1
|
Lotz-Jenne C, Lange R, Cren S, Bourquin G, Goglia L, Kimmerlin T, Wicki M, Müller M, Artico N, Ackerknecht S, Pfaff P, Joesch C, Mac Sweeney A. Discovery and binding mode of small molecule inhibitors of the apo form of human TDO2. Sci Rep 2024; 14:27937. [PMID: 39537789 PMCID: PMC11561238 DOI: 10.1038/s41598-024-78981-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Tryptophan-2,3-dioxygenase (TDO2) and indoleamine-2,3-dioxygenase (IDO1) are structurally distinct heme enzymes that catalyze the conversion of L-tryptophan to N-formyl-kynurenine, and play important roles in metabolism, inflammation, and tumor immune surveillance. The enzymes can adopt an inactive, heme-free (apo) state or an active, heme-containing (holo) state, with the balance between them varying dynamically according to biological conditions. Inhibitors of holo-TDO2 are known but, despite several advantages of the heme-free state as a drug target, no inhibitors of apo-TDO2 have been reported. We describe the discovery of the first apo-TDO2 binding inhibitors, to our knowledge, and their inhibition of cellular TDO2 activity at low nanomolar concentrations. The crystal structure of a potent, small molecule inhibitor bound to apo-TDO2 reveals its detailed binding interactions within the large, hydrophobic heme binding pocket of the active site.
Collapse
Affiliation(s)
- Carina Lotz-Jenne
- Drug discovery, Idorsia Pharmaceuticals Limited, Hegenheimermattweg 91, Allschwil, Basel-Land, 4123, Switzerland.
| | - Roland Lange
- Drug discovery, Idorsia Pharmaceuticals Limited, Hegenheimermattweg 91, Allschwil, Basel-Land, 4123, Switzerland
| | - Sylvaine Cren
- Drug discovery, Idorsia Pharmaceuticals Limited, Hegenheimermattweg 91, Allschwil, Basel-Land, 4123, Switzerland
| | - Geoffroy Bourquin
- Drug discovery, Idorsia Pharmaceuticals Limited, Hegenheimermattweg 91, Allschwil, Basel-Land, 4123, Switzerland
| | - Laksmei Goglia
- Drug discovery, Idorsia Pharmaceuticals Limited, Hegenheimermattweg 91, Allschwil, Basel-Land, 4123, Switzerland
| | - Thierry Kimmerlin
- Drug discovery, Idorsia Pharmaceuticals Limited, Hegenheimermattweg 91, Allschwil, Basel-Land, 4123, Switzerland
| | - Micha Wicki
- Drug discovery, Idorsia Pharmaceuticals Limited, Hegenheimermattweg 91, Allschwil, Basel-Land, 4123, Switzerland
| | - Manon Müller
- Drug discovery, Idorsia Pharmaceuticals Limited, Hegenheimermattweg 91, Allschwil, Basel-Land, 4123, Switzerland
| | - Nadia Artico
- Drug discovery, Idorsia Pharmaceuticals Limited, Hegenheimermattweg 91, Allschwil, Basel-Land, 4123, Switzerland
| | - Sabine Ackerknecht
- Drug discovery, Idorsia Pharmaceuticals Limited, Hegenheimermattweg 91, Allschwil, Basel-Land, 4123, Switzerland
| | - Philippe Pfaff
- Drug discovery, Idorsia Pharmaceuticals Limited, Hegenheimermattweg 91, Allschwil, Basel-Land, 4123, Switzerland
| | - Christoph Joesch
- Drug discovery, Idorsia Pharmaceuticals Limited, Hegenheimermattweg 91, Allschwil, Basel-Land, 4123, Switzerland
| | - Aengus Mac Sweeney
- Drug discovery, Idorsia Pharmaceuticals Limited, Hegenheimermattweg 91, Allschwil, Basel-Land, 4123, Switzerland.
| |
Collapse
|
2
|
Öster L, Castaldo M, de Vries E, Edfeldt F, Pemberton N, Gordon E, Cederblad L, Käck H. The structures of salt-inducible kinase 3 in complex with inhibitors reveal determinants for binding and selectivity. J Biol Chem 2024; 300:107201. [PMID: 38508313 PMCID: PMC11061224 DOI: 10.1016/j.jbc.2024.107201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024] Open
Abstract
The salt-inducible kinases (SIKs) 1 to 3, belonging to the AMPK-related kinase family, serve as master regulators orchestrating a diverse set of physiological processes such as metabolism, bone formation, immune response, oncogenesis, and cardiac rhythm. Owing to its key regulatory role, the SIK kinases have emerged as compelling targets for pharmacological intervention across a diverse set of indications. Therefore, there is interest in developing SIK inhibitors with defined selectivity profiles both to further dissect the downstream biology and for treating disease. However, despite a large pharmaceutical interest in the SIKs, experimental structures of SIK kinases are scarce. This is likely due to the challenges associated with the generation of proteins suitable for structural studies. By adopting a rational approach to construct design and protein purification, we successfully crystallized and subsequently solved the structure of SIK3 in complex with HG-9-91-01, a potent SIK inhibitor. To enable further SIK3-inhibitor complex structures we identified an antibody fragment that facilitated crystallization and enabled a robust protocol suitable for structure-based drug design. The structures reveal SIK3 in an active conformation, where the ubiquitin-associated domain is shown to provide further stabilization to this active conformation. We present four pharmacologically relevant and distinct SIK3-inhibitor complexes. These detail the key interaction for each ligand and reveal how different regions of the ATP site are engaged by the different inhibitors to achieve high affinity. Notably, the structure of SIK3 in complex with a SIK3 specific inhibitor offers insights into isoform selectivity.
Collapse
Affiliation(s)
- Linda Öster
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden.
| | - Marie Castaldo
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Emma de Vries
- Biologics Engineering, R&D, AstraZeneca, Cambridge, UK
| | - Fredrik Edfeldt
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Nils Pemberton
- Medicinal Chemistry, Research & Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Euan Gordon
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Linda Cederblad
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Helena Käck
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|
3
|
Nishio S, Emori C, Wiseman B, Fahrenkamp D, Dioguardi E, Zamora-Caballero S, Bokhove M, Han L, Stsiapanava A, Algarra B, Lu Y, Kodani M, Bainbridge RE, Komondor KM, Carlson AE, Landreh M, de Sanctis D, Yasumasu S, Ikawa M, Jovine L. ZP2 cleavage blocks polyspermy by modulating the architecture of the egg coat. Cell 2024; 187:1440-1459.e24. [PMID: 38490181 PMCID: PMC10976854 DOI: 10.1016/j.cell.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/07/2023] [Accepted: 02/09/2024] [Indexed: 03/17/2024]
Abstract
Following the fertilization of an egg by a single sperm, the egg coat or zona pellucida (ZP) hardens and polyspermy is irreversibly blocked. These events are associated with the cleavage of the N-terminal region (NTR) of glycoprotein ZP2, a major subunit of ZP filaments. ZP2 processing is thought to inactivate sperm binding to the ZP, but its molecular consequences and connection with ZP hardening are unknown. Biochemical and structural studies show that cleavage of ZP2 triggers its oligomerization. Moreover, the structure of a native vertebrate egg coat filament, combined with AlphaFold predictions of human ZP polymers, reveals that two protofilaments consisting of type I (ZP3) and type II (ZP1/ZP2/ZP4) components interlock into a left-handed double helix from which the NTRs of type II subunits protrude. Together, these data suggest that oligomerization of cleaved ZP2 NTRs extensively cross-links ZP filaments, rigidifying the egg coat and making it physically impenetrable to sperm.
Collapse
Affiliation(s)
- Shunsuke Nishio
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Chihiro Emori
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan; Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Benjamin Wiseman
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Dirk Fahrenkamp
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Elisa Dioguardi
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | | | - Marcel Bokhove
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Ling Han
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Alena Stsiapanava
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Blanca Algarra
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Yonggang Lu
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan; Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Mayo Kodani
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan; Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Rachel E Bainbridge
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kayla M Komondor
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anne E Carlson
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael Landreh
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; Department of Cell and Molecular Biology, Uppsala University, 75124 Uppsala, Sweden
| | | | - Shigeki Yasumasu
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
| | - Masahito Ikawa
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan; Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan; Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan; Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka, Japan
| | - Luca Jovine
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.
| |
Collapse
|
4
|
Guay KP, Ibba R, Kiappes J, Vasiljević S, Bonì F, De Benedictis M, Zeni I, Le Cornu JD, Hensen M, Chandran AV, Kantsadi AL, Caputo AT, Blanco Capurro JI, Bayo Y, Hill JC, Hudson K, Lia A, Brun J, Withers SG, Martí M, Biasini E, Santino A, De Rosa M, Milani M, Modenutti CP, Hebert DN, Zitzmann N, Roversi P. A quinolin-8-ol sub-millimolar inhibitor of UGGT, the ER glycoprotein folding quality control checkpoint. iScience 2023; 26:107919. [PMID: 37822503 PMCID: PMC10562782 DOI: 10.1016/j.isci.2023.107919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 07/05/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023] Open
Abstract
Misfolded glycoprotein recognition and endoplasmic reticulum (ER) retention are mediated by the ER glycoprotein folding quality control (ERQC) checkpoint enzyme, UDP-glucose glycoprotein glucosyltransferase (UGGT). UGGT modulation is a promising strategy for broad-spectrum antivirals, rescue-of-secretion therapy in rare disease caused by responsive mutations in glycoprotein genes, and many cancers, but to date no selective UGGT inhibitors are known. The small molecule 5-[(morpholin-4-yl)methyl]quinolin-8-ol (5M-8OH-Q) binds a CtUGGTGT24 "WY" conserved surface motif conserved across UGGTs but not present in other GT24 family glycosyltransferases. 5M-8OH-Q has a 47 μM binding affinity for CtUGGTGT24in vitro as measured by ligand-enhanced fluorescence. In cellula, 5M-8OH-Q inhibits both human UGGT isoforms at concentrations higher than 750 μM. 5M-8OH-Q binding to CtUGGTGT24 appears to be mutually exclusive to M5-9 glycan binding in an in vitro competition experiment. A medicinal program based on 5M-8OH-Q will yield the next generation of UGGT inhibitors.
Collapse
Affiliation(s)
- Kevin P. Guay
- Department of Biochemistry and Molecular Biology, and Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA, USA
| | - Roberta Ibba
- Oxford Glycobiology Institute, Department of Biochemistry and Kavli Institute for Nanoscience Discovery, South Parks Road, Oxford OX1 3QU, UK
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23A, 07100 Sassari, Italy
| | - J.L. Kiappes
- Oxford Glycobiology Institute, Department of Biochemistry and Kavli Institute for Nanoscience Discovery, South Parks Road, Oxford OX1 3QU, UK
| | - Snežana Vasiljević
- Oxford Glycobiology Institute, Department of Biochemistry and Kavli Institute for Nanoscience Discovery, South Parks Road, Oxford OX1 3QU, UK
| | - Francesco Bonì
- Institute of Biophysics, IBF-CNR Unit of Milano, via Celoria 26, 20133 Milano, Italy
| | - Maria De Benedictis
- Institute of Sciences of Food Production, C.N.R. Unit of Lecce, via Monteroni, 73100 Lecce, Italy
| | - Ilaria Zeni
- Department of Cellular, Computational and Integrative Biology, University of Trento, Povo, 38123 Trento, Italy
| | - James D. Le Cornu
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Mario Hensen
- Oxford Glycobiology Institute, Department of Biochemistry and Kavli Institute for Nanoscience Discovery, South Parks Road, Oxford OX1 3QU, UK
| | - Anu V. Chandran
- Oxford Glycobiology Institute, Department of Biochemistry and Kavli Institute for Nanoscience Discovery, South Parks Road, Oxford OX1 3QU, UK
| | - Anastassia L. Kantsadi
- Oxford Glycobiology Institute, Department of Biochemistry and Kavli Institute for Nanoscience Discovery, South Parks Road, Oxford OX1 3QU, UK
| | - Alessandro T. Caputo
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation, 343 Royal Parade, Parkville, VIC 3052, Australia
| | - Juan I. Blanco Capurro
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II (CE1428EHA), Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Ciudad Universitaria, Pab. II (CE1428EHA), Buenos Aires, Argentina
| | - Yusupha Bayo
- Department of Biosciences, University of Milano, via Celoria 26, 20133 Milano, Italy
| | - Johan C. Hill
- Oxford Glycobiology Institute, Department of Biochemistry and Kavli Institute for Nanoscience Discovery, South Parks Road, Oxford OX1 3QU, UK
| | - Kieran Hudson
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Andrea Lia
- Oxford Glycobiology Institute, Department of Biochemistry and Kavli Institute for Nanoscience Discovery, South Parks Road, Oxford OX1 3QU, UK
- Institute of Biophysics, IBF-CNR Unit of Milano, via Celoria 26, 20133 Milano, Italy
| | - Juliane Brun
- Oxford Glycobiology Institute, Department of Biochemistry and Kavli Institute for Nanoscience Discovery, South Parks Road, Oxford OX1 3QU, UK
| | - Stephen G. Withers
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Marcelo Martí
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II (CE1428EHA), Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Ciudad Universitaria, Pab. II (CE1428EHA), Buenos Aires, Argentina
| | - Emiliano Biasini
- Department of Cellular, Computational and Integrative Biology, University of Trento, Povo, 38123 Trento, Italy
- Dulbecco Telethon Institute, University of Trento, Povo, 38123 Trento, Italy
| | - Angelo Santino
- Institute of Sciences of Food Production, C.N.R. Unit of Lecce, via Monteroni, 73100 Lecce, Italy
| | - Matteo De Rosa
- Institute of Biophysics, IBF-CNR Unit of Milano, via Celoria 26, 20133 Milano, Italy
| | - Mario Milani
- Institute of Biophysics, IBF-CNR Unit of Milano, via Celoria 26, 20133 Milano, Italy
| | - Carlos P. Modenutti
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II (CE1428EHA), Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Ciudad Universitaria, Pab. II (CE1428EHA), Buenos Aires, Argentina
| | - Daniel N. Hebert
- Department of Biochemistry and Molecular Biology, and Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA, USA
| | - Nicole Zitzmann
- Oxford Glycobiology Institute, Department of Biochemistry and Kavli Institute for Nanoscience Discovery, South Parks Road, Oxford OX1 3QU, UK
| | - Pietro Roversi
- Institute of Agricultural Biology and Biotechnology, IBBA-CNR Unit of Milano, via Bassini 15, 20133 Milano, Italy
- Leicester Institute of Chemical and Structural Biology and Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, LE1 7HR Leicester, UK
| |
Collapse
|
5
|
Mihalič F, Simonetti L, Giudice G, Sander MR, Lindqvist R, Peters MBA, Benz C, Kassa E, Badgujar D, Inturi R, Ali M, Krystkowiak I, Sayadi A, Andersson E, Aronsson H, Söderberg O, Dobritzsch D, Petsalaki E, Överby AK, Jemth P, Davey NE, Ivarsson Y. Large-scale phage-based screening reveals extensive pan-viral mimicry of host short linear motifs. Nat Commun 2023; 14:2409. [PMID: 37100772 PMCID: PMC10132805 DOI: 10.1038/s41467-023-38015-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 04/12/2023] [Indexed: 04/28/2023] Open
Abstract
Viruses mimic host short linear motifs (SLiMs) to hijack and deregulate cellular functions. Studies of motif-mediated interactions therefore provide insight into virus-host dependencies, and reveal targets for therapeutic intervention. Here, we describe the pan-viral discovery of 1712 SLiM-based virus-host interactions using a phage peptidome tiling the intrinsically disordered protein regions of 229 RNA viruses. We find mimicry of host SLiMs to be a ubiquitous viral strategy, reveal novel host proteins hijacked by viruses, and identify cellular pathways frequently deregulated by viral motif mimicry. Using structural and biophysical analyses, we show that viral mimicry-based interactions have similar binding strength and bound conformations as endogenous interactions. Finally, we establish polyadenylate-binding protein 1 as a potential target for broad-spectrum antiviral agent development. Our platform enables rapid discovery of mechanisms of viral interference and the identification of potential therapeutic targets which can aid in combating future epidemics and pandemics.
Collapse
Affiliation(s)
- Filip Mihalič
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, Husargatan 3, 751 23, Uppsala, Sweden
| | - Leandro Simonetti
- Department of Chemistry - BMC, Uppsala University, Box 576, Husargatan 3, 751 23, Uppsala, Sweden
| | - Girolamo Giudice
- European Molecular Biology Laboratory-European Bioinformatics Institute, Hinxton, CB10 1SD, UK
| | - Marie Rubin Sander
- Department of Pharmaceutical Biosciences, Uppsala University, Husargatan 3, Box 591, SE-751 24, Uppsala, Sweden
| | - Richard Lindqvist
- Department of Clinical Microbiology, Umeå University, 90187, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90186, Umeå, Sweden
| | - Marie Berit Akpiroro Peters
- Department of Clinical Microbiology, Umeå University, 90187, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90186, Umeå, Sweden
| | - Caroline Benz
- Department of Chemistry - BMC, Uppsala University, Box 576, Husargatan 3, 751 23, Uppsala, Sweden
| | - Eszter Kassa
- Department of Chemistry - BMC, Uppsala University, Box 576, Husargatan 3, 751 23, Uppsala, Sweden
| | - Dilip Badgujar
- Department of Chemistry - BMC, Uppsala University, Box 576, Husargatan 3, 751 23, Uppsala, Sweden
| | - Raviteja Inturi
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, Husargatan 3, 751 23, Uppsala, Sweden
| | - Muhammad Ali
- Department of Chemistry - BMC, Uppsala University, Box 576, Husargatan 3, 751 23, Uppsala, Sweden
| | - Izabella Krystkowiak
- Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Ahmed Sayadi
- Department of Chemistry - BMC, Uppsala University, Box 576, Husargatan 3, 751 23, Uppsala, Sweden
| | - Eva Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, Husargatan 3, 751 23, Uppsala, Sweden
| | - Hanna Aronsson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, Husargatan 3, 751 23, Uppsala, Sweden
| | - Ola Söderberg
- Department of Pharmaceutical Biosciences, Uppsala University, Husargatan 3, Box 591, SE-751 24, Uppsala, Sweden
| | - Doreen Dobritzsch
- Department of Chemistry - BMC, Uppsala University, Box 576, Husargatan 3, 751 23, Uppsala, Sweden
| | - Evangelia Petsalaki
- European Molecular Biology Laboratory-European Bioinformatics Institute, Hinxton, CB10 1SD, UK
| | - Anna K Överby
- Department of Clinical Microbiology, Umeå University, 90187, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90186, Umeå, Sweden
| | - Per Jemth
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, Husargatan 3, 751 23, Uppsala, Sweden.
| | - Norman E Davey
- Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK.
| | - Ylva Ivarsson
- Department of Chemistry - BMC, Uppsala University, Box 576, Husargatan 3, 751 23, Uppsala, Sweden.
| |
Collapse
|
6
|
Stanborough T, Ho NAT, Bulloch EMM, Bashiri G, Dawes SS, Akazong EW, Titterington J, Allison TM, Jiao W, Johnston JM. Allosteric inhibition of Staphylococcus aureus MenD by 1,4-dihydroxy naphthoic acid: a feedback inhibition mechanism of the menaquinone biosynthesis pathway. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220035. [PMID: 36633276 PMCID: PMC9835592 DOI: 10.1098/rstb.2022.0035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 08/25/2022] [Indexed: 01/13/2023] Open
Abstract
Menaquinones (MKs) are electron carriers in bacterial respiratory chains. In Staphylococcus aureus (Sau), MKs are essential for aerobic and anaerobic respiration. As MKs are redox-active, their biosynthesis likely requires tight regulation to prevent disruption of cellular redox balance. We recently found that the Mycobacterium tuberculosis MenD, the first committed enzyme of the MK biosynthesis pathway, is allosterically inhibited by the downstream metabolite 1,4-dihydroxy-2-naphthoic acid (DHNA). To understand if this is a conserved mechanism in phylogenetically distant genera that also use MK, we investigated whether the Sau-MenD is allosterically inhibited by DHNA. Our results show that DHNA binds to and inhibits the SEPHCHC synthase activity of Sau-MenD enzymes. We identified residues in the DHNA binding pocket that are important for catalysis (Arg98, Lys283, Lys309) and inhibition (Arg98, Lys283). Furthermore, we showed that exogenous DHNA inhibits the growth of Sau, an effect that can be rescued by supplementing the growth medium with MK-4. Our results demonstrate that, despite a lack of strict conservation of the DHNA binding pocket between Mtb-MenD and Sau-MenD, feedback inhibition by DHNA is a conserved mechanism in Sau-MenD and hence the Sau MK biosynthesis pathway. These findings may have implications for the development of anti-staphylococcal agents targeting MK biosynthesis. This article is part of the theme issue 'Reactivity and mechanism in chemical and synthetic biology'.
Collapse
Affiliation(s)
- Tamsyn Stanborough
- School of Physical and Chemical Sciences, Biomolecular Interaction Centre (BIC), University of Canterbury, Christchurch 8041, New Zealand
| | - Ngoc Anh Thu Ho
- School of Physical and Chemical Sciences, Biomolecular Interaction Centre (BIC), University of Canterbury, Christchurch 8041, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, c/o The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Esther M. M. Bulloch
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, c/o The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Ghader Bashiri
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, c/o The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Stephanie S. Dawes
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, c/o The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Etheline W. Akazong
- School of Physical and Chemical Sciences, Biomolecular Interaction Centre (BIC), University of Canterbury, Christchurch 8041, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, c/o The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - James Titterington
- School of Physical and Chemical Sciences, Biomolecular Interaction Centre (BIC), University of Canterbury, Christchurch 8041, New Zealand
| | - Timothy M. Allison
- School of Physical and Chemical Sciences, Biomolecular Interaction Centre (BIC), University of Canterbury, Christchurch 8041, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, c/o The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Wanting Jiao
- Ferrier Research Institute, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, c/o The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Jodie M. Johnston
- School of Physical and Chemical Sciences, Biomolecular Interaction Centre (BIC), University of Canterbury, Christchurch 8041, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, c/o The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
7
|
Fernández-Justel D, Marcos-Alcalde Í, Abascal F, Vidaña N, Gómez-Puertas P, Jiménez A, Revuelta JL, Buey RM. Diversity of mechanisms to control bacterial GTP homeostasis by the mutually exclusive binding of adenine and guanine nucleotides to IMP dehydrogenase. Protein Sci 2022; 31:e4314. [PMID: 35481629 PMCID: PMC9462843 DOI: 10.1002/pro.4314] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/21/2022] [Accepted: 04/06/2022] [Indexed: 02/06/2023]
Abstract
IMP dehydrogenase(IMPDH) is an essential enzyme that catalyzes the rate‐limiting step in the guanine nucleotide pathway. In eukaryotic cells, GTP binding to the regulatory domain allosterically controls the activity of IMPDH by a mechanism that is fine‐tuned by post‐translational modifications and enzyme polymerization. Nonetheless, the mechanisms of regulation of IMPDH in bacterial cells remain unclear. Using biochemical, structural, and evolutionary analyses, we demonstrate that, in most bacterial phyla, (p)ppGpp compete with ATP to allosterically modulate IMPDH activity by binding to a, previously unrecognized, conserved high affinity pocket within the regulatory domain. This pocket was lost during the evolution of Proteobacteria, making their IMPDHs insensitive to these alarmones. Instead, most proteobacterial IMPDHs evolved to be directly modulated by the balance between ATP and GTP that compete for the same allosteric binding site. Altogether, we demonstrate that the activity of bacterial IMPDHs is allosterically modulated by a universally conserved nucleotide‐controlled conformational switch that has divergently evolved to adapt to the specific particularities of each organism. These results reconcile the reported data on the crosstalk between (p)ppGpp signaling and the guanine nucleotide biosynthetic pathway and reinforce the essential role of IMPDH allosteric regulation on bacterial GTP homeostasis. PDB Code(s): 7PJI and 7PMZ;
Collapse
Affiliation(s)
- David Fernández-Justel
- Metabolic Engineering Group, Department of Microbiology and Genetics, Universidad de Salamanca, Salamanca, Spain
| | - Íñigo Marcos-Alcalde
- Molecular Modeling Group, Centro de Biología Molecular Severo Ochoa, CBMSO (CSIC-UAM), Madrid, Spain.,Biosciences Research Institute, School of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | | | - Nerea Vidaña
- Metabolic Engineering Group, Department of Microbiology and Genetics, Universidad de Salamanca, Salamanca, Spain
| | - Paulino Gómez-Puertas
- Molecular Modeling Group, Centro de Biología Molecular Severo Ochoa, CBMSO (CSIC-UAM), Madrid, Spain
| | - Alberto Jiménez
- Metabolic Engineering Group, Department of Microbiology and Genetics, Universidad de Salamanca, Salamanca, Spain
| | - José L Revuelta
- Metabolic Engineering Group, Department of Microbiology and Genetics, Universidad de Salamanca, Salamanca, Spain
| | - Rubén M Buey
- Metabolic Engineering Group, Department of Microbiology and Genetics, Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
8
|
Gorrec F, Bellini D. The FUSION protein crystallization screen. J Appl Crystallogr 2022; 55:310-319. [PMID: 35497656 PMCID: PMC8985600 DOI: 10.1107/s1600576722001765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 02/15/2022] [Indexed: 11/16/2022] Open
Abstract
The success and speed of atomic structure determination of biological macromolecules by X-ray crystallography depends critically on the availability of diffraction-quality crystals. However, the process of screening crystallization conditions often consumes large amounts of sample and time. An innovative protein crystallization screen formulation called FUSION has been developed to help with the production of useful crystals. The concept behind the formulation of FUSION was to combine the most efficient components from the three MORPHEUS screens into a single screen using a systematic approach. The resulting formulation integrates 96 unique combinations of crystallization additives. Most of these additives are small molecules and ions frequently found in crystal structures of the Protein Data Bank (PDB), where they bind proteins and complexes. The efficiency of FUSION is demonstrated by obtaining high yields of diffraction-quality crystals for seven different test proteins. In the process, two crystal forms not currently in the PDB for the proteins α-amylase and avidin were discovered.
Collapse
Affiliation(s)
- Fabrice Gorrec
- Structural Studies, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, Cambridgeshire CB2 0QH, United Kingdom
| | - Dom Bellini
- Structural Studies, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, Cambridgeshire CB2 0QH, United Kingdom
| |
Collapse
|
9
|
Stsiapanava A, Xu C, Nishio S, Han L, Yamakawa N, Carroni M, Tunyasuvunakool K, Jumper J, de Sanctis D, Wu B, Jovine L. Structure of the decoy module of human glycoprotein 2 and uromodulin and its interaction with bacterial adhesin FimH. Nat Struct Mol Biol 2022; 29:190-193. [PMID: 35273390 PMCID: PMC8930769 DOI: 10.1038/s41594-022-00729-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/21/2022] [Indexed: 12/25/2022]
Abstract
Glycoprotein 2 (GP2) and uromodulin (UMOD) filaments protect against gastrointestinal and urinary tract infections by acting as decoys for bacterial fimbrial lectin FimH. By combining AlphaFold2 predictions with X-ray crystallography and cryo-EM, we show that these proteins contain a bipartite decoy module whose new fold presents the high-mannose glycan recognized by FimH. The structure rationalizes UMOD mutations associated with kidney diseases and visualizes a key epitope implicated in cast nephropathy. AlphaFold2 predictions, X-ray crystallography and cryo-EM analyses reveal how related human glycoproteins GP2 and uromodulin catch pathogenic bacteria by presenting a high-mannose glycan that acts as a decoy for fimbrial adhesin FimH.
Collapse
Affiliation(s)
- Alena Stsiapanava
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Chenrui Xu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| | - Shunsuke Nishio
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Ling Han
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Nao Yamakawa
- US 41-UMS 2014-PLBS, Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Marta Carroni
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | | | | | | | - Bin Wu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| | - Luca Jovine
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden. .,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
10
|
Beard DK, Subramanian S, Abendroth J, Dranow DM, Edwards TE, Myler PJ, Asojo OA. Crystal structure of betaine aldehyde dehydrogenase from Burkholderia pseudomallei. Acta Crystallogr F Struct Biol Commun 2022; 78:45-51. [PMID: 35102892 PMCID: PMC8805214 DOI: 10.1107/s2053230x21013455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/19/2021] [Indexed: 11/10/2022] Open
Abstract
Burkholderia pseudomallei infection causes melioidosis, which is often fatal if untreated. There is a need to develop new and more effective treatments for melioidosis. This study reports apo and cofactor-bound crystal structures of the potential drug target betaine aldehyde dehydrogenase (BADH) from B. pseudomallei. A structural comparison identified similarities to BADH from Pseudomonas aeruginosa which is inhibited by the drug disulfiram. This preliminary analysis could facilitate drug-repurposing studies for B. pseudomallei.
Collapse
Affiliation(s)
- Dylan K Beard
- Department of Chemistry and Biochemistry, Hampton University, 100 William R. Harvey Way, Hampton, VA 23668, USA
| | - Sandhya Subramanian
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, 307 Westlake Avenue North Suite 500, Seattle, WA 98109, USA
| | - Jan Abendroth
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
| | | | - Thomas E Edwards
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
| | - Peter J Myler
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, 307 Westlake Avenue North Suite 500, Seattle, WA 98109, USA
| | - Oluwatoyin A Asojo
- Department of Chemistry and Biochemistry, Hampton University, 100 William R. Harvey Way, Hampton, VA 23668, USA
| |
Collapse
|
11
|
Crystal structure and functional analysis of mycobacterial erythromycin resistance methyltransferase Erm38 reveals its RNA binding site. J Biol Chem 2022; 298:101571. [PMID: 35007529 PMCID: PMC8844858 DOI: 10.1016/j.jbc.2022.101571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 02/04/2023] Open
Abstract
Erythromycin resistance methyltransferases (Erms) confer resistance to macrolide, lincosamide, and streptogramin antibiotics in Gram-positive bacteria and mycobacteria. Although structural information for ErmAM, ErmC, and ErmE exists from Gram-positive bacteria, little is known about the Erms in mycobacteria, as there are limited biochemical data and no structures available. Here, we present crystal structures of Erm38 from Mycobacterium smegmatis in apoprotein and cofactor-bound forms. Based on structural analysis and mutagenesis, we identified several catalytically critical, positively charged residues at a putative RNA-binding site. We found that mutation of any of these sites is sufficient to abolish methylation activity, whereas the corresponding RNA-binding affinity of Erm38 remains unchanged. The methylation reaction thus appears to require a precise ensemble of amino acids to accurately position the RNA substrate, such that the target nucleotide can be methylated. In addition, we computationally constructed a model of Erm38 in complex with a 32-mer RNA substrate. This model shows the RNA substrate stably bound to Erm38 by a patch of positively charged residues. Furthermore, a π-π stacking interaction between a key aromatic residue of Erm38 and a target adenine of the RNA substrate forms a critical interaction needed for methylation. Taken together, these data provide valuable insights into Erm–RNA interactions, which will aid subsequent structure-based drug design efforts.
Collapse
|
12
|
Caputo AT, Ibba R, Le Cornu JD, Darlot B, Hensen M, Lipp CB, Marcianò G, Vasiljević S, Zitzmann N, Roversi P. Crystal polymorphism in fragment-based lead discovery of ligands of the catalytic domain of UGGT, the glycoprotein folding quality control checkpoint. Front Mol Biosci 2022; 9:960248. [PMID: 36589243 PMCID: PMC9794592 DOI: 10.3389/fmolb.2022.960248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/11/2022] [Indexed: 12/15/2022] Open
Abstract
None of the current data processing pipelines for X-ray crystallography fragment-based lead discovery (FBLD) consults all the information available when deciding on the lattice and symmetry (i.e., the polymorph) of each soaked crystal. Often, X-ray crystallography FBLD pipelines either choose the polymorph based on cell volume and point-group symmetry of the X-ray diffraction data or leave polymorph attribution to manual intervention on the part of the user. Thus, when the FBLD crystals belong to more than one crystal polymorph, the discovery pipeline can be plagued by space group ambiguity, especially if the polymorphs at hand are variations of the same lattice and, therefore, difficult to tell apart from their morphology and/or their apparent crystal lattices and point groups. In the course of a fragment-based lead discovery effort aimed at finding ligands of the catalytic domain of UDP-glucose glycoprotein glucosyltransferase (UGGT), we encountered a mixture of trigonal crystals and pseudotrigonal triclinic crystals-with the two lattices closely related. In order to resolve that polymorphism ambiguity, we have written and described here a series of Unix shell scripts called CoALLA (crystal polymorph and ligand likelihood-based assignment). The CoALLA scripts are written in Unix shell and use autoPROC for data processing, CCP4-Dimple/REFMAC5 and BUSTER for refinement, and RHOFIT for ligand docking. The choice of the polymorph is effected by carrying out (in each of the known polymorphs) the tasks of diffraction data indexing, integration, scaling, and structural refinement. The most likely polymorph is then chosen as the one with the best structure refinement Rfree statistic. The CoALLA scripts further implement a likelihood-based ligand assignment strategy, starting with macromolecular refinement and automated water addition, followed by removal of the water molecules that appear to be fitting ligand density, and a final round of refinement after random perturbation of the refined macromolecular model, in order to obtain unbiased difference density maps for automated ligand placement. We illustrate the use of CoALLA to discriminate between H3 and P1 crystals used for an FBLD effort to find fragments binding to the catalytic domain of Chaetomium thermophilum UGGT.
Collapse
Affiliation(s)
- Alessandro T. Caputo
- Biochemistry Department, Oxford Glycobiology Institute, University of Oxford, Oxford, United Kingdom
- Commonwealth Scientific and Industrial Research Organisation, Clayton, VIC, Australia
| | - Roberta Ibba
- Biochemistry Department, Oxford Glycobiology Institute, University of Oxford, Oxford, United Kingdom
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | - James D. Le Cornu
- Biochemistry Department, Oxford Glycobiology Institute, University of Oxford, Oxford, United Kingdom
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Scotland, United Kingdom
| | - Benoit Darlot
- Biochemistry Department, Oxford Glycobiology Institute, University of Oxford, Oxford, United Kingdom
| | - Mario Hensen
- Biochemistry Department, Oxford Glycobiology Institute, University of Oxford, Oxford, United Kingdom
| | - Colette B. Lipp
- Biochemistry Department, Oxford Glycobiology Institute, University of Oxford, Oxford, United Kingdom
| | - Gabriele Marcianò
- Biochemistry Department, University of Oxford, Oxford, United Kingdom
| | - Snežana Vasiljević
- Biochemistry Department, Oxford Glycobiology Institute, University of Oxford, Oxford, United Kingdom
| | - Nicole Zitzmann
- Biochemistry Department, Oxford Glycobiology Institute, University of Oxford, Oxford, United Kingdom
- *Correspondence: Nicole Zitzmann, ; Pietro Roversi,
| | - Pietro Roversi
- IBBA-CNR Unit of Milano, Institute of Agricultural Biology and Biotechnology, Milano, Italy
- Department of Molecular and Cell Biology, Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester, United Kingdom
- *Correspondence: Nicole Zitzmann, ; Pietro Roversi,
| |
Collapse
|
13
|
Structural basis of cytokine-mediated activation of ALK family receptors. Nature 2021; 600:143-147. [PMID: 34646012 PMCID: PMC9343967 DOI: 10.1038/s41586-021-03959-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 08/25/2021] [Indexed: 11/08/2022]
Abstract
Anaplastic lymphoma kinase (ALK)1 and the related leukocyte tyrosine kinase (LTK)2 are recently deorphanized receptor tyrosine kinases3. Together with their activating cytokines, ALKAL1 and ALKAL24-6 (also called FAM150A and FAM150B or AUGβ and AUGα, respectively), they are involved in neural development7, cancer7-9 and autoimmune diseases10. Furthermore, mammalian ALK recently emerged as a key regulator of energy expenditure and weight gain11, consistent with a metabolic role for Drosophila ALK12. Despite such functional pleiotropy and growing therapeutic relevance13,14, structural insights into ALK and LTK and their complexes with cognate cytokines have remained scarce. Here we show that the cytokine-binding segments of human ALK and LTK comprise a novel architectural chimera of a permuted TNF-like module that braces a glycine-rich subdomain featuring a hexagonal lattice of long polyglycine type II helices. The cognate cytokines ALKAL1 and ALKAL2 are monomeric three-helix bundles, yet their binding to ALK and LTK elicits similar dimeric assemblies with two-fold symmetry, that tent a single cytokine molecule proximal to the cell membrane. We show that the membrane-proximal EGF-like domain dictates the apparent cytokine preference of ALK. Assisted by these diverse structure-function findings, we propose a structural and mechanistic blueprint for complexes of ALK family receptors, and thereby extend the repertoire of ligand-mediated dimerization mechanisms adopted by receptor tyrosine kinases.
Collapse
|
14
|
Modenutti CP, Blanco Capurro JI, Ibba R, Alonzi DS, Song MN, Vasiljević S, Kumar A, Chandran AV, Tax G, Marti L, Hill JC, Lia A, Hensen M, Waksman T, Rushton J, Rubichi S, Santino A, Martí MA, Zitzmann N, Roversi P. Clamping, bending, and twisting inter-domain motions in the misfold-recognizing portion of UDP-glucose: Glycoprotein glucosyltransferase. Structure 2021; 29:357-370.e9. [PMID: 33352114 PMCID: PMC8024514 DOI: 10.1016/j.str.2020.11.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 09/07/2020] [Accepted: 11/24/2020] [Indexed: 12/27/2022]
Abstract
UDP-glucose:glycoprotein glucosyltransferase (UGGT) flags misfolded glycoproteins for ER retention. We report crystal structures of full-length Chaetomium thermophilum UGGT (CtUGGT), two CtUGGT double-cysteine mutants, and its TRXL2 domain truncation (CtUGGT-ΔTRXL2). CtUGGT molecular dynamics (MD) simulations capture extended conformations and reveal clamping, bending, and twisting inter-domain movements. We name "Parodi limit" the maximum distance on the same glycoprotein between a site of misfolding and an N-linked glycan that can be reglucosylated by monomeric UGGT in vitro, in response to recognition of misfold at that site. Based on the MD simulations, we estimate the Parodi limit as around 70-80 Å. Frequency distributions of distances between glycoprotein residues and their closest N-linked glycosylation sites in glycoprotein crystal structures suggests relevance of the Parodi limit to UGGT activity in vivo. Our data support a "one-size-fits-all adjustable spanner" UGGT substrate recognition model, with an essential role for the UGGT TRXL2 domain.
Collapse
Affiliation(s)
- Carlos P Modenutti
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II (CE1428EHA), Buenos Aires, Argentina; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET. Ciudad Universitaria, Pab. II (CE1428EHA), Buenos Aires, Argentina
| | - Juan I Blanco Capurro
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II (CE1428EHA), Buenos Aires, Argentina; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET. Ciudad Universitaria, Pab. II (CE1428EHA), Buenos Aires, Argentina
| | - Roberta Ibba
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, Via Muroni 23A, 07100 Sassari, SS, Italy
| | - Dominic S Alonzi
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Mauro N Song
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II (CE1428EHA), Buenos Aires, Argentina; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET. Ciudad Universitaria, Pab. II (CE1428EHA), Buenos Aires, Argentina
| | - Snežana Vasiljević
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Abhinav Kumar
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Anu V Chandran
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Gabor Tax
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester, LE1 7RH,, UK
| | - Lucia Marti
- Institute of Sciences of Food Production, C.N.R. Unit of Lecce, via Monteroni, 73100 Lecce, Italy
| | - Johan C Hill
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Andrea Lia
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester, LE1 7RH,, UK; Institute of Sciences of Food Production, C.N.R. Unit of Lecce, via Monteroni, 73100 Lecce, Italy
| | - Mario Hensen
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Thomas Waksman
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Jonathan Rushton
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Simone Rubichi
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Institute of Sciences of Food Production, C.N.R. Unit of Lecce, via Monteroni, 73100 Lecce, Italy
| | - Angelo Santino
- Institute of Sciences of Food Production, C.N.R. Unit of Lecce, via Monteroni, 73100 Lecce, Italy
| | - Marcelo A Martí
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II (CE1428EHA), Buenos Aires, Argentina; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET. Ciudad Universitaria, Pab. II (CE1428EHA), Buenos Aires, Argentina.
| | - Nicole Zitzmann
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| | - Pietro Roversi
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester, LE1 7RH,, UK.
| |
Collapse
|
15
|
Kiss L, Clift D, Renner N, Neuhaus D, James LC. RING domains act as both substrate and enzyme in a catalytic arrangement to drive self-anchored ubiquitination. Nat Commun 2021; 12:1220. [PMID: 33619271 PMCID: PMC7900206 DOI: 10.1038/s41467-021-21443-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/26/2021] [Indexed: 12/24/2022] Open
Abstract
Attachment of ubiquitin (Ub) to proteins is one of the most abundant and versatile of all posttranslational modifications and affects outcomes in essentially all physiological processes. RING E3 ligases target E2 Ub-conjugating enzymes to the substrate, resulting in its ubiquitination. However, the mechanism by which a ubiquitin chain is formed on the substrate remains elusive. Here we demonstrate how substrate binding can induce a specific RING topology that enables self-ubiquitination. By analyzing a catalytically trapped structure showing the initiation of TRIM21 RING-anchored ubiquitin chain elongation, and in combination with a kinetic study, we illuminate the chemical mechanism of ubiquitin conjugation. Moreover, biochemical and cellular experiments show that the topology found in the structure can be induced by substrate binding. Our results provide insights into ubiquitin chain formation on a structural, biochemical and cellular level with broad implications for targeted protein degradation.
Collapse
Affiliation(s)
- Leo Kiss
- MRC Laboratory of Molecular Biology, Cambridge, UK.
| | - Dean Clift
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | | - Leo C James
- MRC Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
16
|
Sarrou I, Feiler CG, Falke S, Peard N, Yefanov O, Chapman H. C-phycocyanin as a highly attractive model system in protein crystallography: unique crystallization properties and packing-diversity screening. Acta Crystallogr D Struct Biol 2021; 77:224-236. [PMID: 33559611 PMCID: PMC7869899 DOI: 10.1107/s2059798320016071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/09/2020] [Indexed: 01/08/2023] Open
Abstract
The unique crystallization properties of the antenna protein C-phycocyanin (C-PC) from the thermophilic cyanobacterium Thermosynechococcus elongatus are reported and discussed. C-PC crystallizes in hundreds of significantly different conditions within a broad pH range and in the presence of a wide variety of precipitants and additives. Remarkably, the crystal dimensions vary from a few micrometres, as used in serial crystallography, to several hundred micrometres, with a very diverse crystal morphology. More than 100 unique single-crystal X-ray diffraction data sets were collected from randomly selected crystals and analysed. The addition of small-molecule additives revealed three new crystal packings of C-PC, which are discussed in detail. The high propensity of this protein to crystallize, combined with its natural blue colour and its fluorescence characteristics, make it an excellent candidate as a superior and highly adaptable model system in crystallography. C-PC can be used in technical and methods development approaches for X-ray and neutron diffraction techniques, and as a system for comprehending the fundamental principles of protein crystallography.
Collapse
Affiliation(s)
- Iosifina Sarrou
- Centre for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Christian G. Feiler
- Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
| | - Sven Falke
- Laboratory for Structural Biology of Infection and Inflammation, Universität Hamburg, Notkestrasse 85, 22607 Hamburg, Germany
- Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22607 Hamburg, Germany
| | - Nolan Peard
- Centre for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Oleksandr Yefanov
- Centre for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Henry Chapman
- Centre for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22607 Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22607 Hamburg, Germany
| |
Collapse
|
17
|
Goh BC, Chua YK, Qian X, Lin J, Savko M, Dedon PC, Lescar J. Crystal structure of the periplasmic sensor domain of histidine kinase VbrK suggests indirect sensing of β-lactam antibiotics. J Struct Biol 2020; 212:107610. [DOI: 10.1016/j.jsb.2020.107610] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/19/2020] [Accepted: 08/26/2020] [Indexed: 11/25/2022]
|
18
|
Lia A, Dowle A, Taylor C, Santino A, Roversi P. Partial catalytic Cys oxidation of human GAPDH to Cys-sulfonic acid. Wellcome Open Res 2020; 5:114. [PMID: 32802964 PMCID: PMC7422855 DOI: 10.12688/wellcomeopenres.15893.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2020] [Indexed: 01/06/2023] Open
Abstract
Background: n-Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) catalyses the NAD
+-dependent oxidative phosphorylation of n-glyceraldehyde-3-phosphate to 1,3-diphospho-n-glycerate and its reverse reaction in glycolysis and gluconeogenesis. Methods: Four distinct crystal structures of human n-Glyceraldehyde-3-phosphate dehydrogenase (
HsGAPDH) have been determined from protein purified from the supernatant of HEK293F human epithelial kidney cells. Results: X-ray crystallography and mass-spectrometry indicate that the catalytic cysteine of the protein (
HsGAPDH Cys152) is partially oxidised to cysteine S-sulfonic acid. The average occupancy for the Cys152-S-sulfonic acid modification over the 20 crystallographically independent copies of
HsGAPDH across three of the crystal forms obtained is 0.31±0.17. Conclusions: The modification induces no significant structural changes on the tetrameric enzyme, and only makes aspecific contacts to surface residues in the active site, in keeping with the hypothesis that the oxidising conditions of the secreted mammalian cell expression system result in
HsGAPDH catalytic cysteine S-sulfonic acid modification and irreversible inactivation of the enzyme.
Collapse
Affiliation(s)
- Andrea Lia
- Leicester Institute of Chemical and Structural Biology and Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, LE1 7HB, UK.,Institute of Sciences of Food Production, C.N.R. Unit of Lecce, ia Monteroni, Lecce, 73100, Italy
| | - Adam Dowle
- Bioscience Technology Facility Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Chris Taylor
- Bioscience Technology Facility Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Angelo Santino
- Institute of Sciences of Food Production, C.N.R. Unit of Lecce, ia Monteroni, Lecce, 73100, Italy
| | - Pietro Roversi
- Leicester Institute of Chemical and Structural Biology and Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, LE1 7HB, UK
| |
Collapse
|
19
|
Lia A, Dowle A, Taylor C, Santino A, Roversi P. Partial catalytic Cys oxidation of human GAPDH. Wellcome Open Res 2020; 5:114. [DOI: 10.12688/wellcomeopenres.15893.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2020] [Indexed: 11/20/2022] Open
Abstract
Background: n-Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) catalyses the reversible NAD+-dependent oxidative phosphorylation of n-glyceraldehyde-3-phosphate to 1,3-diphospho-n-glycerate in both glycolysis and gluconeogenesis.Methods: Four distinct crystal structures of human n-Glyceraldehyde-3-phosphate dehydrogenase (HsGAPDH) have been determined from protein purified from the supernatant of HEK293F human epithelial kidney cells.Results: X-ray crystallography and mass-spectrometry indicate that the catalytic cysteine of the protein (HsGAPDH Cys152) is partially oxidised to cysteine S-sulfonic acid. The average occupancy for the Cys152-S-sulfonic acid modification over the 20 crystallographically independent copies ofHsGAPDH across three of the crystal forms obtained is 0.31±0.17.Conclusions: The modification induces no significant structural changes on the tetrameric enzyme, and only makes aspecific contacts to surface residues in the active site, in keeping with the hypothesis that the oxidising conditions of the secreted mammalian cell expression system result inHsGAPDH catalytic cysteine S-sulfonic acid modification and irreversible inactivation of the enzyme.
Collapse
|
20
|
Ting YT, Dahal-Koirala S, Kim HSK, Qiao SW, Neumann RS, Lundin KEA, Petersen J, Reid HH, Sollid LM, Rossjohn J. A molecular basis for the T cell response in HLA-DQ2.2 mediated celiac disease. Proc Natl Acad Sci U S A 2020. [PMID: 31974305 DOI: 10.1073/pnas1914308117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Abstract
The highly homologous human leukocyte antigen (HLA)-DQ2 molecules, HLA-DQ2.5 and HLA-DQ2.2, are implicated in the pathogenesis of celiac disease (CeD) by presenting gluten peptides to CD4+ T cells. However, while HLA-DQ2.5 is strongly associated with disease, HLA-DQ2.2 is not, and the molecular basis underpinning this differential disease association is unresolved. We here provide structural evidence for how the single polymorphic residue (HLA-DQ2.5-Tyr22α and HLA-DQ2.2-Phe22α) accounts for HLA-DQ2.2 additionally requiring gluten epitopes possessing a serine at the P3 position of the peptide. In marked contrast to the biased T cell receptor (TCR) usage associated with HLA-DQ2.5-mediated CeD, we demonstrate with extensive single-cell sequencing that a diverse TCR repertoire enables recognition of the immunodominant HLA-DQ2.2-glut-L1 epitope. The crystal structure of two CeD patient-derived TCR in complex with HLA-DQ2.2 and DQ2.2-glut-L1 (PFSEQEQPV) revealed a docking strategy, and associated interatomic contacts, which was notably distinct from the structures of the TCR:HLA-DQ2.5:gliadin epitope complexes. Accordingly, while the molecular surfaces of the antigen-binding clefts of HLA-DQ2.5 and HLA-DQ2.2 are very similar, differences in the nature of the peptides presented translates to differences in responding T cell repertoires and the nature of engagement of the respective antigen-presenting molecules, which ultimately is associated with differing disease penetrance.
Collapse
MESH Headings
- CD4-Positive T-Lymphocytes/chemistry
- CD4-Positive T-Lymphocytes/metabolism
- Celiac Disease/genetics
- Celiac Disease/immunology
- Celiac Disease/metabolism
- Cell Line
- Crystallography, X-Ray
- Epitopes, T-Lymphocyte/chemistry
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/metabolism
- Glutens/chemistry
- Glutens/immunology
- Glutens/metabolism
- HLA-DQ Antigens/chemistry
- HLA-DQ Antigens/genetics
- HLA-DQ Antigens/metabolism
- Humans
- Models, Molecular
- Protein Binding
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
Collapse
Affiliation(s)
- Yi Tian Ting
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- The Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Shiva Dahal-Koirala
- Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, 0372 Oslo, Norway
- K. G. Jebsen Centre for Coeliac Disease Research, University of Oslo, 0372 Oslo, Norway
| | - Hui Shi Keshia Kim
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- The Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Shuo-Wang Qiao
- Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, 0372 Oslo, Norway
- K. G. Jebsen Centre for Coeliac Disease Research, University of Oslo, 0372 Oslo, Norway
| | - Ralf S Neumann
- Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, 0372 Oslo, Norway
- K. G. Jebsen Centre for Coeliac Disease Research, University of Oslo, 0372 Oslo, Norway
| | - Knut E A Lundin
- Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, 0372 Oslo, Norway
- K. G. Jebsen Centre for Coeliac Disease Research, University of Oslo, 0372 Oslo, Norway
- Department of Gastroenterology, Oslo University Hospital-Rikshospitalet, 0372 Oslo, Norway
| | - Jan Petersen
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- The Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia
| | - Hugh H Reid
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- The Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia
| | - Ludvig M Sollid
- Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, 0372 Oslo, Norway;
- K. G. Jebsen Centre for Coeliac Disease Research, University of Oslo, 0372 Oslo, Norway
| | - Jamie Rossjohn
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia;
- The Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, CF14 4XN Cardiff, United Kingdom
| |
Collapse
|
21
|
A molecular basis for the T cell response in HLA-DQ2.2 mediated celiac disease. Proc Natl Acad Sci U S A 2020; 117:3063-3073. [PMID: 31974305 DOI: 10.1073/pnas.1914308117] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The highly homologous human leukocyte antigen (HLA)-DQ2 molecules, HLA-DQ2.5 and HLA-DQ2.2, are implicated in the pathogenesis of celiac disease (CeD) by presenting gluten peptides to CD4+ T cells. However, while HLA-DQ2.5 is strongly associated with disease, HLA-DQ2.2 is not, and the molecular basis underpinning this differential disease association is unresolved. We here provide structural evidence for how the single polymorphic residue (HLA-DQ2.5-Tyr22α and HLA-DQ2.2-Phe22α) accounts for HLA-DQ2.2 additionally requiring gluten epitopes possessing a serine at the P3 position of the peptide. In marked contrast to the biased T cell receptor (TCR) usage associated with HLA-DQ2.5-mediated CeD, we demonstrate with extensive single-cell sequencing that a diverse TCR repertoire enables recognition of the immunodominant HLA-DQ2.2-glut-L1 epitope. The crystal structure of two CeD patient-derived TCR in complex with HLA-DQ2.2 and DQ2.2-glut-L1 (PFSEQEQPV) revealed a docking strategy, and associated interatomic contacts, which was notably distinct from the structures of the TCR:HLA-DQ2.5:gliadin epitope complexes. Accordingly, while the molecular surfaces of the antigen-binding clefts of HLA-DQ2.5 and HLA-DQ2.2 are very similar, differences in the nature of the peptides presented translates to differences in responding T cell repertoires and the nature of engagement of the respective antigen-presenting molecules, which ultimately is associated with differing disease penetrance.
Collapse
|
22
|
Anandapadamanaban M, Masson GR, Perisic O, Berndt A, Kaufman J, Johnson CM, Santhanam B, Rogala KB, Sabatini DM, Williams RL. Architecture of human Rag GTPase heterodimers and their complex with mTORC1. Science 2019; 366:203-210. [PMID: 31601764 PMCID: PMC6795536 DOI: 10.1126/science.aax3939] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 09/03/2019] [Indexed: 12/11/2022]
Abstract
The Rag guanosine triphosphatases (GTPases) recruit the master kinase mTORC1 to lysosomes to regulate cell growth and proliferation in response to amino acid availability. The nucleotide state of Rag heterodimers is critical for their association with mTORC1. Our cryo-electron microscopy structure of RagA/RagC in complex with mTORC1 shows the details of RagA/RagC binding to the RAPTOR subunit of mTORC1 and explains why only the RagAGTP/RagCGDP nucleotide state binds mTORC1. Previous kinetic studies suggested that GTP binding to one Rag locks the heterodimer to prevent GTP binding to the other. Our crystal structures and dynamics of RagA/RagC show the mechanism for this locking and explain how oncogenic hotspot mutations disrupt this process. In contrast to allosteric activation by RHEB, Rag heterodimer binding does not change mTORC1 conformation and activates mTORC1 by targeting it to lysosomes.
Collapse
Affiliation(s)
| | - Glenn R Masson
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Olga Perisic
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Alex Berndt
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | | | | | - Kacper B Rogala
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - David M Sabatini
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | |
Collapse
|
23
|
Qin W, Xie SX, Zhang J, Zhao D, He CX, Li HJ, Xing L, Li PQ, Jin X, Yin DC, Cao HL. An Analysis on Commercial Screening Kits and Chemical Components in Biomacromolecular Crystallization Screening. CRYSTAL RESEARCH AND TECHNOLOGY 2019. [DOI: 10.1002/crat.201900076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wei Qin
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease; Shaanxi Key Laboratory of Brain Disorders; Institute of Basic and Translational Medicine; Xi'an Medical University; Xi'an 710021 P. R. China
| | - Si-Xiao Xie
- Key Laboratory for Space Bioscience & Biotechnology; School of Life Sciences, Northwestern Polytechnical University; Xi'an 710072 P. R. China
| | - Jie Zhang
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease; Shaanxi Key Laboratory of Brain Disorders; Institute of Basic and Translational Medicine; Xi'an Medical University; Xi'an 710021 P. R. China
| | - Dong Zhao
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease; Shaanxi Key Laboratory of Brain Disorders; Institute of Basic and Translational Medicine; Xi'an Medical University; Xi'an 710021 P. R. China
| | - Chun-Xia He
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease; Shaanxi Key Laboratory of Brain Disorders; Institute of Basic and Translational Medicine; Xi'an Medical University; Xi'an 710021 P. R. China
| | - Hui-Jin Li
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease; Shaanxi Key Laboratory of Brain Disorders; Institute of Basic and Translational Medicine; Xi'an Medical University; Xi'an 710021 P. R. China
| | - Lu Xing
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease; Shaanxi Key Laboratory of Brain Disorders; Institute of Basic and Translational Medicine; Xi'an Medical University; Xi'an 710021 P. R. China
| | - Peng-Quan Li
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease; Shaanxi Key Laboratory of Brain Disorders; Institute of Basic and Translational Medicine; Xi'an Medical University; Xi'an 710021 P. R. China
| | - Xi Jin
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease; Shaanxi Key Laboratory of Brain Disorders; Institute of Basic and Translational Medicine; Xi'an Medical University; Xi'an 710021 P. R. China
| | - Da-Chuan Yin
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease; Shaanxi Key Laboratory of Brain Disorders; Institute of Basic and Translational Medicine; Xi'an Medical University; Xi'an 710021 P. R. China
- Key Laboratory for Space Bioscience & Biotechnology; School of Life Sciences, Northwestern Polytechnical University; Xi'an 710072 P. R. China
| | - Hui-Ling Cao
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease; Shaanxi Key Laboratory of Brain Disorders; Institute of Basic and Translational Medicine; Xi'an Medical University; Xi'an 710021 P. R. China
| |
Collapse
|
24
|
Sammak S, Hamdani N, Gorrec F, Allen MD, Freund SMV, Bycroft M, Zinzalla G. Crystal Structures and Nuclear Magnetic Resonance Studies of the Apo Form of the c-MYC:MAX bHLHZip Complex Reveal a Helical Basic Region in the Absence of DNA. Biochemistry 2019; 58:3144-3154. [PMID: 31260268 PMCID: PMC6791285 DOI: 10.1021/acs.biochem.9b00296] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
The c-MYC transcription
factor is a master regulator of cell growth
and proliferation and is an established target for cancer therapy.
This basic helix–loop–helix Zip protein forms a heterodimer
with its obligatory partner MAX, which binds to DNA via the basic
region. Considerable research efforts are focused on targeting the
heterodimerization interface and the interaction of the complex with
DNA. The only available crystal structure is that of a c-MYC:MAX complex
artificially tethered by an engineered disulfide linker and prebound
to DNA. We have carried out a detailed structural analysis of the
apo form of the c-MYC:MAX complex, with no artificial linker, both
in solution using nuclear magnetic resonance (NMR) spectroscopy and
by X-ray crystallography. We have obtained crystal structures in three
different crystal forms, with resolutions between 1.35 and 2.2 Å,
that show extensive helical structure in the basic region. Determination
of the α-helical propensity using NMR chemical shift analysis
shows that the basic region of c-MYC and, to a lesser extent, that
of MAX populate helical conformations. We have also assigned the NMR
spectra of the c-MYC basic helix–loop–helix Zip motif
in the absence of MAX and showed that the basic region has an intrinsic
helical propensity even in the absence of its dimerization partner.
The presence of helical structure in the basic regions in the absence
of DNA suggests that the molecular recognition occurs via a conformational
selection rather than an induced fit. Our work provides both insight
into the mechanism of DNA binding and structural information to aid
in the development of MYC inhibitors.
Collapse
Affiliation(s)
- Susan Sammak
- Microbiology, Tumor and Cell Biology (MTC) , Karolinska Institutet , Solnavägen 9 , 171 65 Stockholm , Sweden
| | - Najoua Hamdani
- Microbiology, Tumor and Cell Biology (MTC) , Karolinska Institutet , Solnavägen 9 , 171 65 Stockholm , Sweden
| | - Fabrice Gorrec
- MRC Laboratory of Molecular Biology , Cambridge Biomedical Campus , Francis Crick Avenue , Cambridge CB2 0QH , U.K
| | - Mark D Allen
- MRC Laboratory of Molecular Biology , Cambridge Biomedical Campus , Francis Crick Avenue , Cambridge CB2 0QH , U.K
| | - Stefan M V Freund
- MRC Laboratory of Molecular Biology , Cambridge Biomedical Campus , Francis Crick Avenue , Cambridge CB2 0QH , U.K
| | - Mark Bycroft
- MRC Laboratory of Molecular Biology , Cambridge Biomedical Campus , Francis Crick Avenue , Cambridge CB2 0QH , U.K
| | - Giovanna Zinzalla
- Microbiology, Tumor and Cell Biology (MTC) , Karolinska Institutet , Solnavägen 9 , 171 65 Stockholm , Sweden
| |
Collapse
|
25
|
The O-GlcNAc Transferase Intellectual Disability Mutation L254F Distorts the TPR Helix. Cell Chem Biol 2018; 25:513-518.e4. [PMID: 29606577 PMCID: PMC5967971 DOI: 10.1016/j.chembiol.2018.03.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/30/2018] [Accepted: 02/28/2018] [Indexed: 01/18/2023]
Abstract
O-linked β-N-acetyl-D-glucosamine (O-GlcNAc) transferase (OGT) regulates protein O-GlcNAcylation, an essential post-translational modification that is abundant in the brain. Recently, OGT mutations have been associated with intellectual disability, although it is not understood how they affect OGT structure and function. Using a multi-disciplinary approach we show that the L254F OGT mutation leads to conformational changes of the tetratricopeptide repeats and reduced activity, revealing the molecular mechanisms contributing to pathogenesis. The intellectual disability L254F mutation in OGT affects activity The L254F mutation leads to shifts up to 12 Å in the OGT structure Thermal denaturing studies reveal reduction in TPR stability caused by L254F Simulations suggest the presence of alternate TPRL254F conformations
Collapse
|
26
|
Gorrec F, Löwe J. Automated Protocols for Macromolecular Crystallization at the MRC Laboratory of Molecular Biology. J Vis Exp 2018:55790. [PMID: 29443035 PMCID: PMC5908693 DOI: 10.3791/55790] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
When high quality crystals are obtained that diffract X-rays, the crystal structure may be solved at near atomic resolution. The conditions to crystallize proteins, DNAs, RNAs, and their complexes can however not be predicted. Employing a broad variety of conditions is a way to increase the yield of quality diffraction crystals. Two fully automated systems have been developed at the MRC Laboratory of Molecular Biology (Cambridge, England, MRC-LMB) that facilitate crystallization screening against 1,920 initial conditions by vapor diffusion in nanoliter droplets. Semi-automated protocols have also been developed to optimize conditions by changing the concentrations of reagents, the pH, or by introducing additives that potentially enhance properties of the resulting crystals. All the corresponding protocols will be described in detail and briefly discussed. Taken together, they enable convenient and highly efficient macromolecular crystallization in a multi-user facility, while giving the users control over key parameters of their experiments.
Collapse
Affiliation(s)
- Fabrice Gorrec
- Laboratory of Molecular Biology, Medical Research Council;
| | - Jan Löwe
- Laboratory of Molecular Biology, Medical Research Council
| |
Collapse
|
27
|
Zhou RB, Lu XL, Dong C, Ahmad F, Zhang CY, Yin DC. Application of protein crystallization methodologies to enhance the solubility, stability and monodispersity of proteins. CrystEngComm 2018. [DOI: 10.1039/c7ce02189e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Application of protein crystallization methodologies to screen optimal solution formulations for proteins prone to aggregation.
Collapse
Affiliation(s)
- Ren-Bin Zhou
- Key Laboratory for Space Bioscience & Biotechnology
- School of Life Sciences
- Northwestern Polytechnical University
- PR China
| | - Xiao-Li Lu
- Key Laboratory for Space Bioscience & Biotechnology
- School of Life Sciences
- Northwestern Polytechnical University
- PR China
| | - Chen Dong
- Key Laboratory for Space Bioscience & Biotechnology
- School of Life Sciences
- Northwestern Polytechnical University
- PR China
| | - Fiaz Ahmad
- Key Laboratory for Space Bioscience & Biotechnology
- School of Life Sciences
- Northwestern Polytechnical University
- PR China
| | - Chen-Yan Zhang
- Key Laboratory for Space Bioscience & Biotechnology
- School of Life Sciences
- Northwestern Polytechnical University
- PR China
| | - Da-Chuan Yin
- Key Laboratory for Space Bioscience & Biotechnology
- School of Life Sciences
- Northwestern Polytechnical University
- PR China
| |
Collapse
|
28
|
Aquino B, Couñago RM, Verza N, Ferreira LM, Massirer KB, Gileadi O, Arruda P. Structural Characterization of Maize SIRK1 Kinase Domain Reveals an Unusual Architecture of the Activation Segment. FRONTIERS IN PLANT SCIENCE 2017; 8:852. [PMID: 28603531 PMCID: PMC5445127 DOI: 10.3389/fpls.2017.00852] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/08/2017] [Indexed: 05/02/2023]
Abstract
Kinases are primary regulators of plant metabolism and excellent targets for plant breeding. However, most kinases, including the abundant receptor-like kinases (RLK), have no assigned role. SIRK1 is a leucine-rich repeat receptor-like kinase (LRR-RLK), the largest family of RLK. In Arabidopsis thaliana, SIRK1 (AtSIRK1) is phosphorylated after sucrose is resupplied to sucrose-starved seedlings and it modulates the sugar response by phosphorylating several substrates. In maize, the ZmSIRK1 expression is altered in response to drought stress. In neither Arabidopsis nor in maize has the function of SIRK1 been completely elucidated. As a first step toward the biochemical characterization of ZmSIRK1, we obtained its recombinant kinase domain, demonstrated that it binds AMP-PNP, a non-hydrolysable ATP-analog, and solved the structure of ZmSIRK1- AMP-PNP co-crystal. The ZmSIRK1 crystal structure revealed a unique conformation for the activation segment. In an attempt to find inhibitors for ZmSIRK1, we screened a focused small molecule library and identified six compounds that stabilized ZmSIRK1 against thermal melt. ITC analysis confirmed that three of these compounds bound to ZmSIRK1 with low micromolar affinity. Solving the 3D structure of ZmSIRK1-AMP-PNP co-crystal provided information on the molecular mechanism of ZmSIRK1 activity. Furthermore, the identification of small molecules that bind this kinase can serve as initial backbone for development of new potent and selective ZmSIRK1 antagonists.
Collapse
Affiliation(s)
- Bruno Aquino
- Structural Genomics Consortium, Universidade Estadual de CampinasCampinas, Brazil
| | - Rafael M. Couñago
- Structural Genomics Consortium, Universidade Estadual de CampinasCampinas, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de CampinasCampinas, Brazil
| | - Natalia Verza
- Structural Genomics Consortium, Universidade Estadual de CampinasCampinas, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de CampinasCampinas, Brazil
| | - Lucas M. Ferreira
- Structural Genomics Consortium, Universidade Estadual de CampinasCampinas, Brazil
| | - Katlin B. Massirer
- Structural Genomics Consortium, Universidade Estadual de CampinasCampinas, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de CampinasCampinas, Brazil
| | - Opher Gileadi
- Structural Genomics Consortium, Universidade Estadual de CampinasCampinas, Brazil
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of OxfordOxford, United Kingdom
| | - Paulo Arruda
- Structural Genomics Consortium, Universidade Estadual de CampinasCampinas, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de CampinasCampinas, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de CampinasCampinas, Brazil
| |
Collapse
|
29
|
Pandey P, Tarique KF, Mazumder M, Rehman SAA, Kumari N, Gourinath S. Structural insight into β-Clamp and its interaction with DNA Ligase in Helicobacter pylori. Sci Rep 2016; 6:31181. [PMID: 27499105 PMCID: PMC4976356 DOI: 10.1038/srep31181] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/14/2016] [Indexed: 12/30/2022] Open
Abstract
Helicobacter pylori, a gram-negative and microaerophilic bacterium, is the major cause of chronic gastritis, gastric ulcers and gastric cancer. Owing to its central role, DNA replication machinery has emerged as a prime target for the development of antimicrobial drugs. Here, we report 2Å structure of β-clamp from H. pylori (Hpβ-clamp), which is one of the critical components of DNA polymerase III. Despite of similarity in the overall fold of eubacterial β-clamp structures, some distinct features in DNA interacting loops exists that have not been reported previously. The in silico prediction identified the potential binders of β-clamp such as alpha subunit of DNA pol III and DNA ligase with identification of β-clamp binding regions in them and validated by SPR studies. Hpβ-clamp interacts with DNA ligase in micromolar binding affinity. Moreover, we have successfully determined the co-crystal structure of β-clamp with peptide from DNA ligase (not reported earlier in prokaryotes) revealing the region from ligase that interacts with β-clamp.
Collapse
Affiliation(s)
- Preeti Pandey
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.,Department of Bioscience and Biotechnology, Banasthali University, Rajasthan, India
| | | | - Mohit Mazumder
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - Nilima Kumari
- Department of Bioscience and Biotechnology, Banasthali University, Rajasthan, India
| | | |
Collapse
|
30
|
Gorrec F. Protein crystallization screens developed at the MRC Laboratory of Molecular Biology. Drug Discov Today 2016; 21:819-25. [PMID: 27032894 PMCID: PMC4911435 DOI: 10.1016/j.drudis.2016.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 02/04/2016] [Accepted: 03/08/2016] [Indexed: 12/12/2022]
Abstract
In order to solve increasingly challenging protein structures with crystallography, crystallization reagents and screen formulations are regularly investigated. Here, we briefly describe 96-condition screens developed at the MRC Laboratory of Molecular Biology: the LMB sparse matrix screen, Pi incomplete factorial screens, the MORPHEUS grid screens and the ANGSTROM optimization screen. In this short review, we also discuss the difficulties and advantages associated with the development of protein crystallization screens.
Collapse
Affiliation(s)
- Fabrice Gorrec
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK.
| |
Collapse
|