, NY, USA
- National Center for CryoEM Access and Training, New York, NY, USA
| | - Alex J Noble
- New York Structural Biology Center, New York, NY, USA; , , , , , , , , , , ,
- Simons Electron Microscopy Center, New York, NY, USA
- National Resource for Automated Molecular Microscopy, New York, NY, USA
- National Center for In-Situ Tomographic Ultramicroscopy, New York, NY, USA
- Simons Machine Learning Center, New York, NY, USA
| | - Clinton S Potter
- New York Structural Biology Center, New York, NY, USA; , , , , , , , , , , ,
- Simons Electron Microscopy Center, New York, NY, USA
- National Center for CryoEM Access and Training, New York, NY, USA
- National Resource for Automated Molecular Microscopy, New York, NY, USA
- National Center for In-Situ Tomographic Ultramicroscopy, New York, NY, USA
- Simons Machine Learning Center, New York, NY, USA
| | - Bridget Carragher
- New York Structural Biology Center, New York, NY, USA; , , , , , , , , , , ,
- Simons Electron Microscopy Center, New York, NY, USA
- National Center for CryoEM Access and Training, New York, NY, USA
- National Resource for Automated Molecular Microscopy, New York, NY, USA
- National Center for In-Situ Tomographic Ultramicroscopy, New York, NY, USA
- Simons Machine Learning Center, New York, NY, USA
| |
Collapse
|
19
|
Ivashchenko O. Cryo-SEM and confocal LSM studies of agar gel, nanoparticle hydrocolloid, mineral clays and saline solutions. Sci Rep 2022; 12:9930. [PMID: 35705670 PMCID: PMC9200766 DOI: 10.1038/s41598-022-14230-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/02/2022] [Indexed: 11/09/2022] Open
Abstract
Cryogenic electron microscopy became a powerful tool to study biological objects. For non-biological objects (solutions, gels, dispersions, clays), the polemic about interpretation of cryogenic microscopy results is still in progress splitting on two contradictive trends: considering structure as a near-real state of the sample or as freezing artefacts. In this study, a microstructure of a range of stable aqueous solutions and dispersions (agar, kaolin, montmorillonite, nanoparticles) was investigated by means of cryo-SEM and confocal LSM in order to compare cryo-fixed and unfrozen structures. Noticed correlation between these two methods for studied systems (agar, kaolin, montmorillonite, NPs) allowed to state that ordered microstructure is an inherent feature of these systems. Some inconsistencies in microstructure dimensions were discussed and prescribed to the differences in the bulk and interface layers. Supposedly, NaCl solutions also possess dynamic (femtosecond level) microstructure of neat water clusters and solvated Na+ and Cl- ions that may have an impact on electrolyte abnormal properties.
Collapse
Affiliation(s)
- Olena Ivashchenko
- NanoBioMedical Centre, Adam Mickiewicz University, 61-614, Poznań, Poland.
| |
Collapse
|
20
|
Abstract
Structure determination by cryo electron microscopy (cryo-EM) provides information on structural heterogeneity and ensembles at atomic resolution. To obtain cryo-EM images of macromolecules, the samples are first rapidly cooled down to cryogenic temperatures. To what extent the structural ensemble is perturbed during cooling is currently unknown. Here, to quantify the effects of cooling, we combined continuum model calculations of the temperature drop, molecular dynamics simulations of a ribosome complex before and during cooling with kinetic models. Our results suggest that three effects markedly contribute to the narrowing of the structural ensembles: thermal contraction, reduced thermal motion within local potential wells, and the equilibration into lower free-energy conformations by overcoming separating free-energy barriers. During cooling, barrier heights below 10 kJ/mol were found to be overcome, which is expected to reduce B-factors in ensembles imaged by cryo-EM. Our approach now enables the quantification of the heterogeneity of room-temperature ensembles from cryo-EM structures.
Collapse
Affiliation(s)
- Lars V Bock
- Theoretical and Computational Biophysics Department, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| | - Helmut Grubmüller
- Theoretical and Computational Biophysics Department, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| |
Collapse
|
21
|
Basanta B, Hirschi MM, Grotjahn DA, Lander GC. A case for glycerol as an acceptable additive for single-particle cryoEM samples. Acta Crystallogr D Struct Biol 2022; 78:124-135. [PMID: 34981768 PMCID: PMC8725161 DOI: 10.1107/s2059798321012110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/13/2021] [Indexed: 11/12/2022] Open
Abstract
Buffer-composition and sample-preparation guidelines for cryo-electron microscopy are geared towards maximizing imaging contrast and reducing electron-beam-induced motion. These pursuits often involve the minimization or the complete removal of additives that are commonly used to facilitate proper protein folding and minimize aggregation. Among these admonished additives is glycerol, a widely used osmolyte that aids protein stability. In this work, it is shown that the inclusion of glycerol does not preclude high-resolution structure determination by cryoEM, as demonstrated by an ∼2.3 Å resolution reconstruction of mouse apoferritin (∼500 kDa) and an ∼3.3 Å resolution reconstruction of rabbit muscle aldolase (∼160 kDa) in the presence of 20%(v/v) glycerol. While it was found that generating thin ice that is amenable to high-resolution imaging requires long blot times, the addition of glycerol did not result in increased beam-induced motion or an inability to pick particles. Overall, these findings indicate that glycerol should not be discounted as a cryoEM sample-buffer additive, particularly for large, fragile complexes that are prone to disassembly or aggregation upon its removal.
Collapse
Affiliation(s)
- Benjamin Basanta
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, USA
| | - Marscha M. Hirschi
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, USA
| | - Danielle A. Grotjahn
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, USA
| | - Gabriel C. Lander
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, USA
| |
Collapse
|