1
|
Giovannuzzi S, Angeli A, Begines P, Ferraroni M, Nocentini A, Supuran CT. Tetrazole Is a Novel Zinc Binder Chemotype for Carbonic Anhydrase Inhibition. ACS Med Chem Lett 2025; 16:163-166. [PMID: 39811134 PMCID: PMC11726385 DOI: 10.1021/acsmedchemlett.4c00562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/21/2024] [Accepted: 12/23/2024] [Indexed: 01/16/2025] Open
Abstract
The tetrazole group is here proposed as a zinc-binding warhead for the inhibition of the metalloenzyme carbonic anhydrases. A set of synthesized derivatives incorporating the tetrazole moiety were evaluated as inhibitors against a panel of human isoforms, exhibiting K I values spanning between the submicromolar and low-to-medium micromolar ranges (0.62-19.6 μM). X-ray crystallographic studies were conducted to gain insights into their modes of binding to the target enzyme. These findings mark a significant advancement in the search for inhibitory chemotypes other than classical sulfonamides.
Collapse
Affiliation(s)
- Simone Giovannuzzi
- NEUROFARBA
Department, Section of Pharmaceutical Science, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Andrea Angeli
- NEUROFARBA
Department, Section of Pharmaceutical Science, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Paloma Begines
- NEUROFARBA
Department, Section of Pharmaceutical Science, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
- Department
of Organic Chemistry, Faculty of Chemistry, University of Seville, Seville E-41071, Spain
| | - Marta Ferraroni
- ′Ugo
Schiff’ Chemistry Department, University
of Florence, Via della
Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Alessio Nocentini
- NEUROFARBA
Department, Section of Pharmaceutical Science, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Claudiu T. Supuran
- NEUROFARBA
Department, Section of Pharmaceutical Science, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
2
|
Supuran CT. Multi- and polypharmacology of carbonic anhydrase inhibitors. Pharmacol Rev 2025; 77:100004. [PMID: 39952696 DOI: 10.1124/pharmrev.124.001125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/24/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
Eight genetically distinct families of the enzyme carbonic anhydrase (CA, EC 4.2.1.1) have been described in organisms overall in the phylogenetic tree. They catalyze the hydration of CO2 to bicarbonate and protons and are involved in pH regulation, chemosensing, and metabolism. The 15 α-CA isoforms present in humans are pharmacological drug targets known for decades, their inhibitors being used as diuretics, antiglaucoma, antiepileptic, or antiobesity drugs, as well as for the management of acute mountain sickness, idiopathic intracranial hypertension, and recently, as antitumor theragnostic agents. Other potential applications include the use of CA inhibitors (CAIs) in inflammatory conditions, cerebral ischemia, neuropathic pain, or Alzheimer/Parkinson disease management. CAs from pathogenic bacteria, fungi, protozoans, and nematodes have started to be considered as drug targets in recent years, with notable advances being registered. CAIs have a complex multipharmacology probably unique to this enzyme, which has been exploited intensely but may lead to other relevant applications in the future due to the emergence of drug design approaches that afforded highly isoform-selective compounds for most α-CAs known to date. They belong to a multitude of chemical classes (sulfonamides and isosteres, [iso]coumarins and related compounds, mono- and dithiocarbamates, selenols, ninhydrines, boronic acids, benzoxaboroles, etc). The polypharmacology of CAIs will also be discussed because drugs originally discovered for the treatment of non-CA related conditions (topiramate, zonisamide, celecoxib, pazopanib, thiazide, and high-ceiling diuretics) show effective inhibition against many CAs, which led to their repurposing for diverse pharmacological applications. SIGNIFICANCE STATEMENT: CAIs have multiple pharmacologic applications, such as diuretics, antiglaucoma, antiepileptic, antiobesity, antiacute mountain sickness, anti-idiopathic intracranial hypertension, and antitumor drugs. Their use in inflammatory conditions, cerebral ischemia, neuropathic pain, or neurodegenerations has started to be investigated recently. Parasite carbonic anhydrases are also drug targets for anti-infectives with novel mechanisms of action that can bypass drug resistance to commonly used agents. Drugs discovered for the management of other conditions that effectively inhibit these enzymes exert interesting polypharmacologic effects.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Neurofarba Department, University of Florence, Section of Pharmaceutical Sciences, Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
3
|
Zhao D, Rustum AM. Identification of major degradation products of Clorsulon drug substance including its degradation pathways by high resolution mass spectrometry and NMR. J Pharm Biomed Anal 2024; 246:116214. [PMID: 38781727 DOI: 10.1016/j.jpba.2024.116214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/27/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
Clorsulon is an effective anthelmintic drug substance extensively used in the treatment of parasitic infestations in both cattle and sheep. An in-depth investigation of Clorsulon's degradation products (DPs) was carried out through forced degradation study to comprehend its degradation path. A total of eight degradation products were separated under various stress degradation conditions. Structural elucidation of these DPs was conducted using ultra-high performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS), and their fragmentation patterns were compared to that of the parent compound. Adequate amount of DP-4 was isolated and purified by semi-preparative high-performance liquid chromatography (HPLC) methods. Subsequently, it was examined in detail using both 1D and 2D NMR (nuclear magnetic resonance spectroscopy). Most probable mechanistic pathways for the formation of degradation products under various stress degradation conditions were proposed to better understand the degradation profile. Based on the results of the stress study, Clorsulon drug substance was found to be unstable under photolytic and oxidative conditions. Understanding Clorsulon's degradation pathway is essential for determining shelf-life prediction of the finished product, safety and efficacy assurance, and guiding the development of stable, high-quality formulations.
Collapse
Affiliation(s)
- Daoli Zhao
- Global Pharmaceutical Technical Support (GPTS), Boehringer Ingelheim Animal Health USA Inc., North Brunswick, NJ 08902, USA.
| | - Abu M Rustum
- Global Pharmaceutical Technical Support (GPTS), Boehringer Ingelheim Animal Health USA Inc., North Brunswick, NJ 08902, USA
| |
Collapse
|
4
|
Ashour DS, Deyab FA, Eliwa KF, El-Kowrany SI. Anthelmintic potential of sulphonamides and Cucurbita pepo seeds extract on Heterophyes heterophyes experimentally infected mice. J Parasit Dis 2023; 47:697-706. [PMID: 38009148 PMCID: PMC10667198 DOI: 10.1007/s12639-023-01620-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 07/17/2023] [Indexed: 11/28/2023] Open
Abstract
Since 1980s, no new drugs were described for treatment of heterophyiasis with many side effects of the currently used drug; praziquantel. This work aimed to study the therapeutic effect of clorsulon (sulphoamide) and aqueous extract of Cucurbita pepo in the treatment of experimental heterophyiasis. Mice were infected with encysted metacercaiae of Heterophyes heterophyes obtained from infected fish flesh. Mice were divided into five groups according to the drug used. The treatment started two weeks post-infection. Our results showed reduction of the recovered worm count with high efficacy of clorsulon and a moderate effect of C. pepo which was increased in the second week with much improvement of the intestinal histopathological changes. Scanning electron microscopy of adult H. heterophyes obtained from the intestine of mice treated with praziquantel appeared contracted with multiple small vesicles over the dorsal surface. Clorsulon produced loss of the spines on the lateral sides of the parasite with few vesicles whereas C. pepo seeds showed complete loss of the spines. In conclusion, clorsulon has high efficacy against H. heterophyes infection. Although the extract of C. pepo showed moderate curative effect against this parasite, it can be used in combination with other agents for a better synergistic effect.
Collapse
Affiliation(s)
- Dalia S. Ashour
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Fetouh A. Deyab
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Kamal F. Eliwa
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Samy I. El-Kowrany
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
5
|
Haapanen S, Angeli A, Tolvanen M, Emameh RZ, Supuran CT, Parkkila S. Cloning, characterization, and inhibition of the novel β-carbonic anhydrase from parasitic blood fluke, Schistosoma mansoni. J Enzyme Inhib Med Chem 2023; 38:2184299. [PMID: 36856011 PMCID: PMC9980027 DOI: 10.1080/14756366.2023.2184299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
Schistosoma mansoni is an intestinal parasite with one β-class carbonic anhydrase, SmaBCA. We report the sequence enhancing, production, catalytic activity, and inhibition results of the recombinant SmaBCA. It showed significant catalytic activity on CO2 hydration in vitro with kcat 1.38 × 105 s-1 and kcat/Km 2.33 × 107 M-1 s-1. Several sulphonamide inhibitors, from which many are clinically used, showed submicromolar or nanomolar inhibitory effects on SmaBCA. The most efficient inhibitor with a KI of 43.8 nM was 4-(2-amino-pyrimidine-4-yl)-benzenesulfonamide. Other effective inhibitors with KIs in the range of 79.4-95.9 nM were benzolamide, brinzolamide, topiramate, dorzolamide, saccharin, epacadostat, celecoxib, and famotidine. The other tested compounds showed at least micromolar range inhibition against SmaBCA. Our results introduce SmaBCA as a novel target for drug development against schistosomiasis, a highly prevalent parasitic disease.
Collapse
Affiliation(s)
- Susanna Haapanen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland,CONTACT Susanna Haapanen Faculty of Medicine and Health Technology, Tampere University, Tampere, 33520, Finland
| | - Andrea Angeli
- Neurofarba Department, Sezione di Chimica Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Sesto Fiorentino, Italy
| | - Martti Tolvanen
- Department of Computing, University of Turku, Turku, Finland
| | - Reza Zolfaghari Emameh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Claudiu T. Supuran
- Neurofarba Department, Sezione di Chimica Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Sesto Fiorentino, Italy
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland,Fimlab Ltd, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
6
|
Supuran CT. A simple yet multifaceted 90 years old, evergreen enzyme: Carbonic anhydrase, its inhibition and activation. Bioorg Med Chem Lett 2023; 93:129411. [PMID: 37507055 DOI: 10.1016/j.bmcl.2023.129411] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
Advances in the carbonic anhydrase (CA, EC 4.2.1.1) research over the last three decades are presented, with an emphasis on the deciphering of the activation mechanism, the development of isoform-selective inhibitors/ activators by the tail approach and their applications in the management of obesity, hypoxic tumors, neurological conditions, and as antiinfectives.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Neurofarba Department, University of Florence, Section of Pharmaceutical Sciences, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
7
|
Blanco-Paniagua E, Álvarez-Fernández L, Rodríguez-Alonso A, Millán-Garcia A, Álvarez AI, Merino G. Role of the Abcg2 Transporter in Secretion into Milk of the Anthelmintic Clorsulon: Interaction with Ivermectin. Antimicrob Agents Chemother 2023; 67:e0009523. [PMID: 37078871 PMCID: PMC10190675 DOI: 10.1128/aac.00095-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/30/2023] [Indexed: 04/21/2023] Open
Abstract
Clorsulon is a benzenesulfonamide drug that is effective in treating helminthic zoonoses such as fascioliasis. When used in combination with the macrocyclic lactone ivermectin, it provides high broad-spectrum antiparasitic efficacy. The safety and efficacy of clorsulon should be studied by considering several factors such as drug-drug interactions mediated by ATP-binding cassette (ABC) transporters due to their potential effects on the pharmacokinetics and drug secretion into milk. The aim of this work was to determine the role of ABC transporter G2 (ABCG2) in clorsulon secretion into milk and the effect of ivermectin, a known ABCG2 inhibitor, on this process. Using in vitro transepithelial assays with cells transduced with murine Abcg2 and human ABCG2, we report that clorsulon was transported in vitro by both transporter variants and that ivermectin inhibited its transport mediated by murine Abcg2 and human ABCG2. Wild-type and Abcg2-/- lactating female mice were used to carry out in vivo assays. The milk concentration and the milk-to-plasma ratio were higher in wild-type mice than in Abcg2-/- mice after clorsulon administration, showing that clorsulon is actively secreted into milk by Abcg2. The interaction of ivermectin in this process was shown after the coadministration of clorsulon and ivermectin to wild-type and Abcg2-/- lactating female mice. Treatment with ivermectin had no effect on the plasma concentrations of clorsulon, but the milk concentrations and milk-to-plasma ratios of clorsulon decreased in comparison to those with treatment without ivermectin, only in wild-type animals. Consequently, the coadministration of clorsulon and ivermectin reduces clorsulon secretion into milk due to drug-drug interactions mediated by ABCG2.
Collapse
Affiliation(s)
- Esther Blanco-Paniagua
- Departamento de Ciencias Biomédicas-Fisiología, Facultad de Veterinaria, Universidad de León, León, Spain
- Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), Universidad de León, León, Spain
| | - Laura Álvarez-Fernández
- Departamento de Ciencias Biomédicas-Fisiología, Facultad de Veterinaria, Universidad de León, León, Spain
- Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), Universidad de León, León, Spain
| | - Andrea Rodríguez-Alonso
- Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), Universidad de León, León, Spain
| | - Alicia Millán-Garcia
- Departamento de Ciencias Biomédicas-Fisiología, Facultad de Veterinaria, Universidad de León, León, Spain
- Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), Universidad de León, León, Spain
| | - Ana I. Álvarez
- Departamento de Ciencias Biomédicas-Fisiología, Facultad de Veterinaria, Universidad de León, León, Spain
- Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), Universidad de León, León, Spain
| | - Gracia Merino
- Departamento de Ciencias Biomédicas-Fisiología, Facultad de Veterinaria, Universidad de León, León, Spain
- Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), Universidad de León, León, Spain
| |
Collapse
|
8
|
Sulfonamide Diuretic Azosemide as an Efficient Carbonic Anhydrase Inhibitor. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Aspatwar A, Barker H, Aisala H, Zueva K, Kuuslahti M, Tolvanen M, Primmer CR, Lumme J, Bonardi A, Tripathi A, Parkkila S, Supuran CT. Cloning, purification, kinetic and anion inhibition studies of a recombinant β-carbonic anhydrase from the Atlantic salmon parasite platyhelminth Gyrodactylus salaris. J Enzyme Inhib Med Chem 2022; 37:1577-1586. [PMID: 35637617 PMCID: PMC9176631 DOI: 10.1080/14756366.2022.2080818] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
A β-class carbonic anhydrase (CA, EC 4.2.1.1) was cloned from the genome of the Monogenean platyhelminth Gyrodactylus salaris, a parasite of Atlantic salmon. The new enzyme, GsaCAβ has a significant catalytic activity for the physiological reaction, CO2 + H2O ⇋ HCO3− + H+ with a kcat of 1.1 × 105 s−1 and a kcat/Km of 7.58 × 106 M−1 × s−1. This activity was inhibited by acetazolamide (KI of 0.46 µM), a sulphonamide in clinical use, as well as by selected inorganic anions and small molecules. Most tested anions inhibited GsaCAβ at millimolar concentrations, but sulfamide (KI of 81 µM), N,N-diethyldithiocarbamate (KI of 67 µM) and sulphamic acid (KI of 6.2 µM) showed a rather efficient inhibitory action. There are currently very few non-toxic agents effective in combating this parasite. GsaCAβ is subsequently proposed as a new drug target for which effective inhibitors can be designed.
Collapse
Affiliation(s)
- Ashok Aspatwar
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Harlan Barker
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Heidi Aisala
- Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Ksenia Zueva
- Department of Biology, University of Turku, Turku, Finland
| | - Marianne Kuuslahti
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Martti Tolvanen
- Department of Computing, University of Turku, Turku, Finland
| | - Craig R Primmer
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland.,Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Jaakko Lumme
- Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Alessandro Bonardi
- Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Sesto Fiorentino, Italy
| | - Amit Tripathi
- Department of Zoology, University of Lucknow, Lucknow, India
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Fimlab Ltd, Tampere University Hospital, Tampere, Finland
| | - Claudiu T Supuran
- Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Sesto Fiorentino, Italy
| |
Collapse
|