1
|
He Z, Yan Y, Guo X, Wang T, Liu X, Ding RB, Fu Y, Bao J, Qi X. Trp31 Residue of Trx-1 Is Essential for Maintaining Antioxidant Activity and Cellular Redox Defense Against Oxidative Stress. Antioxidants (Basel) 2025; 14:257. [PMID: 40227210 PMCID: PMC11939457 DOI: 10.3390/antiox14030257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/13/2025] [Accepted: 02/21/2025] [Indexed: 04/15/2025] Open
Abstract
Thioredoxin-1 (Trx-1) is an important redox protein found in almost all prokaryotic and eukaryotic cells, which has a highly conserved active site sequence: Trp-Cys-Gly-Pro-Cys. To investigate whether the Trp31 residue is essential for the antioxidant activity of human Trx-1 (hTrx-1), we mutated Trx-1 by replacing Trp31 with Ala31 (31Ala) or deleting Trp31 residue (31Del). We introduced 31Ala and 31Del mutations into prokaryotic cells for hTrx-1 protein expression, protein purification and evaluation of antioxidant activity. The results showed that neither the replacing mutation to Ala31 nor the deletion of Trp31 residue affected the efficient expression of hTrx-1 protein in prokaryotic cells, indicating that neither form of Trp31 mutation would disrupt the folded structure of the Trx-1 protein. Comparison of the antioxidant activity of purified hTrx-1 proteins of wild-type, 31Ala and 31Del forms revealed that both mutant forms significantly decreased the antioxidant capacity of hTrx-1. Further investigations on eukaryotic cells showed that H2O2 treatment caused massive cell death in EA.Hy926 human endothelial cells with 31Ala and 31Del mutations compared to wild-type cells, which was associated with increased ROS production and downregulation of antioxidant Nrf2 and HO-1 expression in the mutant cells. These results suggested that mutations in the Trp31 residue of hTrx-1 remarkably disrupted cellular redox defense against oxidative stress. The antioxidant activity of hTrx-1 relies on the thiol-disulfide exchange reaction, in which the content of thiol groups forming disulfide bonds in hTrx-1 is critical. We found that the content of free thiol groups specifically participating in disulfide bond formation was significantly lower in Trp31 mutant hTrx-1 than in wild-type hTrx-1; that was speculated to affect the formation of disulfide bonds between Cys32 and Cys35 by virtual analysis, thus abolishing the antioxidant activity of hTrx-1 in cleaving oxidized groups and defending against oxidative stress. The present study provided valuable insights towards understanding the importance of Trp31 residue of hTrx-1 in maintaining the correct conformation of the Trx fold structure, the antioxidant functionality of hTrx-1 and the cellular redox defense capability against oxidative stress.
Collapse
Affiliation(s)
- Zongmao He
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (Z.H.); (Y.Y.); (X.G.); (T.W.); (X.L.); (R.-B.D.); (Y.F.)
| | - Yi Yan
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (Z.H.); (Y.Y.); (X.G.); (T.W.); (X.L.); (R.-B.D.); (Y.F.)
| | - Xijun Guo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (Z.H.); (Y.Y.); (X.G.); (T.W.); (X.L.); (R.-B.D.); (Y.F.)
| | - Tong Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (Z.H.); (Y.Y.); (X.G.); (T.W.); (X.L.); (R.-B.D.); (Y.F.)
| | - Xinqiao Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (Z.H.); (Y.Y.); (X.G.); (T.W.); (X.L.); (R.-B.D.); (Y.F.)
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ren-Bo Ding
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (Z.H.); (Y.Y.); (X.G.); (T.W.); (X.L.); (R.-B.D.); (Y.F.)
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Yuanfeng Fu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (Z.H.); (Y.Y.); (X.G.); (T.W.); (X.L.); (R.-B.D.); (Y.F.)
| | - Jiaolin Bao
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (Z.H.); (Y.Y.); (X.G.); (T.W.); (X.L.); (R.-B.D.); (Y.F.)
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Xingzhu Qi
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (Z.H.); (Y.Y.); (X.G.); (T.W.); (X.L.); (R.-B.D.); (Y.F.)
| |
Collapse
|
2
|
Godwin J, Djami-Tchatchou AT, Velivelli SLS, Tetorya M, Kalunke R, Pokhrel A, Zhou M, Buchko GW, Czymmek KJ, Shah DM. Chickpea NCR13 disulfide cross-linking variants exhibit profound differences in antifungal activity and modes of action. PLoS Pathog 2024; 20:e1012745. [PMID: 39621770 PMCID: PMC11637438 DOI: 10.1371/journal.ppat.1012745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/12/2024] [Accepted: 11/11/2024] [Indexed: 12/14/2024] Open
Abstract
Small cysteine-rich antifungal peptides with multi-site modes of action (MoA) have potential for development as biofungicides. In particular, legumes of the inverted repeat-lacking clade express a large family of nodule-specific cysteine-rich (NCR) peptides that orchestrate differentiation of nitrogen-fixing bacteria into bacteroids. These NCRs can form two or three intramolecular disulfide bonds and a subset of these peptides with high cationicity exhibits antifungal activity. However, the importance of intramolecular disulfide pairing and MoA against fungal pathogens for most of these plant peptides remains to be elucidated. Our study focused on a highly cationic chickpea NCR13, which has a net charge of +8 and contains six cysteines capable of forming three disulfide bonds. NCR13 expression in Pichia pastoris resulted in formation of two peptide folding variants, NCR13_PFV1 and NCR13_PFV2, that differed in the pairing of two out of three disulfide bonds despite having an identical amino acid sequence. The NMR structure of each PFV revealed a unique three-dimensional fold with the PFV1 structure being more compact but less dynamic. Surprisingly, PFV1 and PFV2 differed profoundly in the potency of antifungal activity against several fungal plant pathogens and their multi-faceted MoA. PFV1 showed significantly faster fungal cell-permeabilizing and cell entry capabilities as well as greater stability once inside the fungal cells. Additionally, PFV1 was more effective in binding fungal ribosomal RNA and inhibiting protein translation in vitro. Furthermore, when sprayed on pepper and tomato plants, PFV1 was more effective in reducing disease symptoms caused by Botrytis cinerea, causal agent of gray mold disease in fruits, vegetables, and flowers. In conclusion, our work highlights the significant impact of disulfide pairing on the antifungal activity and MoA of NCR13 and provides a structural framework for design of novel, potent antifungal peptides for agricultural use.
Collapse
Affiliation(s)
- James Godwin
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
| | | | - Siva L. S. Velivelli
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
| | - Meenakshi Tetorya
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
| | - Raviraj Kalunke
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
| | - Ambika Pokhrel
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
| | - Mowei Zhou
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Garry W. Buchko
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, United States of America
- School of Molecular Biosciences, Washington State University, Pullman, Washington, United States of America
| | - Kirk J. Czymmek
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
- Advanced Bioimaging Laboratory, Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
| | - Dilip M. Shah
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
| |
Collapse
|
3
|
Neira JL, Palomino-Schätzlein M, Rejas V, Traverso JA, Rico M, López-Gorgé J, Chueca A, Cámara-Artigas A. Three-dimensional solution structure, dynamics and binding of thioredoxin m from Pisum sativum. Int J Biol Macromol 2024; 262:129781. [PMID: 38296131 DOI: 10.1016/j.ijbiomac.2024.129781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/05/2024]
Abstract
Thioredoxins (TRXs) are ubiquitous small, globular proteins involved in cell redox processes. In this work, we report the solution structure of TRX m from Pisum sativum (pea), which has been determined on the basis of 1444 nuclear Overhauser effect- (NOE-) derived distance constraints. The average pairwise root-mean-square deviation (RMSD) for the 20 best structures for the backbone residues (Val7-Glu102) was 1.42 ± 0.15 Å, and 1.97 ± 0.15 Å when all heavy atoms were considered. The structure corresponds to the typical fold of TRXs, with a central five-stranded β-sheet flanked by four α-helices. Some residues had an important exchange dynamic contribution: those around the active site; at the C terminus of β-strand 3; and in the loop preceding α-helix 4. Smaller NOE values were observed at the N and C-terminal residues forming the elements of the secondary structure or, alternatively, in the residues belonging to the loops between those elements. A peptide derived from pea fructose-1,6-biphosphatase (FBPase), comprising the preceding region to the regulatory sequence of FBPase (residues Glu152 to Gln179), was bound to TRX m with an affinity in the low micromolar range, as measured by fluorescence and NMR titration experiments. Upon peptide addition, the intensities of the cross-peaks of all the residues of TRX m were affected, as shown by NMR. The value of the dissociation constant of the peptide from TRX m was larger than that of the intact FBPase, indicating that there are additional factors in other regions of the polypeptide chain of the latter protein affecting the binding to thioredoxin.
Collapse
Affiliation(s)
- José L Neira
- IDIBE, Universidad Miguel Hernández, 03202 Elche, Alicante, Spain; Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, 50018 Zaragoza, Spain.
| | - Martina Palomino-Schätzlein
- ProtoQSAR SL, CEEI-Valencia. Parque Tecnológico de Valencia, Av. Benjamin Franklin 12 (Dep. 8), 46980 Paterna, Valencia, Spain
| | - Virginia Rejas
- Centro de Investigación Príncipe Felipe, Calle de Eduardo Primo Yufera 3, 46012, Valencia, Spain
| | - José A Traverso
- Department of Cell Biology, Faculty of Science, University of Granada, 18001 Granada, Spain
| | - Manual Rico
- Instituto de Quimica Física Blas Cabrera (CSIC), Calle Serrano 119, 28006 Madrid, Spain
| | - Julio López-Gorgé
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental Zaidin, Consejo Superior de Investigaciones Científicas (CSIC), Prof. Albareda 1, 18008 Granada, Spain
| | - Ana Chueca
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental Zaidin, Consejo Superior de Investigaciones Científicas (CSIC), Prof. Albareda 1, 18008 Granada, Spain
| | - Ana Cámara-Artigas
- Departamento de Química y Física, Research Center CIAIMBITAL, Universidad de Almería- ceiA3, 04120 Almería, Spain
| |
Collapse
|
4
|
Hasan AA, Kalinina E, Tatarskiy V, Shtil A. The Thioredoxin System of Mammalian Cells and Its Modulators. Biomedicines 2022; 10:biomedicines10071757. [PMID: 35885063 PMCID: PMC9313168 DOI: 10.3390/biomedicines10071757] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/16/2022] [Accepted: 07/19/2022] [Indexed: 12/21/2022] Open
Abstract
Oxidative stress involves the increased production and accumulation of free radicals, peroxides, and other metabolites that are collectively termed reactive oxygen species (ROS), which are produced as by-products of aerobic respiration. ROS play a significant role in cell homeostasis through redox signaling and are capable of eliciting damage to macromolecules. Multiple antioxidant defense systems have evolved to prevent dangerous ROS accumulation in the body, with the glutathione and thioredoxin/thioredoxin reductase (Trx/TrxR) systems being the most important. The Trx/TrxR system has been used as a target to treat cancer through the thiol–disulfide exchange reaction mechanism that results in the reduction of a wide range of target proteins and the generation of oxidized Trx. The TrxR maintains reduced Trx levels using NADPH as a co-substrate; therefore, the system efficiently maintains cell homeostasis. Being a master regulator of oxidation–reduction processes, the Trx-dependent system is associated with cell proliferation and survival. Herein, we review the structure and catalytic properties of the Trx/TrxR system, its role in cellular signaling in connection with other redox systems, and the factors that modulate the Trx system.
Collapse
Affiliation(s)
- Aseel Ali Hasan
- T.T. Berezov Department of Biochemistry, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia;
| | - Elena Kalinina
- T.T. Berezov Department of Biochemistry, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia;
- Correspondence: ; Tel.: +7-495-434-62-05
| | - Victor Tatarskiy
- Laboratory of Molecular Oncobiology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334 Moscow, Russia;
| | - Alexander Shtil
- Laboratory of Tumor Cell Death, Blokhin National Medical Research Center of Oncology, 24 Kashirskoye Shosse, 115478 Moscow, Russia;
| |
Collapse
|
5
|
Shaheen S, Barrett KF, Subramanian S, Arnold SLM, Laureanti JA, Myler PJ, Van Voorhis WC, Buchko GW. Solution structure for an Encephalitozoon cuniculi adrenodoxin-like protein in the oxidized state. Protein Sci 2020; 29:809-817. [PMID: 31912584 DOI: 10.1002/pro.3818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/01/2020] [Accepted: 01/02/2020] [Indexed: 12/11/2022]
Abstract
Encephalitozoon cuniculi is a unicellular, obligate intracellular eukaryotic parasite in the Microsporidia family and one of the agents responsible for microsporidosis infections in humans. Like most Microsporidia, the genome of E. cuniculi is markedly reduced and the organism contains mitochondria-like organelles called mitosomes instead of mitochondria. Here we report the solution NMR structure for a protein physically associated with mitosome-like organelles in E. cuniculi, the 128-residue, adrenodoxin-like protein Ec-Adx (UniProt ID Q8SV19) in the [2Fe-2S] ferredoxin superfamily. Oxidized Ec-Adx contains a mixed four-strand β-sheet, β2-β1-β4-β3 (↓↑↑↓), loosely encircled by three α-helices and two 310 -helices. This fold is similar to the structure observed in other adrenodoxin and adrenodoxin-like proteins except for the absence of a fifth anti-parallel β-strand next to β3 and the position of α3. Cross peaks are missing or cannot be unambiguously assigned for 20 amide resonances in the 1 H-15 N HSQC spectrum of Ec-Adx. These missing residues are clustered primarily in two regions, G48-V61 and L94-L98, containing the four cysteine residues predicted to ligate the paramagnetic [2Fe-2S] cluster. Missing amide resonances in 1 H-15 N HSQC spectra are detrimental to NMR-based solution structure calculations because 1 H-1 H NOE restraints are absent (glass half-empty) and this may account for the absent β-strand (β5) and the position of α3 in oxidized Ec-Adx. On the other hand, the missing amide resonances unambiguously identify the presence, and immediate environment, of the paramagnetic [2Fe-2S] cluster in oxidized Ec-Adx (glass half-full).
Collapse
Affiliation(s)
- Shareef Shaheen
- Department of Medicine, Division of Allergy and Infectious Disease, Center for Emerging and Re-emerging Infectious Disease, University of Washington, Seattle, Washington
| | - Kayleigh F Barrett
- Department of Medicine, Division of Allergy and Infectious Disease, Center for Emerging and Re-emerging Infectious Disease, University of Washington, Seattle, Washington.,Seattle Structural Genomics Center for Infectious Diseases, Seattle, Washington
| | - Sandhya Subramanian
- Seattle Structural Genomics Center for Infectious Diseases, Seattle, Washington.,Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington
| | - Samuel L M Arnold
- Department of Medicine, Division of Allergy and Infectious Disease, Center for Emerging and Re-emerging Infectious Disease, University of Washington, Seattle, Washington
| | - Joseph A Laureanti
- Physical Chemistry Directorate, Pacific Northwest National Laboratory, Richland, Washington
| | - Peter J Myler
- Seattle Structural Genomics Center for Infectious Diseases, Seattle, Washington.,Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington.,Department of Medical Education and Biomedical Informatics & Department of Global Health, University of Washington, Seattle, Washington
| | - Wesley C Van Voorhis
- Department of Medicine, Division of Allergy and Infectious Disease, Center for Emerging and Re-emerging Infectious Disease, University of Washington, Seattle, Washington.,Seattle Structural Genomics Center for Infectious Diseases, Seattle, Washington
| | - Garry W Buchko
- Seattle Structural Genomics Center for Infectious Diseases, Seattle, Washington.,Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington.,School of Molecular Biosciences, Washington State University, Pullman, Washington
| |
Collapse
|