1
|
Baroni C, Bozdag M, Renzi G, De Luca V, Capasso C, Bazzicalupi C, Selleri S, Ferraroni M, Carta F, Supuran CT. X-ray crystallographic and kinetic studies of biguanide containing aryl sulfonamides as carbonic anhydrase inhibitors. RSC Med Chem 2025; 16:1633-1640. [PMID: 39935522 PMCID: PMC11809658 DOI: 10.1039/d4md01018c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 01/23/2025] [Indexed: 02/13/2025] Open
Abstract
Here, we report a small series of dual-targeting compounds that combine the prototypical carbonic anhydrase (CA) zinc-binding sulfonamide moiety with the biguanide group of metformin, an emerging anticancer drug. The compounds reported similar in vitro inhibition profiles on a panel of physiologically relevant human (h)CAs, with marked selectivity for the cancer related IX and XII isoforms. The binding modes of representative inhibitors 5b and 5c within the active site of the hCA isoforms II and XII-mimic were assessed by X-ray crystallography, thus allowing us to clarify molecular features that may be useful for the design of more specific and potent inhibitors. For instance, we identified a mutation in the hCA XII-mimic which was found responsible for the selectivity of the ligands toward the tumor associated isoform. Interestingly, in the hCA II/5c complex, a second inhibitor molecule was bound to the catalytic cleft, probably affecting the inhibition properties of the canonical zinc-bound inhibitor.
Collapse
Affiliation(s)
- Chiara Baroni
- Department of Chemistry "Ugo Schiff", University of Florence Via della Lastruccia 3 50019 Sesto Fiorentino FI Italy
| | - Murat Bozdag
- NEUROFARBA Department, University of Florence Via Ugo Schiff 6 50019 Sesto Fiorentino FI Italy
| | - Gioele Renzi
- NEUROFARBA Department, University of Florence Via Ugo Schiff 6 50019 Sesto Fiorentino FI Italy
| | - Viviana De Luca
- Department of Biology, Institute of Bioscience and Bioresources (IBBR)-CNR Via P. Castellino 111 80131 Napoli NA Italy
| | - Clemente Capasso
- Department of Biology, Institute of Bioscience and Bioresources (IBBR)-CNR Via P. Castellino 111 80131 Napoli NA Italy
| | - Carla Bazzicalupi
- Department of Chemistry "Ugo Schiff", University of Florence Via della Lastruccia 3 50019 Sesto Fiorentino FI Italy
| | - Silvia Selleri
- NEUROFARBA Department, University of Florence Via Ugo Schiff 6 50019 Sesto Fiorentino FI Italy
| | - Marta Ferraroni
- Department of Chemistry "Ugo Schiff", University of Florence Via della Lastruccia 3 50019 Sesto Fiorentino FI Italy
| | - Fabrizio Carta
- NEUROFARBA Department, University of Florence Via Ugo Schiff 6 50019 Sesto Fiorentino FI Italy
| | - Claudiu T Supuran
- NEUROFARBA Department, University of Florence Via Ugo Schiff 6 50019 Sesto Fiorentino FI Italy
| |
Collapse
|
2
|
Combs JE, Murray AB, Lomelino CL, Mboge MY, Mietzsch M, Horenstein NA, Frost SC, McKenna R, Becker HM. Disruption of the Physical Interaction Between Carbonic Anhydrase IX and the Monocarboxylate Transporter 4 Impacts Lactate Transport in Breast Cancer Cells. Int J Mol Sci 2024; 25:11994. [PMID: 39596062 PMCID: PMC11593560 DOI: 10.3390/ijms252211994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/02/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
It has been previously established that breast cancer cells exhibit high expression of the monocarboxylate (lactate) transporters (MCT1 and/or MCT4) and carbonic anhydrase IX (CAIX) and form a functional metabolon for proton-coupled lactate export, thereby stabilizing intracellular pH. CD147 is the MCT accessory protein that facilitates the creation of the MCT/CAIX complex. This study describes how the small molecule Beta-Galactose 2C (BGal2C) blocks the physical and functional interaction between CAIX and either MCT1 or MCT4 in Xenopus oocytes, which reduces the rate of proton and lactate flux with an IC50 of ~90 nM. This value is similar to the Ki for inhibition of CAIX activity. Furthermore, it is shown that BGal2C blocks hypoxia-induced lactate transport in MDA-MB-231 and MCF-7 breast cancer cells, both of which express CAIX. As in oocytes, BGal2C interferes with the physical interaction between CAIX and MCTs in both cell types. Finally, X-ray crystallographic studies highlight unique interactions between BGal2C and a CAIX-mimic that are not observed within the CAII active site and which may underlie the strong specificity of BGal2C for CAIX. These studies demonstrate the utility of a novel sulfonamide in interfering with elevated proton and lactate flux, a hallmark of many solid tumors.
Collapse
Affiliation(s)
- Jacob E. Combs
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32611, USA (M.M.); (S.C.F.)
| | - Akilah B. Murray
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32611, USA (M.M.); (S.C.F.)
| | - Carrie L. Lomelino
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32611, USA (M.M.); (S.C.F.)
| | - Mam Y. Mboge
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32611, USA (M.M.); (S.C.F.)
| | - Mario Mietzsch
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32611, USA (M.M.); (S.C.F.)
| | | | - Susan C. Frost
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32611, USA (M.M.); (S.C.F.)
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32611, USA (M.M.); (S.C.F.)
| | - Holger M. Becker
- Institute of Physiological Chemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
3
|
Baroni C, D’Agostino I, Renzi G, Kilbile JT, Tamboli Y, Ferraroni M, Carradori S, Capasso C, Carta F, Supuran CT. Lasamide, a Potent Human Carbonic Anhydrase Inhibitor from the Market: Inhibition Profiling and Crystallographic Studies. ACS Med Chem Lett 2024; 15:1749-1755. [PMID: 39411526 PMCID: PMC11472397 DOI: 10.1021/acsmedchemlett.4c00341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/15/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Lasamide is a synthetic precursor and a contaminant of the diuretic Furosemide manufacturing process and represents a highly valuable building block for fragment-based drug discovery approaches. We assessed the ability of Lasamide to inhibit in vitro the human-expressed Carbonic Anhydrases by means of the stopped-flow technique, and we assessed its binding modes within hCAs II and XII-mimic catalytic clefts by X-ray crystallography. Interestingly, an unprecedented crystal form for the hCA IX mimic H-tag is reported and discussed herein.
Collapse
Affiliation(s)
- Chiara Baroni
- Department
of Chemistry “Ugo Schiff”, University of Florence, 50019, Sesto Fiorentino, Florence, Italy
| | - Ilaria D’Agostino
- Department
of Pharmacy, University of Pisa, 56126, Pisa, Italy
- Department
of Pharmacy, “G. d’Annunzio”
University of Chieti-Pescara, 66100, Chieti, Italy
- NEUROFARBA
Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, 50019, Sesto Fiorentino, Florence, Italy
| | - Gioele Renzi
- NEUROFARBA
Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, 50019, Sesto Fiorentino, Florence, Italy
| | - Jaydeo T. Kilbile
- University
Department of Basic and Applied Sciences (Chemistry), MGM University, Aurangabad-431003, Maharashtra, India
| | - Yasinalli Tamboli
- King Abdullah
International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry
of National Guard-Health Affairs, Riyadh 14811, Saudi Arabia
| | - Marta Ferraroni
- Department
of Chemistry “Ugo Schiff”, University of Florence, 50019, Sesto Fiorentino, Florence, Italy
| | - Simone Carradori
- Department
of Pharmacy, “G. d’Annunzio”
University of Chieti-Pescara, 66100, Chieti, Italy
| | - Clemente Capasso
- Department
of Biology, Agriculture and Food Sciences, National Research Council
(CNR), Institute of Biosciences and Bioresources, 80131 Naples, Italy
| | - Fabrizio Carta
- NEUROFARBA
Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, 50019, Sesto Fiorentino, Florence, Italy
| | - Claudiu T. Supuran
- NEUROFARBA
Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, 50019, Sesto Fiorentino, Florence, Italy
| |
Collapse
|
4
|
Albelwi FF, Nafie MS, Albujuq NR, Hourani W, Aljuhani A, Darwish KM, Tawfik MM, Rezki N, Aouad MR. Design and synthesis of chromene-1,2,3-triazole benzene sulfonamide hybrids as potent carbonic anhydrase-IX inhibitors against prostate cancer. RSC Med Chem 2024; 15:2440-2461. [PMID: 39026656 PMCID: PMC11253856 DOI: 10.1039/d4md00302k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/07/2024] [Indexed: 07/20/2024] Open
Abstract
Considering the promising effects of molecular hybridization on drug discovery in recent years and the ongoing endeavors to develop bioactive scaffolds tethering the 1,2,3-triazole core, the present study sought to investigate whether the 1,2,3-triazole-linked chromene and benzene sulfonamide nucleus could exhibit activity against the human breast cancer cell line MCF-7 and prostate cancer cell line PC-3. To this end, three focused bioactive series of mono- and -bis-1,2,3-triazoles were effectively synthesized via copper-assisted cycloaddition of mono- and/or di-alkyne chromenone derivatives 2a and b and 9 with several sulfa drug azides 4a-d and 6. The resulting molecular derivatives were tested for cytotoxicity against prostate and breast cancer cells. Among the derivatives, 10a, 10c, and 10e exhibited potent cytotoxicity against PC-3 cells with IC50 values of 2.08, 7.57, and 5.52 μM compared to doxorubicin (IC50 = 2.31 μM) with potent inhibition of CA IX with IC50 values of 0.113, 0.134, and 0.214 μM. The most active compound, 10a, was tested for apoptosis-induction; it induced apoptosis by 31.9-fold cell cycle arrest at the G1-phase. Further, the molecular modeling approach highlighted the relevant binding affinity for the top-active compound 10a against CA IX as one of the most prominent PC-3 prostate cancer-associated biotargets.
Collapse
Affiliation(s)
- Fawzia F Albelwi
- Department of Chemistry, Faculty of Science, Taibah University Al-Madinah Al-Munawarah 41477 Saudi Arabia
| | - Mohamed S Nafie
- Department of Chemistry, College of Sciences, University of Sharjah P.O. 27272 Sharjah United Arab Emirates
- Chemistry Department, Faculty of Science, Suez Canal University P.O. 41522 Ismailia Egypt
| | - Nader R Albujuq
- Department of Chemistry, School of Science, The University of Jordan Amman 11942 Jordan
| | - Wafa Hourani
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University Amman 19392 Jordan
| | - Ateyatallah Aljuhani
- Department of Chemistry, Faculty of Science, Taibah University Al-Madinah Al-Munawarah 41477 Saudi Arabia
| | - Khaled M Darwish
- Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University Ismailia 41522 Egypt
| | - Mohamed M Tawfik
- Zoology Department, Faculty of Science, Port Said University Port Said 42526 Egypt
| | - Nadjet Rezki
- Department of Chemistry, Faculty of Science, Taibah University Al-Madinah Al-Munawarah 41477 Saudi Arabia
| | - Mohamed Reda Aouad
- Department of Chemistry, Faculty of Science, Taibah University Al-Madinah Al-Munawarah 41477 Saudi Arabia
| |
Collapse
|
5
|
Ibrahim SA, Al-Mhyawi SR, Atlam FM. New imidazole-2-ones and their 2-thione analogues as anticancer agents and CAIX inhibitors: Synthesis, in silico ADME and molecular modeling studies. Bioorg Chem 2023; 141:106872. [PMID: 37776683 DOI: 10.1016/j.bioorg.2023.106872] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/02/2023] [Accepted: 09/16/2023] [Indexed: 10/02/2023]
Abstract
The present study involves the synthesis of a series of new imidazole-2-ones derivatives and their 2-thione analogs using conventional heating and the environmentally friendly benign technique, the microwave technique. Structure of the compounds was well elucidated by considering the data of both elemental and spectral analyses. The obtained data and theoretical values of the synthesized molecules correlated with the proposed molecular structure. Moreover, all the synthesized compounds were evaluated in vitro for antitumor activity against HCT-116 and HeP2 human cancer cell panels and assessed as selective carbonic anhydrase IX isozyme (CA9/CAIX) inhibitors, thereby providing useful preliminary evidence for drug development. In addition, computational techniques were used to investigate the molecular and electronic characteristics of the investigated organic compounds. The 4b compound exhibited the best quantum chemistry features, as the highest occupied molecular orbital, softness, energy gap, and dipole moment, indicating the highest biological activity. This was supported by the experimental findings. Moreover, the in silico evaluation of drug candidates was also investigated. Thereafter, the anticancer activity of the most reactive candidate was studied via molecular docking to determine the types of interactions between this molecule and CAIX. According to the docking experiments, the 4b molecule generates five hydrogen bond interactions with active amino acid residues, Gln 92, Gln 67, and Thr 200.
Collapse
Affiliation(s)
- Seham A Ibrahim
- Chemistry Department, Faculty of Science, Tanta University, Tanta 31527, Egypt.
| | - Saedah R Al-Mhyawi
- Chemistry Department, College of Science, University of Jeddah, Jeddah 22233, Saudi Arabia
| | - Faten M Atlam
- Chemistry Department, Faculty of Science, Tanta University, Tanta 31527, Egypt.
| |
Collapse
|
6
|
Rai D, Khatua S, Taraphder S. Structure and Dynamics of the Isozymes II and IX of Human Carbonic Anhydrase. ACS OMEGA 2022; 7:31149-31166. [PMID: 36092600 PMCID: PMC9453958 DOI: 10.1021/acsomega.2c03356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Human carbonic anhydrases (HCAs) are responsible for the pH control and sensing in our body and constitute key components in the central pH paradigm connected to cancer therapeutics. However, little or no molecular level studies are available on the pH-dependent stability and functional dynamics of the known isozymes of HCA. The main objective of this Article is to report the first bench-marking study on the structure and dynamics of the two most efficient isozymes, HCA II and IX, at neutral pH using classical molecular dynamics (MD) and constant pH MD (CpHMD) simulations combined with umbrella sampling, transition path sampling, and Markov state models. Starting from the known crystal structures of HCA II and the monomeric catalytic domain of HCA IX (labeled as HCA IX-c), we have generated classical MD and CpHMD trajectories (of length 1 μs each). In all cases, the overall stability, RMSD, and secondary structure segments of the two isozymes are found to be quite similar. Functionally important dynamics of these two enzymes have been probed in terms of active site hydration, coordination of the Zn(II) ion to a transient excess water, and the formation of putative proton transfer paths. The most important difference between the two isozymes is observed for the side-chain fluctuations of His-64 that is expected to shuttle an excess proton out of the active site as a part of the rate-determining intramolecular proton transfer reaction. The relative stability of the stable inward and outward conformations of the His-64 side-chain and the underlying free energy surfaces are found to depend strongly on the isozyme. In each case, a lower free energy barrier is detected between predominantly inward conformations from predominantly outward ones when simulated under constant pH conditions. The kinetic rate constants of interconversion between different free energy basins are found to span 107-108 s-1 with faster conformational transitions predicted at constant pH condition. The estimated rate constants and free energies are expected to validate if the fluctuation of the His-64 side-chain in HCA IX may have a significance similar to that known in the multistep catalytic cycle of HCA II.
Collapse
|
7
|
Kazokaitė-Adomaitienė J, Becker HM, Smirnovienė J, Dubois LJ, Matulis D. Experimental Approaches to Identify Selective Picomolar Inhibitors for Carbonic Anhydrase IX. Curr Med Chem 2021; 28:3361-3384. [PMID: 33138744 DOI: 10.2174/0929867327666201102112841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/14/2020] [Accepted: 08/16/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Carbonic anhydrases (CAs) regulate pH homeostasis via the reversible hydration of CO2, thereby emerging as essential enzymes for many vital functions. Among 12 catalytically active CA isoforms in humans, CA IX has become a relevant therapeutic target because of its role in cancer progression. Only two CA IX inhibitors have entered clinical trials, mostly due to low affinity and selectivity properties. OBJECTIVE The current review presents the design, development, and identification of the selective nano- to picomolar CA IX inhibitors VD11-4-2, VR16-09, and VD12-09. METHODS AND RESULTS Compounds were selected from our database, composed of over 400 benzensulfonamides, synthesized at our laboratory, and tested for their binding to 12 human CAs. Here we discuss the CA CO2 hydratase activity/inhibition assay and several biophysical techniques, such as fluorescent thermal shift assay and isothermal titration calorimetry, highlighting their contribution to the analysis of compound affinity and structure- activity relationships. To obtain sufficient amounts of recombinant CAs for inhibitor screening, several gene cloning and protein purification strategies are presented, including site-directed CA mutants, heterologous CAs from Xenopus oocytes, and native endogenous CAs. The cancer cell-based methods, such as clonogenicity, extracellular acidification, and mass spectrometric gas-analysis are reviewed, confirming nanomolar activities of lead inhibitors in intact cancer cells. CONCLUSIONS Novel CA IX inhibitors are promising derivatives for in vivo explorations. Furthermore, the simultaneous targeting of several proteins involved in proton flux upon tumor acidosis and the disruption of transport metabolons might improve cancer management.
Collapse
Affiliation(s)
- Justina Kazokaitė-Adomaitienė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Holger M Becker
- Institute of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Joana Smirnovienė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Ludwig J Dubois
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Netherlands
| | - Daumantas Matulis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
8
|
The Anticancer Activity for the Bumetanide-Based Analogs via Targeting the Tumor-Associated Membrane-Bound Human Carbonic Anhydrase-IX Enzyme. Pharmaceuticals (Basel) 2020; 13:ph13090252. [PMID: 32961906 PMCID: PMC7558282 DOI: 10.3390/ph13090252] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/05/2020] [Accepted: 09/16/2020] [Indexed: 12/20/2022] Open
Abstract
The membrane-bound human carbonic anhydrase (hCA) IX is widely recognized as a marker of tumor hypoxia and a prognostic factor within several human cancers. Being undetected in most normal tissues, hCA-IX implies the pharmacotherapeutic advent of reduced off-target adverse effects. We assessed the potential anticancer activity of bumetanide-based analogues to inhibit the hCA-IX enzymatic activity and cell proliferation of two solid cancer cell lines, namely kidney carcinoma (A-498) and bladder squamous cell carcinoma (SCaBER). Bumetanide analogues efficiently inhibit the target hCA-IX in low nanomolar activity (IC50 = 4.4–23.7 nM) and have an excellent selectivity profile (SI = 14.5–804) relative to the ubiquitous hCA-II isoform. Additionally, molecular docking studies provided insights into the compounds’ structure–activity relationship and preferential binding of small-sized as well as selective bulky ligands towards the hCA-IX pocket. In particular, 2,4-dihydro-1,2,4-triazole-3-thione derivative 9c displayed pronounced hCA-IX inhibitory activity and impressive antiproliferative activity on oncogenic A-498 kidney carcinoma cells and is being considered as a promising anticancer candidate. Future studies will aim to optimize this compound to fine-tune its anticancer activity as well as explore its potential through in-vivo preclinical studies.
Collapse
|
9
|
Koruza K, Murray AB, Mahon BP, Hopkins JB, Knecht W, McKenna R, Fisher SZ. Biophysical Characterization of Cancer-Related Carbonic Anhydrase IX. Int J Mol Sci 2020; 21:E5277. [PMID: 32722392 PMCID: PMC7432807 DOI: 10.3390/ijms21155277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 12/19/2022] Open
Abstract
Upregulation of carbonic anhydrase IX (CA IX) is associated with several aggressive forms of cancer and promotes metastasis. CA IX is normally constitutively expressed at low levels in selective tissues associated with the gastrointestinal tract, but is significantly upregulated upon hypoxia in cancer. CA IX is a multi-domain protein, consisting of a cytoplasmic region, a single-spanning transmembrane helix, an extracellular CA catalytic domain, and a proteoglycan-like (PG) domain. Considering the important role of CA IX in cancer progression and the presence of the unique PG domain, little information about the PG domain is known. Here, we report biophysical characterization studies to further our knowledge of CA IX. We report the 1.5 Å resolution crystal structure of the wild-type catalytic domain of CA IX as well as small angle X-ray scattering and mass spectrometry of the entire extracellular region. We used matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry to characterize the spontaneous degradation of the CA IX PG domain and confirm that it is only the CA IX catalytic domain that forms crystals. Small angle X-ray scattering analysis of the intact protein indicates that the PG domain is not randomly distributed and adopts a compact distribution of shapes in solution. The observed dynamics of the extracellular domain of CA IX could have physiological relevance, including observed cleavage and shedding of the PG domain.
Collapse
Affiliation(s)
- Katarina Koruza
- Department of Biology & Lund Protein Production Platform, Lund University, Sölvegatan 35, 22362 Lund, Sweden; (K.K.); (W.K.)
| | - A. Briana Murray
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA; (A.B.M.); (R.M.)
| | - Brian P. Mahon
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA;
| | - Jesse B. Hopkins
- The Biophysics Collaborative Access Team (BioCAT), Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA;
| | - Wolfgang Knecht
- Department of Biology & Lund Protein Production Platform, Lund University, Sölvegatan 35, 22362 Lund, Sweden; (K.K.); (W.K.)
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA; (A.B.M.); (R.M.)
| | - S. Zoë Fisher
- Department of Biology & Lund Protein Production Platform, Lund University, Sölvegatan 35, 22362 Lund, Sweden; (K.K.); (W.K.)
- Scientific Activities Division, European Spallation Source ERIC, Tunavägen 24, 22100 Lund, Sweden
| |
Collapse
|
10
|
CAIX forms a transport metabolon with monocarboxylate transporters in human breast cancer cells. Oncogene 2019; 39:1710-1723. [PMID: 31723238 DOI: 10.1038/s41388-019-1098-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/28/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023]
Abstract
Tumor cells rely on glycolysis to meet their elevated demand for energy. Thereby they produce significant amounts of lactate and protons, which are exported via monocarboxylate transporters (MCTs), supporting the formation of an acidic microenvironment. The present study demonstrates that carbonic anhydrase IX (CAIX), one of the major acid/base regulators in cancer cells, forms a protein complex with MCT1 and MCT4 in tissue samples from human breast cancer patients, but not healthy breast tissue. Formation of this transport metabolon requires binding of CAIX to the Ig1 domain of the MCT1/4 chaperon CD147 and is required for CAIX-mediated facilitation of MCT1/4 activity. Application of an antibody, directed against the CD147-Ig1 domain, displaces CAIX from the transporter and suppresses CAIX-mediated facilitation of proton-coupled lactate transport. In cancer cells, this "metabolon disruption" results in a decrease in lactate transport, reduced glycolysis, and ultimately reduced cell proliferation. Taken together, the study shows that carbonic anhydrases form transport metabolons with acid/base transporters in human tumor tissue and that these interactions can be exploited to interfere with tumor metabolism and proliferation.
Collapse
|
11
|
Engineered Carbonic Anhydrase VI-Mimic Enzyme Switched the Structure and Affinities of Inhibitors. Sci Rep 2019; 9:12710. [PMID: 31481705 PMCID: PMC6722136 DOI: 10.1038/s41598-019-49094-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 08/15/2019] [Indexed: 01/25/2023] Open
Abstract
Secretory human carbonic anhydrase VI (CA VI) has emerged as a potential drug target due to its role in pathological states, such as excess acidity-caused dental caries and injuries of gastric epithelium. Currently, there are no available CA VI-selective inhibitors or crystallographic structures of inhibitors bound to CA VI. The present study focuses on the site-directed CA II mutant mimicking the active site of CA VI for inhibitor screening. The interactions between CA VI-mimic and a series of benzenesulfonamides were evaluated by fluorescent thermal shift assay, stopped-flow CO2 hydration assay, isothermal titration calorimetry, and X-ray crystallography. Kinetic parameters showed that A65T, N67Q, F130Y, V134Q, L203T mutations did not influence catalytic properties of CA II, but inhibitor affinities resembled CA VI, exhibiting up to 0.16 nM intrinsic affinity for CA VI-mimic. Structurally, binding site of CA VI-mimic was found to be similar to CA VI. The ligand interactions with mutated side chains observed in three crystallographic structures allowed to rationalize observed variation of binding modes and experimental binding affinities to CA VI. This integrative set of kinetic, thermodynamic, and structural data revealed CA VI-mimic as a useful model to design CA VI-specific inhibitors which could be beneficial for novel therapeutic applications.
Collapse
|
12
|
Thermodynamic, kinetic, and structural parameterization of human carbonic anhydrase interactions toward enhanced inhibitor design. Q Rev Biophys 2019; 51:e10. [PMID: 30912486 DOI: 10.1017/s0033583518000082] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aim of rational drug design is to develop small molecules using a quantitative approach to optimize affinity. This should enhance the development of chemical compounds that would specifically, selectively, reversibly, and with high affinity interact with a target protein. It is not yet possible to develop such compounds using computational (i.e., in silico) approach and instead the lead molecules are discovered in high-throughput screening searches of large compound libraries. The main reason why in silico methods are not capable to deliver is our poor understanding of the compound structure-thermodynamics and structure-kinetics correlations. There is a need for databases of intrinsic binding parameters (e.g., the change upon binding in standard Gibbs energy (ΔGint), enthalpy (ΔHint), entropy (ΔSint), volume (ΔVintr), heat capacity (ΔCp,int), association rate (ka,int), and dissociation rate (kd,int)) between a series of closely related proteins and a chemically diverse, but pharmacophoric group-guided library of compounds together with the co-crystal structures that could help explain the structure-energetics correlations and rationally design novel compounds. Assembly of these data will facilitate attempts to provide correlations and train data for modeling of compound binding. Here, we report large datasets of the intrinsic thermodynamic and kinetic data including over 400 primary sulfonamide compound binding to a family of 12 catalytically active human carbonic anhydrases (CA). Thermodynamic parameters have been determined by the fluorescent thermal shift assay, isothermal titration calorimetry, and by the stopped-flow assay of the inhibition of enzymatic activity. Kinetic measurements were performed using surface plasmon resonance. Intrinsic thermodynamic and kinetic parameters of binding were determined by dissecting the binding-linked protonation reactions of the protein and sulfonamide. The compound structure-thermodynamics and kinetics correlations reported here helped to discover compounds that exhibited picomolar affinities, hour-long residence times, and million-fold selectivities over non-target CA isoforms. Drug-lead compounds are suggested for anticancer target CA IX and CA XII, antiglaucoma CA IV, antiobesity CA VA and CA VB, and other isoforms. Together with 85 X-ray crystallographic structures of 60 compounds bound to six CA isoforms, the database should be of help to continue developing the principles of rational target-based drug design.
Collapse
|
13
|
Murray AB, Quadri M, Li H, McKenna R, Horenstein NA. Synthesis of saccharin-glycoconjugates targeting carbonic anhydrase using a one-pot cyclization/deprotection strategy. Carbohydr Res 2019; 476:65-70. [PMID: 30921738 DOI: 10.1016/j.carres.2019.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/23/2019] [Accepted: 03/02/2019] [Indexed: 11/26/2022]
Abstract
Carbonic anhydrase IX (CA IX) has been identified as a biomarker and drug target for several malignant tumors due to its role in cancer cell growth and proliferation. Simple cyclic sulfonamides, like saccharin (SAC), have shown up to a 60-fold selectivity towards CA IX over other ubiquitous CA isoforms, with greater selectivity obtained applying the "tail-approach" to derivatize SAC with a methylene triazole linker that connected to a "tail" beta glucoside. These modifications of SAC led to an increased selectivity of more than 1000-fold towards CA IX, whereas clinically available CA inhibitors show little to no isoform selectivity. As part of our interest in the development of new CA inhibitors, we found the existing synthetic protocol, which relies on a N-tert-butyl saccharin intermediate, to be problematic in the final deprotection steps. We therefore describe an alternative approach to the synthesis of these compounds featuring a gentle "one pot" deprotection/cyclization as the final synthetic step, and report new galactosyl and glucosyl conjugates with low to mid nM inhibition of CA IX.
Collapse
Affiliation(s)
- Akilah B Murray
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Marta Quadri
- Department of Chemistry, College of Liberal Arts and Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Haoxi Li
- Department of Chemistry, College of Liberal Arts and Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Nicole A Horenstein
- Department of Chemistry, College of Liberal Arts and Sciences, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
14
|
Lomelino CL, Andring JT, McKenna R. Crystallography and Its Impact on Carbonic Anhydrase Research. INTERNATIONAL JOURNAL OF MEDICINAL CHEMISTRY 2018; 2018:9419521. [PMID: 30302289 PMCID: PMC6158936 DOI: 10.1155/2018/9419521] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/16/2018] [Indexed: 12/20/2022]
Abstract
X-ray and neutron crystallography are powerful techniques utilized to study the structures of biomolecules. Visualization of enzymes in complex with substrate/product and the capture of intermediate states can be related to activity to facilitate understanding of the catalytic mechanism. Subsequent analysis of small molecule binding within the enzyme active site provides insight into mechanisms of inhibition, supporting the design of novel inhibitors using a structure-guided approach. The first X-ray crystal structures were determined for small, ubiquitous enzymes such as carbonic anhydrase (CA). CAs are a family of zinc metalloenzymes that catalyze the hydration of CO2, producing HCO3 - and a proton. The CA structure and ping-pong mechanism have been extensively studied and are well understood. Though the function of CA plays an important role in a variety of physiological functions, CA has also been associated with diseases such as glaucoma, edema, epilepsy, obesity, and cancer and is therefore recognized as a drug target. In this review, a brief history of crystallography and its impact on CA research is discussed.
Collapse
Affiliation(s)
- Carrie L. Lomelino
- University of Florida College of Medicine, Department of Biochemistry and Molecular Biology, Gainesville, FL 32610, USA
| | - Jacob T. Andring
- University of Florida College of Medicine, Department of Biochemistry and Molecular Biology, Gainesville, FL 32610, USA
| | - Robert McKenna
- University of Florida College of Medicine, Department of Biochemistry and Molecular Biology, Gainesville, FL 32610, USA
| |
Collapse
|
15
|
Lomelino CL, Murray AB, Supuran CT, McKenna R. Sweet Binders: Carbonic Anhydrase IX in Complex with Sucralose. ACS Med Chem Lett 2018; 9:657-661. [PMID: 30034596 PMCID: PMC6047028 DOI: 10.1021/acsmedchemlett.8b00100] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/10/2018] [Indexed: 02/07/2023] Open
Abstract
Carbonic anhydrase IX (CA IX) expression is important for the regulation of pH in hypoxic tumors and is emerging as a therapeutic target for the treatment of various cancers. Recent studies have demonstrated the selectivity of sucrose, saccharin, and acesulfame potassium for CA IX over other CA isoforms. Reported here is the X-ray crystal structure of CA IX-mimic in complex with sucralose determined to ∼1.5 Å resolution. Furthermore, this structure is compared to the aforementioned sweetener/carbohydrate structural studies in order to determine active site properties of CA IX that promote selective binding. This structural analysis provides a further understanding of CA IX isoform specific inhibition to facilitate the design of new inhibitors and anticancer drugs.
Collapse
Affiliation(s)
- Carrie L. Lomelino
- Department of Biochemistry and Molecular Biology, College
of Medicine, University of Florida, Gainesville, Florida 32610, United States
| | - Akilah B. Murray
- Department of Biochemistry and Molecular Biology, College
of Medicine, University of Florida, Gainesville, Florida 32610, United States
| | - Claudiu T. Supuran
- University of Florence, NEUROFARBA Department,
Sezione di Farmaceutica e Nutraceutica, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Florence), Italy
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, College
of Medicine, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
16
|
Singh S, Lomelino CL, Mboge MY, Frost SC, McKenna R. Cancer Drug Development of Carbonic Anhydrase Inhibitors beyond the Active Site. Molecules 2018; 23:E1045. [PMID: 29710858 PMCID: PMC6099549 DOI: 10.3390/molecules23051045] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 01/29/2023] Open
Abstract
Carbonic anhydrases (CAs) catalyze the reversible hydration of carbon dioxide to produce bicarbonate and a proton. Multiple CA isoforms are implicated in a range of diseases, including cancer. In solid tumors, continuously dividing cells create hypoxic conditions that eventually lead to an acidic microenvironment. Hypoxic tumor cells have different mechanisms in place to regulate and adjust the surrounding microenvironment for survival. These mechanisms include expression of CA isoform IX (CA IX) and XII (CA XII). These enzymes help maintain a physiological intracellular pH while simultaneously contributing to an acidic extracellular pH, leading to tumor cell survival. Expression of CA IX and CA XII has also been shown to promote tumor cell invasion and metastasis. This review discusses the characteristics of CA IX and CA XII, their mechanism of action, and validates their prospective use as anticancer targets. We discuss the current status of small inhibitors that target these isoforms, both classical and non-classical, and their future design in order to obtain isoform-specificity for CA IX and CA XII. Biologics, such as monoclonal antibodies, monoclonal-radionuclide conjugated chimeric antibodies, and antibody-small molecule conjugates are also discussed.
Collapse
Affiliation(s)
- Srishti Singh
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32611, USA.
| | - Carrie L Lomelino
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32611, USA.
| | - Mam Y Mboge
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32611, USA.
| | - Susan C Frost
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32611, USA.
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
17
|
Kovalevsky A, Aggarwal M, Velazquez H, Cuneo MJ, Blakeley MP, Weiss KL, Smith JC, Fisher SZ, McKenna R. "To Be or Not to Be" Protonated: Atomic Details of Human Carbonic Anhydrase-Clinical Drug Complexes by Neutron Crystallography and Simulation. Structure 2018; 26:383-390.e3. [PMID: 29429876 DOI: 10.1016/j.str.2018.01.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/15/2017] [Accepted: 01/10/2018] [Indexed: 10/18/2022]
Abstract
Human carbonic anhydrases (hCAs) play various roles in cells, and have been drug targets for decades. Sequence similarities of hCA isoforms necessitate designing specific inhibitors, which requires detailed structural information for hCA-inhibitor complexes. We present room temperature neutron structures of hCA II in complex with three clinical drugs that provide in-depth analysis of drug binding, including protonation states of the inhibitors, hydration water structure, and direct visualization of hydrogen-bonding networks in the enzyme's active site. All sulfonamide inhibitors studied bind to the Zn metal center in the deprotonated, anionic, form. Other chemical groups of the drugs can remain neutral or be protonated when bound to hCA II. MD simulations have shown that flexible functional groups of the inhibitors may alter their conformations at room temperature and occupy different sub-sites. This study offers insights into the design of specific drugs to target cancer-related hCA isoform IX.
Collapse
Affiliation(s)
- Andrey Kovalevsky
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| | - Mayank Aggarwal
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Hector Velazquez
- Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; Department of Biochemistry and Cellular Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Matthew J Cuneo
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Matthew P Blakeley
- Large Scale Structures Group, Institut Laue-Langevin, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Kevin L Weiss
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jeremy C Smith
- Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; Department of Biochemistry and Cellular Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - S Zoë Fisher
- Scientific Activities Division, Science Directorate, European Spallation Source ERIC, 22100 Lund, Sweden; Department of Biology, Lund University, 35 Sölvegatan, 22362 Lund, Sweden
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
18
|
Murray AB, Lomelino CL, Supuran CT, McKenna R. "Seriously Sweet": Acesulfame K Exhibits Selective Inhibition Using Alternative Binding Modes in Carbonic Anhydrase Isoforms. J Med Chem 2018; 61:1176-1181. [PMID: 29266943 DOI: 10.1021/acs.jmedchem.7b01470] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Human carbonic anhydrase IX (CA IX) is upregulated in neoplastic tissues; as such, it is studied as a drug target for anticancer chemotherapy. Inhibition of CA IX has been shown to be therapeutically favorable in terms of reducing tumor growth. Previously, saccharin, a commonly used artificial sweetener, has been observed to selectively inhibit CA IX over other CA isoforms. In this study, X-ray crystallography showed acesulfame potassium (Ace K) binding directly to the catalytic zinc in CA IX (mimic) and through a bridging water in CA II. This modulation in binding is reflected in the binding constants, with Ace K inhibiting CA IX but not other CA isoforms. Hence, this study establishes the potential of Ace K (an FDA approved food additive) as a lead compound in the design and development of CA IX specific inhibitors.
Collapse
Affiliation(s)
- Akilah B Murray
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida , Gainesville, Florida 32610, United States
| | - Carrie L Lomelino
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida , Gainesville, Florida 32610, United States
| | - Claudiu T Supuran
- Sezione di Farmaceutica e Nutraceutica, NEUROFARBA, University of Florence , Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida , Gainesville, Florida 32610, United States
| |
Collapse
|
19
|
Abstract
INTRODUCTION The enzyme carbonic anhydrase (CA, EC 4.2.1.1) is found in numerous organisms across the tree of life, with seven distinct classes known to date. CA inhibition can be exploited for the treatment of edema, glaucoma, seizures, obesity, cancer and infectious diseases. A myriad of CA inhibitor (CAI) classes and inhibition mechanisms have been identified over the past decade, mainly through structure-based drug design approaches. Five different CA inhibition mechanisms are presently known. Areas covered: Recent advances in structure-based CAI design are reviewed, with periodic table-based organization of inhibitor classes. Expert opinion: Various structure-based drug design studies have led to deep understanding of factors governing tight binding and selectivity for the various isoforms. Carboxylic acids, phenols, polyamines, diols, borols, boronic acids, coumarins and sulfonamides represent successful stories which led to an anti-tumor sulfonamide in Phase I clinical trials (SLC-0111). For many inhibitor classes, no detailed crystallographic data are available. Detailed structural characterization of all CAI classes may lead to further advances in the field with potential therapeutic implications in the management of indications including neuropathic pain, cerebral ischemia, arthritis and tumor imaging.
Collapse
Affiliation(s)
- Claudiu T Supuran
- a Neurofarba Department, Sezione di Scienze Farmaceutiche e Nutraceutiche , Università degli Studi di Firenze , Sesto Fiorentino (Florence) , Italy
| |
Collapse
|
20
|
Mahon BP, Bhatt A, Socorro L, Driscoll JM, Okoh C, Lomelino CL, Mboge MY, Kurian JJ, Tu C, Agbandje-McKenna M, Frost SC, McKenna R. The Structure of Carbonic Anhydrase IX Is Adapted for Low-pH Catalysis. Biochemistry 2016; 55:4642-53. [PMID: 27439028 DOI: 10.1021/acs.biochem.6b00243] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Human carbonic anhydrase IX (hCA IX) expression in many cancers is associated with hypoxic tumors and poor patient outcome. Inhibitors of hCA IX have been used as anticancer agents with some entering Phase I clinical trials. hCA IX is transmembrane protein whose catalytic domain faces the extracellular tumor milieu, which is typically associated with an acidic microenvironment. Here, we show that the catalytic domain of hCA IX (hCA IX-c) exhibits the necessary biochemical and biophysical properties that allow for low pH stability and activity. Furthermore, the unfolding process of hCA IX-c appears to be reversible, and its catalytic efficiency is thought to be correlated directly with its stability between pH 3.0 and 8.0 but not above pH 8.0. To rationalize this, we determined the X-ray crystal structure of hCA IX-c to 1.6 Å resolution. Insights from this study suggest an understanding of hCA IX-c stability and activity in low-pH tumor microenvironments and may be applicable to determining pH-related effects on enzymes.
Collapse
Affiliation(s)
- Brian P Mahon
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine , Gainesville, Florida 32610, United States
| | - Avni Bhatt
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine , Gainesville, Florida 32610, United States
| | - Lilien Socorro
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine , Gainesville, Florida 32610, United States
| | - Jenna M Driscoll
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine , Gainesville, Florida 32610, United States
| | - Cynthia Okoh
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine , Gainesville, Florida 32610, United States
| | - Carrie L Lomelino
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine , Gainesville, Florida 32610, United States
| | - Mam Y Mboge
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine , Gainesville, Florida 32610, United States
| | - Justin J Kurian
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine , Gainesville, Florida 32610, United States
| | - Chingkuang Tu
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine , Gainesville, Florida 32610, United States
| | - Mavis Agbandje-McKenna
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine , Gainesville, Florida 32610, United States
| | - Susan C Frost
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine , Gainesville, Florida 32610, United States
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine , Gainesville, Florida 32610, United States
| |
Collapse
|
21
|
Mahon BP, Lomelino CL, Salguero AL, Driscoll JM, Pinard MA, McKenna R. Observed surface lysine acetylation of human carbonic anhydrase II expressed in Escherichia coli. Protein Sci 2015; 24:1800-7. [PMID: 26266677 DOI: 10.1002/pro.2771] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/10/2015] [Indexed: 11/06/2022]
Abstract
Acetylation of surface lysine residues of proteins has been observed in Escherichia coli (E. coli), an organism that has been extensively utilized for recombinant protein expression. This post-translational modification is shown to be important in various processes such as metabolism, stress-response, transcription, and translation. As such, utilization of E. coli expression systems for protein production may yield non-native acetylation events of surface lysine residues. Here we present the crystal structures of wild-type and a variant of human carbonic anhydrase II (hCA II) that have been expressed in E. coli and exhibit surface lysine acetylation and we speculate on the effect this has on the conformational stability of each enzyme. Both structures were determined to 1.6 Å resolution and show clear electron density for lysine acetylation. The lysine acetylation does not distort the structure and the surface lysine acetylation events most likely do not interfere with the biological interpretation. However, there is a reduction in conformational stability in the hCA II variant compared to wild type (∼ 4°C decrease). This may be due to other lysine acetylation events that have occurred but are not visible in the crystal structure due to intrinsic disorder. Therefore, surface lysine acetylation events may affect overall protein stability and crystallization, and should be considered when using E. coli expression systems.
Collapse
Affiliation(s)
- Brian P Mahon
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida, 32610
| | - Carrie L Lomelino
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida, 32610
| | - Antonieta L Salguero
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida, 32610
| | - Jenna M Driscoll
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida, 32610
| | - Melissa A Pinard
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida, 32610
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida, 32610
| |
Collapse
|
22
|
Mahon BP, Okoh CO, McKenna R. Targeting aggressive cancers with an artificial sweetener: could saccharin be a lead compound in anticancer therapy? Future Oncol 2015; 11:2117-9. [DOI: 10.2217/fon.15.137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- Brian P Mahon
- Department of Biochemistry & Molecular Biology, College of Medicine, University of Florida, 1149 Newell Dr, Gainesville, FL 32610, USA
| | - Cynthia O Okoh
- Department of Biochemistry & Molecular Biology, College of Medicine, University of Florida, 1149 Newell Dr, Gainesville, FL 32610, USA
| | - Robert McKenna
- Department of Biochemistry & Molecular Biology, College of Medicine, University of Florida, 1149 Newell Dr, Gainesville, FL 32610, USA
| |
Collapse
|