1
|
Gajdos L, Blakeley MP, Kumar A, Wimmerová M, Haertlein M, Forsyth VT, Imberty A, Devos JM. Visualization of hydrogen atoms in a perdeuterated lectin-fucose complex reveals key details of protein-carbohydrate interactions. Structure 2021; 29:1003-1013.e4. [PMID: 33765407 DOI: 10.1016/j.str.2021.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/01/2021] [Accepted: 03/03/2021] [Indexed: 11/30/2022]
Abstract
Carbohydrate-binding proteins from pathogenic bacteria and fungi have been shown to be implicated in various pathological processes, where they interact with glycans present on the surface of the host cells. These interactions are part of the initial processes of infection of the host and are very important to study at the atomic level. Here, we report the room temperature neutron structures of PLL lectin from Photorhabdus laumondii in its apo form and in complex with deuterated L-fucose, which is, to our knowledge, the first neutron structure of a carbohydrate-binding protein in complex with a fully deuterated carbohydrate ligand. A detailed structural analysis of the lectin-carbohydrate interactions provides information on the hydrogen bond network, the role of water molecules, and the extent of the CH-π stacking interactions between fucose and the aromatic amino acids in the binding site.
Collapse
Affiliation(s)
- Lukas Gajdos
- Life Sciences Group, Institut Laue-Langevin, 38000 Grenoble, France; Partnership for Structural Biology (PSB), 38000 Grenoble, France; Université Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France
| | - Matthew P Blakeley
- Large Scale Structures Group, Institut Laue-Langevin, 38000 Grenoble, France
| | - Atul Kumar
- CEITEC, Masaryk University, 625 00 Brno, Czech Republic; NCBR, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic; Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Michaela Wimmerová
- CEITEC, Masaryk University, 625 00 Brno, Czech Republic; NCBR, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Michael Haertlein
- Life Sciences Group, Institut Laue-Langevin, 38000 Grenoble, France; Partnership for Structural Biology (PSB), 38000 Grenoble, France
| | - V Trevor Forsyth
- Life Sciences Group, Institut Laue-Langevin, 38000 Grenoble, France; Partnership for Structural Biology (PSB), 38000 Grenoble, France; Faculty of Natural Sciences, Keele University, ST5 5BG Staffordshire, UK
| | - Anne Imberty
- Université Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France.
| | - Juliette M Devos
- Life Sciences Group, Institut Laue-Langevin, 38000 Grenoble, France; Partnership for Structural Biology (PSB), 38000 Grenoble, France.
| |
Collapse
|
2
|
Kraus J, Gupta R, Lu M, Gronenborn AM, Akke M, Polenova T. Accurate Backbone 13 C and 15 N Chemical Shift Tensors in Galectin-3 Determined by MAS NMR and QM/MM: Details of Structure and Environment Matter. Chemphyschem 2020; 21:1436-1443. [PMID: 32363727 PMCID: PMC8080305 DOI: 10.1002/cphc.202000249] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/27/2020] [Indexed: 01/07/2023]
Abstract
Chemical shift tensors obtained from solid-state NMR spectroscopy are very sensitive reporters of structure and dynamics in proteins. While accurate 13 C and 15 N chemical shift tensors are accessible by magic angle spinning (MAS) NMR, their quantum mechanical calculations remain challenging, particularly for 15 N atoms. Here we compare experimentally determined backbone 13 Cα and 15 NH chemical shift tensors by MAS NMR with hybrid quantum mechanics/molecular mechanics/molecular dynamics (MD-QM/MM) calculations for the carbohydrate-binding domain of galectin-3. Excellent agreement between experimental and computed 15 NH chemical shift anisotropy values was obtained using the Amber ff15ipq force field when solvent dynamics was taken into account in the calculation. Our results establish important benchmark conditions for improving the accuracy of chemical shift calculations in proteins and may aid in the validation of protein structure models derived by MAS NMR.
Collapse
Affiliation(s)
- Jodi Kraus
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| | - Rupal Gupta
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
- Department of Chemistry, The College of Staten Island, 2800 Victory Blvd, Staten Island, NY 10314
| | - Manman Lu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| | - Angela M. Gronenborn
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| | - Mikael Akke
- Division of Biophysical Chemistry, Center for Molecular Protein Science, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| |
Collapse
|
3
|
Abstract
This chapter aims to give an overview of the process of interactive model building in macromolecular neutron crystallography for the researcher transitioning from X-ray crystallography alone. The two most popular programs for refinement and model building, phenix.refine and Coot, respectively, are used as examples, and familiarity with the programs is assumed. Some work-arounds currently required for proper communication between the programs are described. We also discuss the appearance of nuclear density maps and how this differs from that of electron density maps. Advice is given to facilitate deposition of jointly refined neutron/X-ray structures in the Protein Data Bank.
Collapse
|
4
|
Abstract
This chapter introduces this topic for the whole volume. It is not a review, rather it presents the basics, the key considerations and forward references to the other chapters. This starts by setting the scene of principles and overall strategy, moves onto planning an experiment including its feasibility and then outlines practicalities with options for the experiment. The crystal structure that results will lead to publication and associated with it, Protein Data Bank deposition.
Collapse
|
5
|
Abstract
The use of neutron protein crystallography (NPX) is expanding rapidly, with most structures determined in the last decade. This growth is stimulated by a number of developments, spanning from the building of new NPX beamlines to the availability of improved software for structure refinement. The main bottleneck preventing structural biologists from adding NPX to the suite of methods commonly used is the large volume of the individual crystals required for a successful experiment. A survey of deposited NPX structures in the Protein Data Bank shows that about two-thirds came from crystals prepared using vapor diffusion, while batch and dialysis-based methods all-together contribute to most of the remaining one-third. This chapter explains the underlying principles of these protein crystallization methods and provides practical examples that may help others to successfully prepare large crystals for NPX.
Collapse
|
6
|
Hanazono Y, Takeda K, Miki K. Characterization of perdeuterated high-potential iron-sulfur protein with high-resolution X-ray crystallography. Proteins 2019; 88:251-259. [PMID: 31365157 DOI: 10.1002/prot.25793] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/23/2019] [Accepted: 07/27/2019] [Indexed: 11/12/2022]
Abstract
Perdeuteration in neutron crystallography is an effective method for determining the positions of hydrogen atoms in proteins. However, there is shortage of evidence that the high-resolution details of perdeuterated proteins are consistent with those of the nondeuterated proteins. In this study, we determined the X-ray structure of perdeuterated high-potential iron-sulfur protein (HiPIP) at a high resolution of 0.85 å resolution. The comparison of the nondeuterated and perdeuterated structures of HiPIP revealed slight differences between the two structures. The spectroscopic and spectroelectrochemical studies also showed that perdeuterated HiPIP has approximately the same characteristics as nondeuterated HiPIP. These results further emphasize the suitability of using perdeuterated proteins in the high-resolution neutron crystallography.
Collapse
Affiliation(s)
- Yuya Hanazono
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Kazuki Takeda
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Kunio Miki
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
7
|
Kelpšas V, Lafumat B, Blakeley MP, Coquelle N, Oksanen E, von Wachenfeldt C. Perdeuteration, large crystal growth and neutron data collection of Leishmania mexicana triose-phosphate isomerase E65Q variant. Acta Crystallogr F Struct Biol Commun 2019; 75:260-269. [PMID: 30950827 PMCID: PMC6450519 DOI: 10.1107/s2053230x19001882] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/31/2019] [Indexed: 01/07/2023] Open
Abstract
Triose-phosphate isomerase (TIM) catalyses the interconversion of dihydroxyacetone phosphate and glyceraldehyde 3-phosphate. Two catalytic mechanisms have been proposed based on two reaction-intermediate analogues, 2-phosphoglycolate (2PG) and phosphoglycolohydroxamate (PGH), that have been used as mimics of the cis-enediol(ate) intermediate in several studies of TIM. The protonation states that are critical for the mechanistic interpretation of these structures are generally not visible in the X-ray structures. To resolve these questions, it is necessary to determine the hydrogen positions using neutron crystallography. Neutron crystallography requires large crystals and benefits from replacing all hydrogens with deuterium. Leishmania mexicana triose-phosphate isomerase was therefore perdeuterated and large crystals with 2PG and PGH were produced. Neutron diffraction data collected from two crystals with different volumes highlighted the importance of crystal volume, as smaller crystals required longer exposures and resulted in overall worse statistics.
Collapse
Affiliation(s)
- Vinardas Kelpšas
- Department of Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden
| | - Bénédicte Lafumat
- Department of Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden
- European Spallation Source ESS ERIC, Odarslövsvägen 113, 224 84 Lund, Sweden
| | | | - Nicolas Coquelle
- Insitut Laue–Langevin, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Esko Oksanen
- European Spallation Source ESS ERIC, Odarslövsvägen 113, 224 84 Lund, Sweden
- Department of Biochemistry and Structural Biology, Lund University, Sölvegatan 39A, 221 00 Lund, Sweden
| | | |
Collapse
|
8
|
Caldararu O, Manzoni F, Oksanen E, Logan DT, Ryde U. Refinement of protein structures using a combination of quantum-mechanical calculations with neutron and X-ray crystallographic data. Acta Crystallogr D Struct Biol 2019; 75:368-380. [PMID: 30988254 PMCID: PMC6465982 DOI: 10.1107/s205979831900175x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/30/2019] [Indexed: 11/20/2022] Open
Abstract
Neutron crystallography is a powerful method to determine the positions of H atoms in macromolecular structures. However, it is sometimes hard to judge what would constitute a chemically reasonable model, and the geometry of H atoms depends more on the surroundings (for example the formation of hydrogen bonds) than heavy atoms, so that the empirical geometry information for the H atoms used to supplement the experimental data is often less accurate. These problems may be reduced by using quantum-mechanical calculations. A method has therefore been developed to combine quantum-mechanical calculations with joint crystallographic refinement against X-ray and neutron data. A first validation of this method is provided by re-refining the structure of the galectin-3 carbohydrate-recognition domain in complex with lactose. The geometry is improved, in particular for water molecules, for which the method leads to better-resolved hydrogen-bonding interactions. The method has also been applied to the active copper site of lytic polysaccharide monooxygenase and shows that the protonation state of the amino-terminal histidine residue can be determined.
Collapse
Affiliation(s)
- Octav Caldararu
- Department of Theoretical Chemistry, Lund University, Chemical Centre, PO Box 124, SE-221 00 Lund, Sweden
| | - Francesco Manzoni
- Department of Theoretical Chemistry, Lund University, Chemical Centre, PO Box 124, SE-221 00 Lund, Sweden
- Department of Biochemistry and Structural Biology, Centre for Molecular Protein Science, Lund University, Chemical Centre, PO Box 124, SE-221 00 Lund, Sweden
| | - Esko Oksanen
- Department of Biochemistry and Structural Biology, Centre for Molecular Protein Science, Lund University, Chemical Centre, PO Box 124, SE-221 00 Lund, Sweden
- Instruments Division, European Spallation Source ESS ERIC, PO Box 176, SE-221 00 Lund, Sweden
| | - Derek T. Logan
- Department of Biochemistry and Structural Biology, Centre for Molecular Protein Science, Lund University, Chemical Centre, PO Box 124, SE-221 00 Lund, Sweden
| | - Ulf Ryde
- Department of Theoretical Chemistry, Lund University, Chemical Centre, PO Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|
9
|
Sørensen TLM, Hjorth-Jensen SJ, Oksanen E, Andersen JL, Olesen C, Møller JV, Nissen P. Membrane-protein crystals for neutron diffraction. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2018; 74:1208-1218. [PMID: 30605135 DOI: 10.1107/s2059798318012561] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/05/2018] [Indexed: 11/10/2022]
Abstract
Neutron macromolecular crystallography (NMX) has the potential to provide the experimental input to address unresolved aspects of transport mechanisms and protonation in membrane proteins. However, despite this clear scientific motivation, the practical challenges of obtaining crystals that are large enough to make NMX feasible have so far been prohibitive. Here, the potential impact on feasibility of a more powerful neutron source is reviewed and a strategy for obtaining larger crystals is formulated, exemplified by the calcium-transporting ATPase SERCA1. The challenges encountered at the various steps in the process from crystal nucleation and growth to crystal mounting are explored, and it is demonstrated that NMX-compatible membrane-protein crystals can indeed be obtained.
Collapse
Affiliation(s)
- Thomas Lykke Møller Sørensen
- Department of Molecular Biology and Genetics - DANDRITE, Aarhus University, Gustav Wieds Vej 10, DK-8000 Aarhus C, Denmark
| | - Samuel John Hjorth-Jensen
- Department of Molecular Biology and Genetics - DANDRITE, Aarhus University, Gustav Wieds Vej 10, DK-8000 Aarhus C, Denmark
| | - Esko Oksanen
- European Spallation Source ERIC, PO Box 176, 22100 Lund, Sweden
| | | | - Claus Olesen
- Department of Biomedicine, Aarhus University, Ole Worn Alle 3, DK-8000 Aarhus C, Denmark
| | - Jesper Vuust Møller
- Department of Biomedicine, Aarhus University, Ole Worn Alle 3, DK-8000 Aarhus C, Denmark
| | - Poul Nissen
- Department of Molecular Biology and Genetics - DANDRITE, Aarhus University, Gustav Wieds Vej 10, DK-8000 Aarhus C, Denmark
| |
Collapse
|
10
|
From Initial Hit to Crystal Optimization with Microseeding of Human Carbonic Anhydrase IX—A Case Study for Neutron Protein Crystallography. CRYSTALS 2018. [DOI: 10.3390/cryst8110434] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Human carbonic anhydrase IX (CA IX) is a multi-domain membrane protein that is therefore difficult to express or crystalize. To prepare crystals that are suitable for neutron studies, we are using only the catalytic domain of CA IX with six surface mutations, named surface variant (SV). The crystallization of CA IX SV, and also partly deuterated CA IX SV, was enabled by the use of microseed matrix screening (MMS). Only three drops with crystals were obtained after initial sparse matrix screening, and these were used as seeds in subsequent crystallization trials. Application of MMS, commercial screens, and refinement resulted in consistent crystallization and diffraction-quality crystals. The crystallization protocols and strategies that resulted in consistent crystallization are presented. These results demonstrate not only the use of MMS in the growth of large single crystals for neutron studies with defined conditions, but also that MMS enabled re-screening to find new conditions and consistent crystallization success.
Collapse
|
11
|
The Neutron Macromolecular Crystallography Instruments at Oak Ridge National Laboratory: Advances, Challenges, and Opportunities. CRYSTALS 2018. [DOI: 10.3390/cryst8100388] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The IMAGINE and MaNDi instruments, located at Oak Ridge National Laboratory High Flux Isotope Reactor and Spallation Neutron Source, respectively, are powerful tools for determining the positions of hydrogen atoms in biological macromolecules and their ligands, orienting water molecules, and for differentiating chemical states in macromolecular structures. The possibility to model hydrogen and deuterium atoms in neutron structures arises from the strong interaction of neutrons with the nuclei of these isotopes. Positions can be unambiguously assigned from diffraction studies at the 1.5–2.5 Å resolutions, which are typical for protein crystals. Neutrons have the additional benefit for structural biology of not inducing radiation damage to protein crystals, which can be critical in the study of metalloproteins. Here we review the specifications of the IMAGINE and MaNDi beamlines and illustrate their complementarity. IMAGINE is suitable for crystals with unit cell edges up to 150 Å using a quasi-Laue technique, whereas MaNDi provides neutron crystallography resources for large unit cell samples with unit cell edges up to 300 Å using the time of flight (TOF) Laue technique. The microbial culture and crystal growth facilities which support the IMAGINE and MaNDi user programs are also described.
Collapse
|
12
|
Manzoni F, Wallerstein J, Schrader TE, Ostermann A, Coates L, Akke M, Blakeley MP, Oksanen E, Logan DT. Elucidation of Hydrogen Bonding Patterns in Ligand-Free, Lactose- and Glycerol-Bound Galectin-3C by Neutron Crystallography to Guide Drug Design. J Med Chem 2018; 61:4412-4420. [PMID: 29672051 DOI: 10.1021/acs.jmedchem.8b00081] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The medically important drug target galectin-3 binds galactose-containing moieties on glycoproteins through an intricate pattern of hydrogen bonds to a largely polar surface-exposed binding site. All successful inhibitors of galectin-3 to date have been based on mono- or disaccharide cores closely resembling natural ligands. A detailed understanding of the H-bonding networks in these natural ligands will provide an improved foundation for the design of novel inhibitors. Neutron crystallography is an ideal technique to reveal the geometry of hydrogen bonds because the positions of hydrogen atoms are directly detected rather than being inferred from the positions of heavier atoms as in X-ray crystallography. We present three neutron crystal structures of the C-terminal carbohydrate recognition domain of galectin-3: the ligand-free form and the complexes with the natural substrate lactose and with glycerol, which mimics important interactions made by lactose. The neutron crystal structures reveal unambiguously the exquisite fine-tuning of the hydrogen bonding pattern in the binding site to the natural disaccharide ligand. The ligand-free structure shows that most of these hydrogen bonds are preserved even when the polar groups of the ligand are replaced by water molecules. The protonation states of all histidine residues in the protein are also revealed and correlate well with NMR observations. The structures give a solid starting point for molecular dynamics simulations and computational estimates of ligand binding affinity that will inform future drug design.
Collapse
Affiliation(s)
- Francesco Manzoni
- Department of Biochemistry & Structural Biology , Lund University , S-221 00 Lund , Sweden
| | - Johan Wallerstein
- Department of Biophysical Chemistry , Lund University , S-221 00 Lund , Sweden
| | - Tobias E Schrader
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ) , Forschungszentrum Jülich GmbH , Lichtenbergstrasse 1 , 85747 Garching , Germany
| | - Andreas Ostermann
- Heinz Maier-Leibnitz Zentrum (MLZ) , Technische Universität München , Lichtenbergstrasse 1 , 85748 Garching , Germany
| | - Leighton Coates
- Neutron Scattering Division , Oak Ridge National Laboratory , 1 Bethel Valley Road , Oak Ridge , Tennessee 37831 , United States
| | - Mikael Akke
- Department of Biophysical Chemistry , Lund University , S-221 00 Lund , Sweden
| | - Matthew P Blakeley
- Institut Laue-Langevin , 71 avenue des Martyrs , 38000 Grenoble , France
| | - Esko Oksanen
- Department of Biochemistry & Structural Biology , Lund University , S-221 00 Lund , Sweden.,Instrument Division , European Spallation Source ERIC , Box 176, S-221 00 Lund , Sweden
| | - Derek T Logan
- Department of Biochemistry & Structural Biology , Lund University , S-221 00 Lund , Sweden
| |
Collapse
|
13
|
Kraus J, Gupta R, Yehl J, Lu M, Case DA, Gronenborn AM, Akke M, Polenova T. Chemical Shifts of the Carbohydrate Binding Domain of Galectin-3 from Magic Angle Spinning NMR and Hybrid Quantum Mechanics/Molecular Mechanics Calculations. J Phys Chem B 2018; 122:2931-2939. [PMID: 29498857 DOI: 10.1021/acs.jpcb.8b00853] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Magic angle spinning NMR spectroscopy is uniquely suited to probe the structure and dynamics of insoluble proteins and protein assemblies at atomic resolution, with NMR chemical shifts containing rich information about biomolecular structure. Access to this information, however, is problematic, since accurate quantum mechanical calculation of chemical shifts in proteins remains challenging, particularly for 15NH. Here we report on isotropic chemical shift predictions for the carbohydrate recognition domain of microcrystalline galectin-3, obtained from using hybrid quantum mechanics/molecular mechanics (QM/MM) calculations, implemented using an automated fragmentation approach, and using very high resolution (0.86 Å lactose-bound and 1.25 Å apo form) X-ray crystal structures. The resolution of the X-ray crystal structure used as an input into the AF-NMR program did not affect the accuracy of the chemical shift calculations to any significant extent. Excellent agreement between experimental and computed shifts is obtained for 13Cα, while larger scatter is observed for 15NH chemical shifts, which are influenced to a greater extent by electrostatic interactions, hydrogen bonding, and solvation.
Collapse
Affiliation(s)
- Jodi Kraus
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States.,Pittsburgh Center for HIV Protein Interactions , University of Pittsburgh School of Medicine , 1051 Biomedical Science Tower 3, 3501 Fifth Avenue , Pittsburgh , Pennsylvania 15261 , United States
| | - Rupal Gupta
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
| | - Jenna Yehl
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
| | - Manman Lu
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States.,Pittsburgh Center for HIV Protein Interactions , University of Pittsburgh School of Medicine , 1051 Biomedical Science Tower 3, 3501 Fifth Avenue , Pittsburgh , Pennsylvania 15261 , United States
| | - David A Case
- Department of Chemistry and Chemical Biology and BioMaPS Institute , Rutgers University , Piscataway , New Jersey 08854 , United States
| | - Angela M Gronenborn
- Pittsburgh Center for HIV Protein Interactions , University of Pittsburgh School of Medicine , 1051 Biomedical Science Tower 3, 3501 Fifth Avenue , Pittsburgh , Pennsylvania 15261 , United States.,Department of Structural Biology , University of Pittsburgh School of Medicine , 3501 Fifth Avenue , Pittsburgh , Pennsylvania 15261 , United States
| | - Mikael Akke
- Department of Biophysical Chemistry, Center for Molecular Protein Science , Lund University , P.O. Box 124, SE-22100 Lund , Sweden
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States.,Pittsburgh Center for HIV Protein Interactions , University of Pittsburgh School of Medicine , 1051 Biomedical Science Tower 3, 3501 Fifth Avenue , Pittsburgh , Pennsylvania 15261 , United States
| |
Collapse
|
14
|
Neutron macromolecular crystallography. Emerg Top Life Sci 2018; 2:39-55. [DOI: 10.1042/etls20170083] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/12/2017] [Accepted: 12/19/2017] [Indexed: 01/02/2023]
Abstract
Neutron diffraction techniques permit direct determination of the hydrogen (H) and deuterium (D) positions in crystal structures of biological macromolecules at resolutions of ∼1.5 and 2.5 Å, respectively. In addition, neutron diffraction data can be collected from a single crystal at room temperature without radiation damage issues. By locating the positions of H/D-atoms, protonation states and water molecule orientations can be determined, leading to a more complete understanding of many biological processes and drug-binding. In the last ca. 5 years, new beamlines have come online at reactor neutron sources, such as BIODIFF at Heinz Maier-Leibnitz Zentrum and IMAGINE at Oak Ridge National Laboratory (ORNL), and at spallation neutron sources, such as MaNDi at ORNL and iBIX at the Japan Proton Accelerator Research Complex. In addition, significant improvements have been made to existing beamlines, such as LADI-III at the Institut Laue-Langevin. The new and improved instrumentations are allowing sub-mm3 crystals to be regularly used for data collection and permitting the study of larger systems (unit-cell edges >100 Å). Owing to this increase in capacity and capability, many more studies have been performed and for a wider range of macromolecules, including enzymes, signalling proteins, transport proteins, sugar-binding proteins, fluorescent proteins, hormones and oligonucleotides; of the 126 structures deposited in the Protein Data Bank, more than half have been released since 2013 (65/126, 52%). Although the overall number is still relatively small, there are a growing number of examples for which neutron macromolecular crystallography has provided the answers to questions that otherwise remained elusive.
Collapse
|