1
|
Cavallo I, Oliva A, Pages R, Sivori F, Truglio M, Fabrizio G, Pasqua M, Pimpinelli F, Di Domenico EG. Acinetobacter baumannii in the critically ill: complex infections get complicated. Front Microbiol 2023; 14:1196774. [PMID: 37425994 PMCID: PMC10325864 DOI: 10.3389/fmicb.2023.1196774] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/05/2023] [Indexed: 07/11/2023] Open
Abstract
Acinetobacter baumannii is increasingly associated with various epidemics, representing a serious concern due to the broad level of antimicrobial resistance and clinical manifestations. During the last decades, A. baumannii has emerged as a major pathogen in vulnerable and critically ill patients. Bacteremia, pneumonia, urinary tract, and skin and soft tissue infections are the most common presentations of A. baumannii, with attributable mortality rates approaching 35%. Carbapenems have been considered the first choice to treat A. baumannii infections. However, due to the widespread prevalence of carbapenem-resistant A. baumannii (CRAB), colistin represents the main therapeutic option, while the role of the new siderophore cephalosporin cefiderocol still needs to be ascertained. Furthermore, high clinical failure rates have been reported for colistin monotherapy when used to treat CRAB infections. Thus, the most effective antibiotic combination remains disputed. In addition to its ability to develop antibiotic resistance, A. baumannii is also known to form biofilm on medical devices, including central venous catheters or endotracheal tubes. Thus, the worrisome spread of biofilm-producing strains in multidrug-resistant populations of A. baumannii poses a significant treatment challenge. This review provides an updated account of antimicrobial resistance patterns and biofilm-mediated tolerance in A. baumannii infections with a special focus on fragile and critically ill patients.
Collapse
Affiliation(s)
- Ilaria Cavallo
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Alessandra Oliva
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Rebecca Pages
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Francesca Sivori
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Mauro Truglio
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Giorgia Fabrizio
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Martina Pasqua
- Department of Biology and Biotechnology "C. Darwin" Sapienza University of Rome, Rome, Italy
| | - Fulvia Pimpinelli
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Enea Gino Di Domenico
- Department of Biology and Biotechnology "C. Darwin" Sapienza University of Rome, Rome, Italy
| |
Collapse
|
2
|
Pakharukova N, McKenna S, Tuittila M, Paavilainen S, Malmi H, Xu Y, Parilova O, Matthews S, Zavialov AV. Archaic and alternative chaperones preserve pilin folding energy by providing incomplete structural information. J Biol Chem 2018; 293:17070-17080. [PMID: 30228191 DOI: 10.1074/jbc.ra118.004170] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/14/2018] [Indexed: 11/06/2022] Open
Abstract
Adhesive pili are external component of fibrous adhesive organelles and help bacteria attach to biotic or abiotic surfaces. The biogenesis of adhesive pili via the chaperone-usher pathway (CUP) is independent of external energy sources. In the classical CUP, chaperones transport assembly-competent pilins in a folded but expanded conformation. During donor-strand exchange, pilins subsequently collapse, producing a tightly packed hydrophobic core and releasing the necessary free energy to drive fiber formation. Here, we show that pilus biogenesis in non-classical, archaic, and alternative CUPs uses a different source of conformational energy. High-resolution structures of the archaic Csu-pili system from Acinetobacter baumannii revealed that non-classical chaperones employ a short donor strand motif that is insufficient to fully complement the pilin fold. This results in chaperone-bound pilins being trapped in a substantially unfolded intermediate. The exchange of this short motif with the longer donor strand from adjacent pilin provides the full steric information essential for folding, and thereby induces a large unfolded-to-folded conformational transition to drive assembly. Our findings may inform the development of anti-adhesion drugs (pilicides) to combat bacterial infections.
Collapse
Affiliation(s)
- Natalia Pakharukova
- From the Department of Chemistry, University of Turku, Joint Biotechnology Laboratory (JBL), Arcanum, Vatselankatu 2, Turku FIN-20500, Finland and
| | - Sophie McKenna
- the Department of Life Sciences, Imperial College London, South Kensington Campus, London SW72AZ, United Kingdom
| | - Minna Tuittila
- From the Department of Chemistry, University of Turku, Joint Biotechnology Laboratory (JBL), Arcanum, Vatselankatu 2, Turku FIN-20500, Finland and
| | - Sari Paavilainen
- From the Department of Chemistry, University of Turku, Joint Biotechnology Laboratory (JBL), Arcanum, Vatselankatu 2, Turku FIN-20500, Finland and
| | - Henri Malmi
- From the Department of Chemistry, University of Turku, Joint Biotechnology Laboratory (JBL), Arcanum, Vatselankatu 2, Turku FIN-20500, Finland and
| | - Yingqi Xu
- the Department of Life Sciences, Imperial College London, South Kensington Campus, London SW72AZ, United Kingdom
| | - Olena Parilova
- From the Department of Chemistry, University of Turku, Joint Biotechnology Laboratory (JBL), Arcanum, Vatselankatu 2, Turku FIN-20500, Finland and
| | - Steve Matthews
- the Department of Life Sciences, Imperial College London, South Kensington Campus, London SW72AZ, United Kingdom
| | - Anton V Zavialov
- From the Department of Chemistry, University of Turku, Joint Biotechnology Laboratory (JBL), Arcanum, Vatselankatu 2, Turku FIN-20500, Finland and
| |
Collapse
|
3
|
Abstract
Nosocomial infections and infections of indwelling devices are major healthcare problems worldwide. These infections are strongly associated with the ability of pathogens to form biofilms on biotic and abiotic surfaces. Panantibiotic-resistant Acinetobacter baumannii is one of the most troublesome pathogens, capable of colonizing medical devices by means of Csu pili, an adhesive organelle that belongs to the widespread class of archaic chaperone–usher pili. Here, we report an atomic-resolution insight into the mechanism of bacterial attachment to abiotic surfaces. We show that archaic pili use a binding mechanism that enables bacterial adhesion to structurally variable substrates. The results suggest a simple and cheap solution to reduce infections of A. baumannii and related pathogens. Acinetobacter baumannii—a leading cause of nosocomial infections—has a remarkable capacity to persist in hospital environments and medical devices due to its ability to form biofilms. Biofilm formation is mediated by Csu pili, assembled via the “archaic” chaperone–usher pathway. The X-ray structure of the CsuC-CsuE chaperone–adhesin preassembly complex reveals the basis for bacterial attachment to abiotic surfaces. CsuE exposes three hydrophobic finger-like loops at the tip of the pilus. Decreasing the hydrophobicity of these abolishes bacterial attachment, suggesting that archaic pili use tip-fingers to detect and bind to hydrophobic cavities in substrates. Antitip antibody completely blocks biofilm formation, presenting a means to prevent the spread of the pathogen. The use of hydrophilic materials instead of hydrophobic plastics in medical devices may represent another simple and cheap solution to reduce pathogen spread. Phylogenetic analysis suggests that the tip-fingers binding mechanism is shared by all archaic pili carrying two-domain adhesins. The use of flexible fingers instead of classical receptor-binding cavities is presumably more advantageous for attachment to structurally variable substrates, such as abiotic surfaces.
Collapse
|
4
|
Subinhibitory Concentrations of Trimethoprim and Sulfamethoxazole Prevent Biofilm Formation by Acinetobacter baumannii through Inhibition of Csu Pilus Expression. Antimicrob Agents Chemother 2017; 61:AAC.00778-17. [PMID: 28674047 DOI: 10.1128/aac.00778-17] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 06/25/2017] [Indexed: 12/25/2022] Open
Abstract
Acinetobacter baumannii is emerging as a multidrug-resistant nosocomial pathogen of increasing threat to human health worldwide. Pili are important bacterial virulence factors, playing a role in attachment to host cells and biofilm formation. The Csu pilus, which is assembled via the chaperone-usher secretion system, has been studied in A. baumannii ATCC 19606. Here we show that, in opposition to previous reports, the common laboratory strain ATCC 17978 produces Csu pili. We found that, although ATCC 17978 was resistant to sulfamethoxazole (Smx) and trimethoprim (Tmp), subinhibitory concentrations of these antibiotics abolished the expression of Csu and consequently produced a dramatic reduction in biofilm formation by ATCC 17978. Smx and Tmp acted synergistically to inhibit the enzymatic systems involved in the bacterial synthesis of tetrahydrofolate (THF), which is required for the synthesis of nucleotides. The effects of these antibiotics were partially relieved by exogenous THF addition, indicating that Smx and Tmp turn off Csu assembly by inducing folate stress. We propose that, for Acinetobacter, nanomolar concentrations of Smx and Tmp represent a "danger signal." In response to this signal, Csu expression is repressed, allowing biofilm dispersal and escape from potentially inhibitory concentrations of antibiotics. The roles of antibiotics as signaling molecules are being increasingly acknowledged, with clear implications for both the treatment of bacterial diseases and the understanding of complex microbial interactions in the environment.
Collapse
|
5
|
Pakharukova N, Tuittila M, Paavilainen S, Zavialov A. Methylation, crystallization and SAD phasing of the Csu pilus CsuC-CsuE chaperone-adhesin subunit pre-assembly complex from Acinetobacter baumannii. Acta Crystallogr F Struct Biol Commun 2017; 73:450-454. [PMID: 28777087 PMCID: PMC5544001 DOI: 10.1107/s2053230x17009566] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/27/2017] [Indexed: 11/10/2022] Open
Abstract
Acinetobacter baumannii is one of the most difficult Gram-negative bacteria to control and treat. This pathogen forms biofilms on hospital surfaces and medical devices using Csu pili assembled via the archaic chaperone-usher pathway. To uncover the mechanism of bacterial attachment to abiotic surfaces, it was aimed to determine the crystal structure of the pilus tip adhesin CsuE. The CsuC-CsuE chaperone-subunit pre-assembly complex was purified from the periplasm of Escherichia coli overexpressing CsuC and CsuE. Despite the high purity of the complex, no crystals could be obtained. This challenge was solved by the methylation of lysine residues. The complex was crystallized in 0.1 M bis-tris pH 5.5, 17% PEG 3350 using the hanging-drop vapour-diffusion method. The crystals diffracted to a resolution of 2.31 Å and belonged to the triclinic space group P1, with unit-cell parameters a = 53.84, b = 63.85, c = 89.25 Å, α = 74.65, β = 79.65, γ = 69.07°. Initial phases were derived from a single anomalous diffraction experiment using a selenomethionine derivative.
Collapse
Affiliation(s)
- Natalia Pakharukova
- Department of Chemistry, University of Turku, Joint Biotechnology Laboratory, Arcanum, Vatselankatu 2, 20500 Turku, Finland
| | - Minna Tuittila
- Department of Chemistry, University of Turku, Joint Biotechnology Laboratory, Arcanum, Vatselankatu 2, 20500 Turku, Finland
| | - Sari Paavilainen
- Department of Chemistry, University of Turku, Joint Biotechnology Laboratory, Arcanum, Vatselankatu 2, 20500 Turku, Finland
| | - Anton Zavialov
- Department of Chemistry, University of Turku, Joint Biotechnology Laboratory, Arcanum, Vatselankatu 2, 20500 Turku, Finland
| |
Collapse
|
6
|
Pakharukova N, Roy S, Tuittila M, Rahman MM, Paavilainen S, Ingars AK, Skaldin M, Lamminmäki U, Härd T, Teneberg S, Zavialov AV. Structural basis for Myf and Psa fimbriae-mediated tropism of pathogenic strains of Yersinia for host tissues. Mol Microbiol 2016; 102:593-610. [PMID: 27507539 DOI: 10.1111/mmi.13481] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2016] [Indexed: 02/06/2023]
Abstract
Three pathogenic species of the genus Yersinia assemble adhesive fimbriae via the FGL-chaperone/usher pathway. Closely related Y. pestis and Y. pseudotuberculosis elaborate the pH6 antigen (Psa), which mediates bacterial attachment to alveolar cells of the lung. Y. enterocolitica, instead, assembles the homologous fimbriae Myf of unknown function. Here, we discovered that Myf, like Psa, specifically recognizes β1-3- or β1-4-linked galactose in glycosphingolipids, but completely lacks affinity for phosphatidylcholine, the main receptor for Psa in alveolar cells. The crystal structure of a subunit of Psa (PsaA) complexed with choline together with mutagenesis experiments revealed that PsaA has four phosphatidylcholine binding pockets that enable super-high-avidity binding of Psa-fibres to cell membranes. The pockets are arranged as six tyrosine residues, which are all missing in the MyfA subunit of Myf. Conversely, the crystal structure of the MyfA-galactose complex revealed that the galactose-binding site is more extended in MyfA, enabling tighter binding to lactosyl moieties. Our results suggest that during evolution, Psa has acquired a tyrosine-rich surface that enables it to bind to phosphatidylcholine and mediate adhesion of Y. pestis/pseudotuberculosis to alveolar cells, whereas Myf has specialized as a carbohydrate-binding adhesin, facilitating the attachment of Y. enterocolitica to intestinal cells.
Collapse
Affiliation(s)
- Natalia Pakharukova
- Department of Chemistry, University of Turku, Turku, Joint Biotechnology Laboratory, Arcanum, Vatselankatu 2, Turku, 20500, Finland
| | - Saumendra Roy
- Department of Chemistry, University of Turku, Turku, Joint Biotechnology Laboratory, Arcanum, Vatselankatu 2, Turku, 20500, Finland.,Department of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, Uppsala BioCentre, P.O. BOX 7016, Uppsala, 75007, Sweden
| | - Minna Tuittila
- Department of Chemistry, University of Turku, Turku, Joint Biotechnology Laboratory, Arcanum, Vatselankatu 2, Turku, 20500, Finland
| | - Mohammad M Rahman
- Department of Chemistry, University of Turku, Turku, Joint Biotechnology Laboratory, Arcanum, Vatselankatu 2, Turku, 20500, Finland
| | - Sari Paavilainen
- Department of Chemistry, University of Turku, Turku, Joint Biotechnology Laboratory, Arcanum, Vatselankatu 2, Turku, 20500, Finland
| | - Anna-Karin Ingars
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, P.O. BOX 440, Göteborg, 40530, Sweden
| | - Maksym Skaldin
- Department of Chemistry, University of Turku, Turku, Joint Biotechnology Laboratory, Arcanum, Vatselankatu 2, Turku, 20500, Finland.,Department of Biochemistry/Biotechnology, University of Turku, Tykistökatu 6A, Turku, 20014, Finland
| | - Urpo Lamminmäki
- Department of Biochemistry/Biotechnology, University of Turku, Tykistökatu 6A, Turku, 20014, Finland
| | - Torleif Härd
- Department of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, Uppsala BioCentre, P.O. BOX 7016, Uppsala, 75007, Sweden
| | - Susann Teneberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, P.O. BOX 440, Göteborg, 40530, Sweden
| | - Anton V Zavialov
- Department of Chemistry, University of Turku, Turku, Joint Biotechnology Laboratory, Arcanum, Vatselankatu 2, Turku, 20500, Finland.,Department of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, Uppsala BioCentre, P.O. BOX 7016, Uppsala, 75007, Sweden
| |
Collapse
|
7
|
Pakharukova N, Garnett JA, Tuittila M, Paavilainen S, Diallo M, Xu Y, Matthews SJ, Zavialov AV. Structural Insight into Archaic and Alternative Chaperone-Usher Pathways Reveals a Novel Mechanism of Pilus Biogenesis. PLoS Pathog 2015; 11:e1005269. [PMID: 26587649 PMCID: PMC4654587 DOI: 10.1371/journal.ppat.1005269] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 10/22/2015] [Indexed: 11/18/2022] Open
Abstract
Gram-negative pathogens express fibrous adhesive organelles that mediate targeting to sites of infection. The major class of these organelles is assembled via the classical, alternative and archaic chaperone-usher pathways. Although non-classical systems share a wider phylogenetic distribution and are associated with a range of diseases, little is known about their assembly mechanisms. Here we report atomic-resolution insight into the structure and biogenesis of Acinetobacter baumannii Csu and Escherichia coli ECP biofilm-mediating pili. We show that the two non-classical systems are structurally related, but their assembly mechanism is strikingly different from the classical assembly pathway. Non-classical chaperones, unlike their classical counterparts, maintain subunits in a substantially disordered conformational state, akin to a molten globule. This is achieved by a unique binding mechanism involving the register-shifted donor strand complementation and a different subunit carboxylate anchor. The subunit lacks the classical pre-folded initiation site for donor strand exchange, suggesting that recognition of its exposed hydrophobic core starts the assembly process and provides fresh inspiration for the design of inhibitors targeting chaperone-usher systems.
Collapse
Affiliation(s)
- Natalia Pakharukova
- Department of Chemistry, University of Turku, Turku, JBL, Arcanum, Turku, Finland
| | - James A. Garnett
- Centre for Structural Biology, Department of Life Sciences, Imperial College London, South Kensington, London, United Kingdom
| | - Minna Tuittila
- Department of Chemistry, University of Turku, Turku, JBL, Arcanum, Turku, Finland
| | - Sari Paavilainen
- Department of Chemistry, University of Turku, Turku, JBL, Arcanum, Turku, Finland
| | - Mamou Diallo
- Centre for Structural Biology, Department of Life Sciences, Imperial College London, South Kensington, London, United Kingdom
| | - Yingqi Xu
- Centre for Structural Biology, Department of Life Sciences, Imperial College London, South Kensington, London, United Kingdom
| | - Steve J. Matthews
- Centre for Structural Biology, Department of Life Sciences, Imperial College London, South Kensington, London, United Kingdom
| | - Anton V. Zavialov
- Department of Chemistry, University of Turku, Turku, JBL, Arcanum, Turku, Finland
- * E-mail:
| |
Collapse
|