1
|
Köroğlu Z, Kizir D, Karaman M, Demir Y, Türkeş C, Beydemir Ş. Protective effects of esculetin against doxorubicin-induced toxicity correlated with oxidative stress in rat liver: In vivo and in silico studies. J Biochem Mol Toxicol 2024; 38:e23702. [PMID: 38567888 DOI: 10.1002/jbt.23702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
Doxorubicin (DOX) is widely used in cancer treatment but the dose-related toxicity of DOX on organs including the liver limit its use. Therefore, there is great interest in combining DOX with natural compounds with antioxidant properties to reduce toxicity and increase drug efficacy. Esculetin is a natural coumarin derivative with biological properties encompassing anti-inflammatory and antioxidant activities. In light of these properties, this study was meticulously crafted to investigate the potential of esculetin in preventing doxorubicin (DOX)-induced hepatotoxicity in Sprague-Dawley rats. The rats were divided into a total of six groups: control group, DOX group (administered DOX at a cumulative dose of 5 mg/kg intraperitoneally every other day for 2 weeks), E50 group (administered 50 mg/kg of esculetin intraperitoneally every day), E100 group (administered 100 mg/kg of esculetin intraperitoneally every day) and combined groups (DOX + E50 and DOX + E100) in which esculetin was administered together with DOX. The treatments, both with DOX alone and in combination with E50, manifested a reduction in catalase (CAT mRNA) levels in comparison to the control group. Notably, the enzymatic activities of superoxide dismutase (SOD), CAT, and glutathione peroxidase (GPx) witnessed significant decreases in the liver of rats treated with DOX. Moreover, DOX treatment induced a statistically significant elevation in malondialdehyde (MDA) levels, coupled with a concurrent decrease in glutathione (GSH) levels. Additionally, molecular docking studies were conducted. However, further studies are needed to confirm the hepatoprotective properties of esculetin and to precisely elucidate its mechanisms of action.
Collapse
Affiliation(s)
- Zeynep Köroğlu
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, Erzurum, Türkiye
| | - Duygu Kizir
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, Erzurum, Türkiye
| | - Melike Karaman
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, Erzurum, Türkiye
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Türkiye
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Türkiye
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- Rectorate, Bilecik Şeyh Edebali University, Bilecik, Türkiye
| |
Collapse
|
2
|
Anjum S, Ali H, Naseer F, Abduh MS, Qadir H, Kakar S, Waheed Y, Ahmad T. Antioxidant activity of Carica papaya & Persea americana fruits against cadmium induced neurotoxicity, nephrotoxicity, and hepatotoxicity in rats with a computational approach. J Trace Elem Med Biol 2024; 81:127324. [PMID: 37944220 DOI: 10.1016/j.jtemb.2023.127324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Cadmium is widely reported to interfere with the proper functioning of cells by disrupting cellular redox balance, causing apoptosis, and leading to hepatocellular damage, neurotoxicity, pulmonary edema, cancer, and cardiac and neurodegenerative diseases. Treatment of Cd toxicity with drugs brings undesirable side effects, making it necessary to remove Cd from the body safely without harmful effects. OBJECTIVE This study aimed to determine how Cd causing malfunctioning of cells could be treated with antioxidant-rich avocado and papaya fruit juices. This work fixated on elucidating and comparing the effects of avocado and papaya fruit juice on Cd-dependent impairment in memory and spatial learning. In addition, various markers of tissue damage, such as the concentration of biomarkers in liver and kidney tissue, the expression of antioxidant enzymes and Cd-induced lipid peroxidation, were analyzed. METHODOLOGY in silico studies of the phytochemical constituents of avocado and papaya (ligands) were docked against antioxidant enzymes Catalase (CAT), glutathione peroxidase (GPx) and superoxide dismutase (SOD) as macromolecules showed strong hydrogen binding with significant binding capacities. To develop the Cd in vivo model, rats were administered CdCl2 (200 ppm) in drinking water for 7 weeks. After induction of Cd toxicity, rats were post-treated with avocado and papaya (10% w/v each) in a standard diet. After post-treatment, memory and learning were assessed using the Morris water maze behavioural test. Biochemical tests for liver and kidney biomarkers were monitored. To determine the level of ROS, lipid peroxidation was determined by Malondialdehyde (MDA) assay. Gene expression of SOD, CAT and GPx were determined via qRT-PCR. RESULTS This study demonstrated that Cd accumulation in the liver, kidney and hippocampal tissues was reduced after treatment with avocado and papaya. SOD, CAT and GPX gene expression were upregulated after avocado and papaya juice treatment. Moreover, a comparative analysis between avocado and papaya fruit juices clarified that papaya has more active potential for improving memory and learning, upregulating the expression of antioxidant enzymes, and reducing lipid peroxidation in the liver, kidney, and hippocampus. CONCLUSION This study suggests that a diet containing papaya and avocado can help treat the lethal effects caused by Cd. Because their active constituents can improve health at the cellular and molecular levels.
Collapse
Affiliation(s)
- Sadia Anjum
- Department of Biology, University of Hail, Hail, Saudi Arabia
| | - Hamile Ali
- Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Faiza Naseer
- Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan; Shifa College of Pharmaceutical Sciences, Shifa Tameer e Millat University, Islamabad, Pakistan.
| | - Maisa S Abduh
- Immune Responses in Different Diseases Research Group, Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdul-Aziz University, Jeddah 21589, Saudi Arabia
| | - Halima Qadir
- Shifa College of Pharmaceutical Sciences, Shifa Tameer e Millat University, Islamabad, Pakistan
| | - Salik Kakar
- Pak-Austria Fachhochschule Institute of Applied Sciences and Technology, Haripur, KPK, Pakistan
| | - Yasir Waheed
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos 1401, Lebanon; Office of Research, Innovation, and Commercialization (ORIC), Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
| | - Tahir Ahmad
- Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan.
| |
Collapse
|
3
|
Maia LB, Maiti BK, Moura I, Moura JJG. Selenium-More than Just a Fortuitous Sulfur Substitute in Redox Biology. Molecules 2023; 29:120. [PMID: 38202704 PMCID: PMC10779653 DOI: 10.3390/molecules29010120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Living organisms use selenium mainly in the form of selenocysteine in the active site of oxidoreductases. Here, selenium's unique chemistry is believed to modulate the reaction mechanism and enhance the catalytic efficiency of specific enzymes in ways not achievable with a sulfur-containing cysteine. However, despite the fact that selenium/sulfur have different physicochemical properties, several selenoproteins have fully functional cysteine-containing homologues and some organisms do not use selenocysteine at all. In this review, selected selenocysteine-containing proteins will be discussed to showcase both situations: (i) selenium as an obligatory element for the protein's physiological function, and (ii) selenium presenting no clear advantage over sulfur (functional proteins with either selenium or sulfur). Selenium's physiological roles in antioxidant defence (to maintain cellular redox status/hinder oxidative stress), hormone metabolism, DNA synthesis, and repair (maintain genetic stability) will be also highlighted, as well as selenium's role in human health. Formate dehydrogenases, hydrogenases, glutathione peroxidases, thioredoxin reductases, and iodothyronine deiodinases will be herein featured.
Collapse
Affiliation(s)
- Luisa B. Maia
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology | NOVA FCT, 2829-516 Caparica, Portugal; (I.M.); (J.J.G.M.)
| | - Biplab K. Maiti
- Department of Chemistry, School of Sciences, Cluster University of Jammu, Canal Road, Jammu 180001, India
| | - Isabel Moura
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology | NOVA FCT, 2829-516 Caparica, Portugal; (I.M.); (J.J.G.M.)
| | - José J. G. Moura
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology | NOVA FCT, 2829-516 Caparica, Portugal; (I.M.); (J.J.G.M.)
| |
Collapse
|
4
|
Dincer B, Cinar I, Erol HS, Demirci B, Terzi F. Gossypin mitigates oxidative damage by downregulating the molecular signaling pathway in oleic acid-induced acute lung injury. J Mol Recognit 2023; 36:e3058. [PMID: 37696682 DOI: 10.1002/jmr.3058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/16/2023] [Accepted: 08/29/2023] [Indexed: 09/13/2023]
Abstract
One of the leading causes of acute lung injury, which is linked to a high death rate, is pulmonary fat embolism. Increases in proinflammatory cytokines and the production of free radicals are related to the pathophysiology of acute lung injury. Antioxidants that scavenge free radicals play a protective role against acute lung injury. Gossypin has been proven to have antioxidant, antimicrobial, and anti-inflammatory properties. In this study, we compared the role of Gossypin with the therapeutically used drug Dexamethasone in the acute lung injury model caused by oleic acid in rats. Thirty rats were divided into five groups; Sham, Oleic acid model, Oleic acid+Dexamethasone (0.1 mg/kg), Oleic acid+Gossypin (10 and 20 mg/kg). Two hours after pretreatment with Dexamethasone or Gossypin, the acute lung injury model was created by injecting 1 g/kg oleic acid into the femoral vein. Three hours following the oleic acid injection, rats were decapitated. Lung tissues were extracted for histological, immunohistochemical, biochemical, PCR, and SEM imaging assessment. The oleic acid injection caused an increase in lipid peroxidation and catalase activity, pathological changes in lung tissue, decreased superoxide dismutase activity, and glutathione level, and increased TNF-α, IL-1β, IL-6, and IL-8 expression. However, these changes were attenuated after treatment with Gossypin and Dexamethasone. By reducing the expression of proinflammatory cytokines and attenuating oxidative stress, Gossypin pretreatment provides a new target that is equally effective as dexamethasone in the treatment of oleic acid-induced acute lung injury.
Collapse
Affiliation(s)
- Busra Dincer
- Department of Pharmacology, Faculty of Pharmacy, Ondokuz Mayis University, Samsun, Turkey
| | - Irfan Cinar
- Department of Pharmacology, Faculty of Medicine, Kastamonu University, Kastamonu, Turkey
| | - Huseyin Serkan Erol
- Department of Biochemistry, Faculty of Veterinary Medicine, Kastamonu University, Kastamonu, Turkey
| | - Beste Demirci
- Department of Anatomy, Faculty of Veterinary Medicine, Kastamonu University, Kastamonu, Turkey
| | - Funda Terzi
- Department of Pathology, Faculty of Veterinary Medicine, Kastamonu University, Kastamonu, Turkey
| |
Collapse
|
5
|
Guo Z, Sun J, Lv X, Zhang T, Yao H, Wu W, Xing Z, Kong N, Wang L, Song L. The ferroptosis in haemocytes of Pacific oyster Crassostrea gigas upon erastin treatment. FISH & SHELLFISH IMMUNOLOGY 2023; 133:108556. [PMID: 36669600 DOI: 10.1016/j.fsi.2023.108556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
Ferroptosis is an iron and oxidative dependent form of cell death usually mediated by redox related molecules in vertebrates. In the present study, a glutathione peroxidase 4 (GPX4) and a solute carrier family 7 member 11 (SLC7A11, xCT) homologues were identified from the oyster Crassostrea gigas (designed as CgGPX4 and CgxCT), which contained a GSHPx domain and an AA_permease domain, respectively. The mRNA transcripts of CgGPX4 and CgxCT were expressed in all the examined tissues, including gill, gonad, adductor muscle, labial palp, mantle, hepatopancreas and haemocytes, with the highest expression in haemocytes. After erastin treatment, the rate of cell malformation and cell death increased significantly in haemocytes, and the mitochondrial atrophy, crest loss and fracture were observed in haemocytes. While the amount of Fe2+ and Malondialdehyde (MDA) increased significantly, the mRNA expressions of CgGPX4, CgxCT and voltage-dependent anion channel 2 (CgVDAC2) in haemocytes decreased significantly after erastin treatment. These results indicated that erastin was able to induce the ferroptosis of oyster haemocytes.
Collapse
Affiliation(s)
- Zhicheng Guo
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Xiaoqian Lv
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Tong Zhang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Hongsheng Yao
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Wei Wu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Zhen Xing
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Ning Kong
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| |
Collapse
|
6
|
Yang Y, Wang X, Zhang H, Li J, Chen J, Yu M, Li G, Zhang R, Ge M. Oxidative stress and ferroptosis involved in 2-ethylhexyl diphenyl phosphate -induced hepatotoxicity in chicken. Chem Biol Interact 2022; 368:110216. [DOI: 10.1016/j.cbi.2022.110216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/26/2022] [Accepted: 10/06/2022] [Indexed: 11/24/2022]
|
7
|
Furuita K, Inomata K, Sugiki T, Kobayashi N, Fujiwara T, Kojima C. 1H, 13C, and 15N resonance assignments of human glutathione peroxidase 4. BIOMOLECULAR NMR ASSIGNMENTS 2022; 16:267-271. [PMID: 35616778 DOI: 10.1007/s12104-022-10090-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Glutathione peroxidase 4 (GPx4) behaves as an antioxidant enzyme capable of directly reducing peroxidized phospholipids within cell membranes. Recently, GPx4 has attracted attention as a target molecule for cancer therapy because it induces the immortalization of cancer cells suppressing ferroptosis. In this study, to analyze the function and structure of GPx4 by solution NMR, we performed resonance assignments of GPx4 and assigned almost all backbone 1H, 13C, and 15N resonances and most of the side chain 1H and 13C resonances. Using these assignments, the secondary structure of GPx4 was analyzed by the TALOS + program. GPx4 has six helices and seven strands. Then, the backbone dynamics were examined by the {1H}-15N heteronuclear NOE experiment. GPx4 was found to be rigid except for a short loop region. These results will provide basis for functional analysis and the first solution structure determination of GPx4.
Collapse
Affiliation(s)
- Kyoko Furuita
- Institute for Protein Research, Osaka University, Suita, Japan
| | - Kouki Inomata
- Graduate School of Engineering Science, Yokohama National University, Yokohama, Japan
| | | | | | | | - Chojiro Kojima
- Institute for Protein Research, Osaka University, Suita, Japan.
- Graduate School of Engineering Science, Yokohama National University, Yokohama, Japan.
| |
Collapse
|
8
|
Abdelrazek F, Salama DA, Alharthi A, Asiri SA, Khodeer DM, Qarmush MM, Mobasher MA, Ibrahim M. Glycine Betaine Relieves Lead-Induced Hepatic and Renal Toxicity in Albino Rats. TOXICS 2022; 10:271. [PMID: 35622684 PMCID: PMC9147203 DOI: 10.3390/toxics10050271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 12/07/2022]
Abstract
Lead (Pb) is a widespread and nondegradable environmental pollutant and affects several organs through oxidative mechanisms. This study was conducted to investigate the antioxidant protective effect of glycine betaine (GB) against Pb-induced renal and hepatic injury. Male albino rats (n = 45) were divided into three groups: G1 untreated control, G2 Pb-acetate (50 mg/kg/day), and G3 Pb-acetate (50 mg/kg/day) plus GB (250 mg/kg/day) administered for 6 weeks. For G3, Pb-acetate was administered first and followed by GB at least 4 h after. Pb-acetate treatment (G2) resulted in a significant decrease in renal function, including elevated creatinine and urea levels by 17.4% and 23.7%, respectively, and nonsignificant changes in serum uric acid levels. Serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphates (ALP) activities were significantly increased with Pb treatment by 37.6%, 59.3%, and 55.1%, respectively. Lipid peroxidation level was significantly increased by 7.8 times after 6 weeks of Pb-acetate treatment. The level of reduced glutathione (GSH-R) significantly declined after Pb-acetate treatment. Pb-acetate treatment also reduced the activities of superoxide dismutase (SOD), glutathione-S-transferase (GST), and glutathione peroxidase (GSH-PX) by 74.1%, 85.0%, and 40.8%, respectively. Treatment of Pb-intoxicated rats with GB resulted in a significant reduction in creatinine, urea, ALT, AST, and lipid peroxidation, as well as a significant increase in the level of GSH-R and in the activities of ALP, SOD, GST, and GSH-PX. The molecular interaction between GB and GSH-PX indicated that the activation of GSH-PX in Pb-intoxicated rats was not the result of GB binding to the catalytic site of GSH-PX. The affinity of GB to bind to the catalytic site of GSH-PX is lower than that of H2O2. Thus, GB significantly mitigates Pb-induced renal and liver injury through the activation of antioxidant enzymes and the prevention of Pb-induced oxidative damage in the kidney and liver.
Collapse
Affiliation(s)
- Farid Abdelrazek
- Biochemistry Department, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt; (F.A.); (D.A.S.)
| | - Dawlat A. Salama
- Biochemistry Department, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt; (F.A.); (D.A.S.)
| | - Afaf Alharthi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia;
| | - Saeed A. Asiri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia;
| | - Dina M. Khodeer
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Moath M. Qarmush
- Urology Department, Prince Sultan Military Medical City, Riyadh 12233, Saudi Arabia;
| | - Maysa A. Mobasher
- Department of Pathology, Biochemistry Division, College of Medicine, Jouf University, Sakaka 41412, Saudi Arabia;
| | - Mervat Ibrahim
- Biochemistry Department, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt; (F.A.); (D.A.S.)
| |
Collapse
|
9
|
The Selenoprotein Glutathione Peroxidase 4: From Molecular Mechanisms to Novel Therapeutic Opportunities. Biomedicines 2022; 10:biomedicines10040891. [PMID: 35453641 PMCID: PMC9027222 DOI: 10.3390/biomedicines10040891] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/31/2022] [Accepted: 04/08/2022] [Indexed: 12/25/2022] Open
Abstract
The selenoprotein glutathione peroxidase 4 (GPX4) is one of the main antioxidant mediators in the human body. Its central function involves the reduction of complex hydroperoxides into their respective alcohols often using reduced Glutathione (GSH) as a reducing agent. GPX4 has become a hotspot therapeutic target in biomedical research following its characterization as a chief regulator of ferroptosis, and its subsequent recognition as a specific pharmacological target for the treatment of an extensive variety of human diseases including cancers and neurodegenerative disorders. Several recent studies have provided insights into how GPX4 is distinguished from the rest of the glutathione peroxidase family, the unique biochemical properties of GPX4, how GPX4 is related to lipid peroxidation and ferroptosis, and how the enzyme may be modulated as a potential therapeutic target. This current report aims to review the literature underlying all these insights and present an up-to-date perspective on the current understanding of GPX4 as a potential therapeutic target.
Collapse
|
10
|
Zhang F, Richter G, Bourgeois B, Spreitzer E, Moser A, Keilbach A, Kotnik P, Madl T. A General Small-Angle X-ray Scattering-Based Screening Protocol for Studying Physical Stability of Protein Formulations. Pharmaceutics 2021; 14:69. [PMID: 35056965 PMCID: PMC8778066 DOI: 10.3390/pharmaceutics14010069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/16/2022] Open
Abstract
A fundamental step in developing a protein drug is the selection of a stable storage formulation that ensures efficacy of the drug and inhibits physiochemical degradation or aggregation. Here, we designed and evaluated a general workflow for screening of protein formulations based on small-angle X-ray scattering (SAXS). Our SAXS pipeline combines automated sample handling, temperature control, and fast data analysis and provides protein particle interaction information. SAXS, together with different methods including turbidity analysis, dynamic light scattering (DLS), and SDS-PAGE measurements, were used to obtain different parameters to provide high throughput screenings. Using a set of model proteins and biopharmaceuticals, we show that SAXS is complementary to dynamic light scattering (DLS), which is widely used in biopharmaceutical research and industry. We found that, compared to DLS, SAXS can provide a more sensitive measure for protein particle interactions, such as protein aggregation and repulsion. Moreover, we show that SAXS is compatible with a broader range of buffers, excipients, and protein concentrations and that in situ SAXS provides a sensitive measure for long-term protein stability. This workflow can enable future high-throughput analysis of proteins and biopharmaceuticals and can be integrated with well-established complementary physicochemical analysis pipelines in (biopharmaceutical) research and industry.
Collapse
Affiliation(s)
- Fangrong Zhang
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China;
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (G.R.); (B.B.); (E.S.)
| | - Gesa Richter
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (G.R.); (B.B.); (E.S.)
| | - Benjamin Bourgeois
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (G.R.); (B.B.); (E.S.)
| | - Emil Spreitzer
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (G.R.); (B.B.); (E.S.)
| | - Armin Moser
- Anton Paar GmbH, 8054 Graz, Austria; (A.M.); (A.K.); (P.K.)
| | | | - Petra Kotnik
- Anton Paar GmbH, 8054 Graz, Austria; (A.M.); (A.K.); (P.K.)
| | - Tobias Madl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (G.R.); (B.B.); (E.S.)
- BioTechMed-Graz, 8010 Graz, Austria
| |
Collapse
|
11
|
Characterization of a patient-derived variant of GPX4 for precision therapy. Nat Chem Biol 2021; 18:91-100. [PMID: 34931062 PMCID: PMC8712418 DOI: 10.1038/s41589-021-00915-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 10/01/2021] [Indexed: 01/20/2023]
Abstract
GPX4, as the only enzyme in mammals capable of reducing esterified phospholipid hydroperoxides within a cellular context, protects cells from ferroptosis. We identified a homozygous point mutation in the GPX4 gene, resulting in an R152H coding mutation, in three patients with Sedaghatian-type spondylometaphyseal dysplasia (SSMD). With structure-based analyses and cell models, including patient fibroblasts, of this variant, we found that the missense variant destabilized a critical loop, which disrupted the active site and caused a substantial loss of enzymatic function. We also found that the R152H variant of GPX4 is less susceptible to degradation, revealing the degradation mechanism of the GPX4 protein. Proof-of-concept therapeutic treatments, which overcome the impaired R152H GPX4 activity, including selenium supplementation, selective antioxidants, and a deuterated PUFA were identified. In addition to revealing a general approach to investigating rare genetic diseases, we demonstrate the biochemical foundations for therapeutic strategies targeting GPX4.
Collapse
|
12
|
Domingues M, Casaril AM, Smaniotto TÂ, Birmann PT, Lourenço DDA, Bampi SR, Vieira B, Lenardão EJ, Savegnago L. Selanzylimidazopyridine abolishes inflammation- and stress-induced depressive-like behaviors and decreases oxidonitrosative stress in the prefrontal cortex and hippocampus of mice. Eur J Pharmacol 2021; 914:174570. [PMID: 34653379 DOI: 10.1016/j.ejphar.2021.174570] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 09/15/2021] [Accepted: 10/11/2021] [Indexed: 11/17/2022]
Abstract
The 3-[(4-methoxyphenyl)selanyl]-2-phenylimidazo[1,2-a] pyridine (MPI), a novel organic selenium compound, has been receiving increased attention due to its antioxidant effects and its ability to protect against depression-like behaviours. However, it remains elusive whether MPI is able to reverse depressive-like symptoms and biochemical alterations in mice. In the present work, we explored the ability of MPI (10 mg/kg, i.g.) to reverse inflammation- and stress-induced depression-like behaviours in mice injected with tumour necrosis factor (TNF-α) or submitted to acute restraint stress. Depression-like behaviours were evaluated by the tail suspension and splash test and the open field test was used to evaluate the locomotor activity of mice. The prefrontal cortex and hippocampus of mice were used for the evaluation of parameters of oxidonitrosative stress. Here, we showed that a single administration of MPI abolished the depressive-like behaviours induced by TNF-α and acute restraint stress without having an effect per se. The oxidative and nitrosative stress presented in mice with depression-like behaviours were also decreased by MPI in the prefrontal cortex and hippocampus. Our findings suggest that MPI presents antidepressant-like activity which is associated with the biochemical regulation of oxidative stress in the prefrontal cortex and hippocampus of mice, arising as a promising strategy for the management of depressive symptoms.
Collapse
Affiliation(s)
- Micaela Domingues
- Technological Development Center, Division of Biotechnology, Neurobiotechology Research Group, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Angela Maria Casaril
- Technological Development Center, Division of Biotechnology, Neurobiotechology Research Group, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Thiago Ângelo Smaniotto
- Technological Development Center, Division of Biotechnology, Neurobiotechology Research Group, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Paloma Taborda Birmann
- Technological Development Center, Division of Biotechnology, Neurobiotechology Research Group, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Darling de Andrade Lourenço
- Technological Development Center, Division of Biotechnology, Neurobiotechology Research Group, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Suely Ribeiro Bampi
- Technological Development Center, Division of Biotechnology, Neurobiotechology Research Group, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Beatriz Vieira
- Center of Chemical, Pharmaceutical and Food Sciences, Laboratory of Clean Organic Synthesis, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Eder João Lenardão
- Center of Chemical, Pharmaceutical and Food Sciences, Laboratory of Clean Organic Synthesis, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Lucielli Savegnago
- Technological Development Center, Division of Biotechnology, Neurobiotechology Research Group, Federal University of Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
13
|
Labrecque CL, Fuglestad B. Electrostatic Drivers of GPx4 Interactions with Membrane, Lipids, and DNA. Biochemistry 2021; 60:2761-2772. [PMID: 34492183 DOI: 10.1021/acs.biochem.1c00492] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Glutathione peroxidase 4 (GPx4) serves as the only enzyme that protects membranes through the reduction of lipid hydroperoxides, preventing membrane oxidative damage and cell death through ferroptosis. Recently, GPx4 has gained attention as a therapeutic target for cancer through inhibition and as a target for inflammatory diseases through activation. In addition, GPx4 isoforms perform several distinct moonlighting functions including cysteine cross-linking of protamines during sperm cell chromatin remodeling, a function for which molecular and structural details are undefined. Despite the importance in biology, disease, and potential for drug development, little is known about GPx4 functional interactions at high resolution. This study presents the first NMR assignments of GPx4, and the electrostatic interaction of GPx4 with the membrane is characterized. Mutagenesis reveals the cationic patch residues that are key to membrane binding and stabilization. The cationic patch is observed to be important in binding headgroups of highly anionic cardiolipin. A novel lipid binding site is observed adjacent to the catalytic site and may enable protection of lipid-headgroups from oxidative damage. Arachidonic acid is also found to engage with GPx4, while cholesterol did not display any interaction. The cationic patch residues were also found to enable DNA binding, the first observation of this interaction. Electrostatic DNA binding explains a mechanism for the nuclear isoform of GPx4 to target DNA-bound protamines and to potentially reduce oxidatively damaged DNA. Together, these results highlight the importance of electrostatics in the function of GPx4 and illuminate how the multifunctional enzyme is able to fill multiple biological roles.
Collapse
Affiliation(s)
- Courtney L Labrecque
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Brian Fuglestad
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States.,Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| |
Collapse
|
14
|
Peng C, Fu X, Wang K, Chen L, Luo B, Huang N, Luo Y, Chen W. Dauricine alleviated secondary brain injury after intracerebral hemorrhage by upregulating GPX4 expression and inhibiting ferroptosis of nerve cells. Eur J Pharmacol 2021; 914:174461. [PMID: 34469757 DOI: 10.1016/j.ejphar.2021.174461] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 01/18/2023]
Abstract
Intracerebral hemorrhage (ICH) is a severe stroke subtype with high disability and mortality, and no effective treatment is available. Previous research on intracerebral hemorrhage secondary brain injury drugs mainly targeted at cell apoptosis, inflammation and oxidative stress, but did not achieve good effects. In recent years, ferroptosis has become a focus concern in neurological diseases. Ferroptosis is a new type of programmed cell death caused by iron-dependent accumulation of lipid peroxides, in which glutathione peroxidase 4 (GPX4) is a key protein affecting ferroptosis. In this study, we used the STRING protein database to predict the proteins that may be co-expressed with GPX4, and studied the ability of Dauricine(Dau) to up-regulate the expression of GPX4 against ferroptosis and neuroprotection after intracerebral hemorrhage in normal cells in vitro, glutathione peroxidase 4 (GPX4) knockdown cells and collagenase injection in vivo in mouse models of intracerebral hemorrhage. The results showed that glutathione reductase (GSR) was a possible co-expression protein with GPX4. Dau could up-regulate the expression of glutathione peroxidase 4 (GPX4) in intracerebral hemorrhage(ICH) model, normal cells and GPX4 knockdown cells in vitro, and simultaneously up-regulate the expression of GSR in ICH mice. Dau could also reduce the levels of iron and lipid peroxidation, and have a neuroprotective effect on intracerebral hemorrhage(ICH) mice. It was tesified that Dauricine(Dau) could inhibit ferroptosis of nerve cells and alleviate brain injury after intracerebral hemorrhage by upregulating glutathione peroxidase 4 (GPX4) and glutathione reductase (GSR) co-expression. Therefore, Dau may be an effective drug for inhibiting ferroptosis and treating intracerebral hemorrhage.
Collapse
Affiliation(s)
- Chiwei Peng
- Clinical Research Center for Neurological Disease of Guangxi Province, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China; School of Pharmacy, Guilin Medical University, Guilin, 541001, China
| | - Xiang Fu
- Department of Pharmacy, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Kaixuan Wang
- Clinical Research Center for Neurological Disease of Guangxi Province, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China; School of Pharmacy, Guilin Medical University, Guilin, 541001, China
| | - Ling Chen
- Clinical Research Center for Neurological Disease of Guangxi Province, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China; School of Pharmacy, Guilin Medical University, Guilin, 541001, China
| | - Beijiao Luo
- Clinical Research Center for Neurological Disease of Guangxi Province, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China; School of Pharmacy, Guilin Medical University, Guilin, 541001, China
| | - Ni Huang
- Clinical Research Center for Neurological Disease of Guangxi Province, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China; School of Pharmacy, Guilin Medical University, Guilin, 541001, China
| | - Yunfeng Luo
- Jiangxi Research Institute of Ophthalmology and Visual Sciences, Affiliated Eye Hospital of Nanchang University, 330006, Jiangxi, China.
| | - Wei Chen
- Clinical Research Center for Neurological Disease of Guangxi Province, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China; Department of Pharmacy, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China.
| |
Collapse
|
15
|
Díaz M, Mesa-Herrera F, Marín R. DHA and Its Elaborated Modulation of Antioxidant Defenses of the Brain: Implications in Aging and AD Neurodegeneration. Antioxidants (Basel) 2021; 10:antiox10060907. [PMID: 34205196 PMCID: PMC8228037 DOI: 10.3390/antiox10060907] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023] Open
Abstract
DHA (docosahexaenoic acid) is perhaps the most pleiotropic molecule in nerve cell biology. This long-chain highly unsaturated fatty acid has evolved to accomplish essential functions ranging from structural components allowing fast events in nerve cell membrane physiology to regulation of neurogenesis and synaptic function. Strikingly, the plethora of DHA effects has to take place within the hostile pro-oxidant environment of the brain parenchyma, which might suggest a molecular suicide. In order to circumvent this paradox, different molecular strategies have evolved during the evolution of brain cells to preserve DHA and to minimize the deleterious effects of its oxidation. In this context, DHA has emerged as a member of the “indirect antioxidants” family, the redox effects of which are not due to direct redox interactions with reactive species, but to modulation of gene expression within thioredoxin and glutathione antioxidant systems and related pathways. Weakening or deregulation of these self-protecting defenses orchestrated by DHA is associated with normal aging but also, more worryingly, with the development of neurodegenerative diseases. In the present review, we elaborate on the essential functions of DHA in the brain, including its role as indirect antioxidant, the selenium connection for proper antioxidant function and their changes during normal aging and in Alzheimer’s disease.
Collapse
Affiliation(s)
- Mario Díaz
- Laboratory of Membrane Physiology and Biophysics, Department of Animal Biology, School of Biology, Universidad de La Laguna, 38206 Tenerife, Spain;
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSP), Universidad de La Laguna, 38206 Tenerife, Spain
- Unidad Asociada ULL-CSIC “Fisiología y Biofísica de la Membrana Celular en Enfermedades Neurodegenerativas y Tumorales”, 38206 Tenerife, Spain;
- Correspondence:
| | - Fátima Mesa-Herrera
- Laboratory of Membrane Physiology and Biophysics, Department of Animal Biology, School of Biology, Universidad de La Laguna, 38206 Tenerife, Spain;
| | - Raquel Marín
- Unidad Asociada ULL-CSIC “Fisiología y Biofísica de la Membrana Celular en Enfermedades Neurodegenerativas y Tumorales”, 38206 Tenerife, Spain;
- Laboratory of Cellular Neurobiology, Department of Basic Medical Sciences, School of Medicine, Universidad de La Laguna, 38206 Tenerife, Spain
| |
Collapse
|
16
|
Moosmayer D, Hilpmann A, Hoffmann J, Schnirch L, Zimmermann K, Badock V, Furst L, Eaton JK, Viswanathan VS, Schreiber SL, Gradl S, Hillig RC. Crystal structures of the selenoprotein glutathione peroxidase 4 in its apo form and in complex with the covalently bound inhibitor ML162. Acta Crystallogr D Struct Biol 2021; 77:237-248. [PMID: 33559612 PMCID: PMC7869902 DOI: 10.1107/s2059798320016125] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/11/2020] [Indexed: 01/04/2023] Open
Abstract
Wild-type human glutathione peroxidase 4 (GPX4) was co-expressed with SBP2 (selenocysteine insertion sequence-binding protein 2) in human HEK cells to achieve efficient production of this selenocysteine-containing enzyme on a preparative scale for structural biology. The protein was purified and crystallized, and the crystal structure of the wild-type form of GPX4 was determined at 1.0 Å resolution. The overall fold and the active site are conserved compared with previously determined crystal structures of mutated forms of GPX4. A mass-spectrometry-based approach was developed to monitor the reaction of the active-site selenocysteine Sec46 with covalent inhibitors. This, together with the introduction of a surface mutant (Cys66Ser), enabled the crystal structure determination of GPX4 in complex with the covalent inhibitor ML162 [(S)-enantiomer]. The mass-spectrometry-based approach described here opens the path to further co-complex crystal structures of this potential cancer drug target in complex with covalent inhibitors.
Collapse
Affiliation(s)
- Dieter Moosmayer
- Research and Development, Pharmaceuticals, Bayer AG, 13353 Berlin, Germany
| | - André Hilpmann
- Research and Development, Pharmaceuticals, Bayer AG, 13353 Berlin, Germany
| | - Jutta Hoffmann
- Research and Development, Pharmaceuticals, Bayer AG, 13353 Berlin, Germany
| | - Lennart Schnirch
- Research and Development, Pharmaceuticals, Bayer AG, 13353 Berlin, Germany
| | - Katja Zimmermann
- Research and Development, Pharmaceuticals, Bayer AG, 13353 Berlin, Germany
| | - Volker Badock
- Research and Development, Pharmaceuticals, Bayer AG, 13353 Berlin, Germany
| | - Laura Furst
- Broad Institute, Cambridge, Massachusetts, USA
| | | | | | | | - Stefan Gradl
- Research and Development, Pharmaceuticals, Bayer AG, 13353 Berlin, Germany
| | - Roman C. Hillig
- Research and Development, Pharmaceuticals, Bayer AG, 13353 Berlin, Germany
| |
Collapse
|
17
|
Structural and functional characterization of the glutathione peroxidase-like thioredoxin peroxidase from the fungus Trichoderma reesei. Int J Biol Macromol 2020; 167:93-100. [PMID: 33259843 DOI: 10.1016/j.ijbiomac.2020.11.179] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/13/2020] [Accepted: 11/25/2020] [Indexed: 11/22/2022]
Abstract
Glutathione peroxidases (GPx) are a family of enzymes with the ability to reduce organic and inorganic hydroperoxides to the corresponding alcohols using glutathione or thioredoxin as an electron donor. Here, we report the functional and structural characterization of a GPx identified in Trichoderma reesei (TrGPx). TrGPx was recombinantly expressed in a bacterial host and purified using affinity. Using a thioredoxin coupled assay, TrGPx exhibited activity of 28 U and 12.5 U in the presence of the substrates H2O2 and t-BOOH, respectively, and no activity was observed when glutathione was used. These results indicated that TrGPx is a thioredoxin peroxidase and hydrolyses H2O2 better than t-BOOH. TrGPx kinetic parameters using a pyrogallol assay resulted at Kmapp = 11.7 mM, Vmaxapp = 10.9 IU/μg TrGPx, kcat = 19 s-1 and a catalytic efficiency of 1.6 mM-1 s-1 to H2O2 as substrate. Besides that, TrGPx demonstrated an optimum pH ranging from 9.0-12.0 and a half-life of 36 min at 80 °C. TrGPx 3D-structure was obtained in a reduced state and non-catalytic conformation. The overall fold is similar to the other phospholipid-hydroperoxide glutathione peroxidases. These data contribute to understand the antioxidant mechanism in fungi and provide information for using antioxidant enzymes in biotechnological applications.
Collapse
|
18
|
Borchert A, Kalms J, Roth SR, Rademacher M, Schmidt A, Holzhutter HG, Kuhn H, Scheerer P. Crystal structure and functional characterization of selenocysteine-containing glutathione peroxidase 4 suggests an alternative mechanism of peroxide reduction. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:1095-1107. [DOI: 10.1016/j.bbalip.2018.06.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/09/2018] [Accepted: 06/03/2018] [Indexed: 12/15/2022]
|