1
|
Yin C, Su H, Xie Y, Tu J, Zhang D, Kong X, Guo X. Estimating in vivo power deposition density in thermotherapies based on ultrasound thermal strain imaging. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2025; 157:606-617. [PMID: 39878497 DOI: 10.1121/10.0034880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/09/2024] [Indexed: 01/31/2025]
Abstract
In thermal therapies, accurate estimation of in-tissue power deposition density (PDD) is essential for predicting temperature distributions over time or regularizing temperature imaging. Based on our previous work on ultrasound thermometry, namely, multi-thread thermal strain imaging (MT-TSI), this work develops an in vivo PDD estimation method. Specifically, by combining the TSI model infinitesimal echo strain filter with the bio-heat transfer theory (the Pennes equation), a finite-difference time-domain model is established to allow online extraction of the PDD. An alternating-direction implicit method is adopted to ensure numerical stability and computational efficiency in implementing the model. Based on simulations, the accuracy and effectiveness of the model are examined by comparing a preset PDD distribution with the estimated one. Then, TSI results are obtained from ultrasound data acquired in in vivo experiments; with the PDD estimated from that, TSI distributions are then "predicted" using a validated numerical procedure. The two TSI results are compared to verify the self-consistency of the proposed method. A simplified and more efficient protocol for obtaining an "equivalent spherical PDD" is also discussed.
Collapse
Affiliation(s)
- Chuhao Yin
- Key Laboratory of Modern Acoustics (MOE), School of Physics, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- School of Integrated Circuits, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Huajin Su
- Key Laboratory of Modern Acoustics (MOE), School of Physics, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Yuting Xie
- Key Laboratory of Modern Acoustics (MOE), School of Physics, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Juan Tu
- Key Laboratory of Modern Acoustics (MOE), School of Physics, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Dong Zhang
- Key Laboratory of Modern Acoustics (MOE), School of Physics, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Xiangqing Kong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Xiasheng Guo
- Key Laboratory of Modern Acoustics (MOE), School of Physics, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
2
|
Nguyen M, Agarwal A, Kumaradas JC, Kolios MC, Peyman G, Tavakkoli JJ. Real-time non-invasive control of ultrasound hyperthermia using high-frequency ultrasonic backscattered energy in ex vivotissue and in vivoanimal studies. Phys Med Biol 2024; 69:215001. [PMID: 39392296 DOI: 10.1088/1361-6560/ad7f19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024]
Abstract
Objective.A reliable, calibrated, non-invasive thermometry method is essential for thermal therapies to monitor and control the treatment. Ultrasound (US) is an effective thermometry modality due to its relatively high sensitivity to temperature changes, and fast data acquisition and processing capabilities.Approach.In this work, the change in backscattered energy (CBE) was used to control the tissue temperature non-invasively using a real-time proportional-integral-derivative (PID) controller. A clinical high-frequency US scanner was used to acquire radio-frequency echo data fromex vivoporcine tissue samples andin vivomice hind leg tissue while the tissue was treated with mild hyperthermia by a focused US applicator. The PID controller maintained the focal temperature at approximately 40 °C for about 4 min.Main results.The results show that the US thermometry based on CBE estimated by a high-frequency US scanner can produce 2D temperature maps of a localized heating region and to estimate the focal temperature during mild hyperthermia treatments. The CBE estimated temperature varied by an average of ±0.85 °C and ±0.97 °C, compared to a calibrated thermocouple, inex vivoandin vivostudies, respectively. The mean absolute deviations of CBE thermometry during the controlled hyperthermia treatment were ±0.45 °C and ±0.54 °C inex vivoandin vivo,respectively.Significance.It is concluded that non-invasive US thermometry via backscattered energies at high frequencies can be used for real-time monitoring and control of hyperthermia treatments with acceptable accuracy. This provides a foundation for an US mediated drug delivery system.
Collapse
Affiliation(s)
- Michael Nguyen
- Department of Physics, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario, Canada
| | - Ayushi Agarwal
- Department of Physics, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario, Canada
| | - J Carl Kumaradas
- Department of Physics, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario, Canada
| | - Michael C Kolios
- Department of Physics, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Gholam Peyman
- Basic Medical Science, University of Arizona, Phoenix Campus, Phoenix, AZ, United States of America
- College of Optical Sciences, University of Arizona, Tucson Campus, Tucson, AZ, United States of America
- Cancer Rx Inc., Sun City, AZ, United States of America
| | - Jahangir Jahan Tavakkoli
- Department of Physics, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Lafond M, Payne A, Lafon C. Therapeutic ultrasound transducer technology and monitoring techniques: a review with clinical examples. Int J Hyperthermia 2024; 41:2389288. [PMID: 39134055 PMCID: PMC11375802 DOI: 10.1080/02656736.2024.2389288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/02/2024] [Accepted: 08/01/2024] [Indexed: 09/07/2024] Open
Abstract
The exponential growth of therapeutic ultrasound applications demonstrates the power of the technology to leverage the combinations of transducer technology and treatment monitoring techniques to effectively control the preferred bioeffect to elicit the desired clinical effect.Objective: This review provides an overview of the most commonly used bioeffects in therapeutic ultrasound and describes existing transducer technologies and monitoring techniques to ensure treatment safety and efficacy.Methods and materials: Literature reviews were conducted to identify key choices that essential in terms of transducer design, treatment parameters and procedure monitoring for therapeutic ultrasound applications. Effective combinations of these options are illustrated through descriptions of several clinical indications, including uterine fibroids, prostate disease, liver cancer, and brain cancer, that have been successful in leveraging therapeutic ultrasound to provide effective patient treatments.Results: Despite technological constraints, there are multiple ways to achieve a desired bioeffect with therapeutic ultrasound in a target tissue. Visualizations of the interplay of monitoring modality, bioeffect, and applied acoustic parameters are presented that demonstrate the interconnectedness of the field of therapeutic ultrasound. While the clinical indications explored in this review are at different points in the clinical evaluation path, based on the ever expanding research being conducted in preclinical realms, it is clear that additional clinical applications of therapeutic ultrasound that utilize a myriad of bioeffects will continue to grow and improve in the coming years.Conclusions: Therapeutic ultrasound will continue to improve in the next decades as the combination of transducer technology and treatment monitoring techniques will continue to evolve and be translated in clinical settings, leading to more personalized and efficient therapeutic ultrasound mediated therapies.
Collapse
Affiliation(s)
- Maxime Lafond
- LabTAU, INSERM, Centre Léon Bérard, Université, Lyon, France
| | - Allison Payne
- Department of Radiology and Imaging Sciences, University of UT, Salt Lake City, UT, USA
| | - Cyril Lafon
- LabTAU, INSERM, Centre Léon Bérard, Université, Lyon, France
| |
Collapse
|
4
|
Yang K, Li Q, Zhou X, Wang CY, Tsui PH. Ultrasound Delta CBE Imaging: A New Approach Based on Local Energy Subtraction to Localization of the HIFU Focal Spot Using Changes in Backscattered Energy. J Med Biol Eng 2024; 44:618-627. [DOI: 10.1007/s40846-024-00887-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/12/2024] [Indexed: 01/04/2025]
|
5
|
Ramu MRS, Arunachalam K, Thittai AK. Thermal Strain Estimation Using Ultrasound Echo Stretching Algorithm for Temperature Monitoring: Initial Results. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-4. [PMID: 40039053 DOI: 10.1109/embc53108.2024.10782214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Ultrasound emerges as a promising modality for temperature monitoring in thermal therapies, leveraging the favorable parameter of near-linear variation in speed of sound within the temperature range of 25 °C to 50 °C. The spatial variation of speed of sound induces thermal strain in the received ultrasound from that region. Current techniques for thermal strain estimation involve a two-step process, contributing to error propagation and amplification. We propose a single-step technique that directly estimates the thermal strain by range gating regions in reference and desired frames, stretching the RF echo to maximize cross-correlation for precise matching. This iterative process generates a stretch factor map, subsequently scaled to produce an absolute temperature map. The algorithm's performance is assessed on a homogenous tissue mimicking phantom with a curvilinear probe, demonstrating our ability to track temperature changes.
Collapse
|
6
|
Oliveira LFR, França FMG, Pereira WCA. A Data-Driven Approach for Estimating Temperature Variations Based on B-mode Ultrasound Images and Changes in Backscattered Energy. ULTRASONIC IMAGING 2024; 46:3-16. [PMID: 38041411 DOI: 10.1177/01617346231205810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
Thermal treatments that use ultrasound devices as a tool have as a key point the temperature control to be applied in a specific region of the patient's body. This kind of procedure requires caution because the wrong regulation can either limit the treatment or aggravate an existing injury. Therefore, determining the temperature in a region of interest in real-time is a subject of high interest. Although this is still an open problem, in the field of ultrasound analysis, the use of machine learning as a tool for both imaging and automated diagnostics are application trends. In this work, a data-driven approach is proposed to address the problem of estimating the temperature in regions of a B-mode ultrasound image as a supervised learning problem. The proposal consists in presenting a novel data modeling for the problem that includes information retrieved from conventional B-mode ultrasound images and a parametric image built based on changes in backscattered energy (CBE). Then, we compare the performance of classic models in the literature. The computational results presented that, in a simulated scenario, the proposed approach that a Gradient Boosting model would be able to estimate the temperature with a mean absolute error of around 0.5°C, which is acceptable in practical environments both in physiotherapic treatments and high intensity focused ultrasound (HIFU).
Collapse
Affiliation(s)
- Luiz F R Oliveira
- Program Systems Engineering and Computer Science Program, COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Felipe M G França
- Program Systems Engineering and Computer Science Program, COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Telecommunications Institute, University of Porto, Porto, Portugal
| | - Wagner C A Pereira
- Biomedical Engineering Program, COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Grutman T, Ilovitsh T. Dense speed-of-sound shift imaging for ultrasonic thermometry. Phys Med Biol 2023; 68:215004. [PMID: 37774710 DOI: 10.1088/1361-6560/acfec3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/29/2023] [Indexed: 10/01/2023]
Abstract
Objective. Develop a dense algorithm for calculating the speed-of-sound shift between consecutive acoustic acquisitions as a noninvasive means to evaluating temperature change during thermal ablation.Methods. An algorithm for dense speed-of-sound shift imaging (DSI) was developed to simultaneously incorporate information from the entire field of view using a combination of dense optical flow and inverse problem regularization, thus speeding up the calculation and introducing spatial agreement between pixels natively. Thermal ablation monitoring consisted of two main steps: pixel shift tracking using Farneback optical flow, and mathematical modeling of the relationship between the pixel displacement and temperature change as an inverse problem to find the speed-of-sound shift. A calibration constant translates from speed-of-sound shift to temperature change. The method performance was tested inex vivosamples and compared to standard thermal strain imaging (TSI) methods.Main results. Thermal ablation at a frequency of 2 MHz was applied to an agarose phantom that created a speed-of-sound shift measured by an L12-5 imaging transducer. A focal spot was reconstructed by solving the inverse problem. Next, a thermocouple measured the temperature rise during thermal ablation ofex vivochicken breast to calibrate the setup. Temperature changes between 3 °C and 15 °C was measured with high thermometry precision of less than 2 °C error for temperature changes as low as 8 °C. The DSI method outperformed standard TSI in both spatial coherence and runtime in high-intensity focused ultrasound-induced hyperthermia.Significance. Dense ultrasonic speed-of-sound shift imaging can successfully monitor the speed-of-sound shift introduced by thermal ablation. This technique is faster and more robust than current methods, and therefore can be used as a noninvasive, real time and cost-effective thermometry method, with high clinical applicability.
Collapse
Affiliation(s)
- Tal Grutman
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Tali Ilovitsh
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
8
|
Nguyen M, Zhao N, Xu Y, Tavakkoli JJ. Decorrelated compounding of synthetic aperture ultrasound imaging to detect low contrast thermal lesions induced by focused ultrasound. ULTRASONICS 2023; 134:107098. [PMID: 37437400 DOI: 10.1016/j.ultras.2023.107098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 06/13/2023] [Accepted: 06/27/2023] [Indexed: 07/14/2023]
Abstract
PURPOSE Decorrelated Compounding (DC) for synthetic aperture ultrasound can reduce speckle variation in images, suggesting enhanced detectability of low-contrast targets in tissue including thermal lesions produced by focused ultrasound (FUS). The DC imaging method has primarily been investigated in simulation and in phantom studies. This work investigates the feasibility of the DC method in monitoring thermal therapy via image guidance and non-invasive thermometry based on the change in backscattered energy (CBE). METHODS Ex vivo porcine tissue was exposed to FUS exposures at acoustic powers of 5 W and 1 W, with peak pressure amplitudes of 0.64 MPa and 0.27 MPa respectively. During FUS exposure, RF echo data frames was acquired using a 7.8 MHz linear array probe and a Verasonics VantageTM ultrasound scanner (Verasonics Inc., Redmond, WA). RF echo data was taken to produce B-mode images, as reference images. Synthetic aperture RF echo data was also acquired and processed using delay-and-sum (DAS), a combination of spatial and frequency compounding referred to as Traditional Compounding (TC), and the proposed DC imaging methods. Image quality was assessed using the contrast-to-noise ratio (CNR) at the FUS beam focus, and the speckle SNR (sSNR) of the background region as preliminary metrics. A calibrated thermocouple was placed near the FUS beam focus for temperature measurements and calibrations using the CBE method. RESULTS The DC imaging method significantly improved image quality to detect low contrast thermal lesions in treated ex vivo porcine tissue in comparison to other imaging methods. In comparison to B-mode imaging, the lesion CNR measured using the DC imaging was shown to improve up to a factor of approximately 5.5. The corresponding sSNR improved by a factor of approximately 4.2 in comparison to B-mode imaging. CBE calculation using the DC imaging method yielded more precise measurements of the backscattered energy compared to other imaging methods studied. CONCLUSIONS The despeckling performance of the DC imaging method significantly improves the lesion CNR in comparison to B-mode imaging. This suggests that the proposed method can detect low-contrast thermal lesions induced by FUS therapy that are not detectable using standard B-mode imaging. Furthermore, the signal change at the focal point were more precisely measured by DC imaging, and the signal change in response to FUS exposure follows the temperature profile more closely than changes measured using B-mode, as well as synthetic aperture DAS and TC images. These suggest that DC imaging can potentially be used with the CBE method to improve non-invasive thermometry.
Collapse
Affiliation(s)
- Michael Nguyen
- Department of Physics, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario, Canada
| | - Na Zhao
- Department of Physics, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario, Canada
| | - Yuan Xu
- Department of Physics, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario, Canada
| | - Jahangir Jahan Tavakkoli
- Department of Physics, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada.
| |
Collapse
|
9
|
Manaf NA, Wahab AA, Rasheed HA, Aziz MNC, Salim MIM, Sahalan M, Hum YC, Lai KW. Investigation of single beam ultrasound sensitivity as a monitoring tool for local hyperthermia treatment in breast cancer. MULTIMEDIA TOOLS AND APPLICATIONS 2023; 82:5011-5030. [DOI: 10.1007/s11042-021-11845-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 09/17/2021] [Accepted: 12/23/2021] [Indexed: 09/01/2023]
|
10
|
Behnia A, Behnam H, Shaswary E, Tavakkoli J. Thermometry using entropy imaging of ultrasound radio frequency signal time series. Proc Inst Mech Eng H 2022; 236:1502-1512. [DOI: 10.1177/09544119221122645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Low intensity focused ultrasound (LIFU) is a novel approach that could activate drug release and considerably improve the delivery of anticancer drug. LIFU treatment has some features like is able to penetrate deep into the tissue and being non-invasive, as a consequence LIFU displays great capability for controlling the drug release and improving the chemotherapy treatment efficiency. The goal of this study is to research the feasibility of the entropy parameter of RF time series of ultrasound backscattered signals for measuring the changes in temperature induced by a LIFU device. Entropy Imaging is a technique for reconstructing ultrasound images based on the average uncertainty of time-series in a signal. Furthermore, the Shannon Entropy can quantify the uncertainty of a random process and is usually used as a measure for the information content of probability distributions. In this study, we use the Entropy Imaging method for measuring the LIFU-induced temperature changes in the deep region of ex vivo porcine tissue samples. The results obtained show that the changes of entropy parameter of RF time series signal are proportional to temperature changes recorded by a calibrated thermocouple in the temperature range of 37–47°C. In conclusion, in this study we show that Shannon entropy of RF time series signal possesses promising features like succinctly capturing the available information in a system by considering the uncertainty in a given data that can be used, as a new method, to measure temperature changes non-invasively and quantitatively in the deep region of tissue.
Collapse
Affiliation(s)
- Ashkan Behnia
- School of Electrical Engineering, Department of Biomedical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Hamid Behnam
- School of Electrical Engineering, Department of Biomedical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Elyas Shaswary
- Department of Physics, Ryerson University, Toronto, ON, Canada
| | - Jahan Tavakkoli
- Department of Physics, Ryerson University, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, Institute for Biomedical Engineering, Science and Technology (iBEST), St. Michael’s Hospital, Toronto, ON, Canada
| |
Collapse
|
11
|
Pattyn A, Kratkiewicz K, Alijabbari N, Carson PL, Littrup P, Fowlkes JB, Duric N, Mehrmohammadi M. Feasibility of ultrasound tomography-guided localized mild hyperthermia using a ring transducer: Ex vivo and in silico studies. Med Phys 2022; 49:6120-6136. [PMID: 35759729 DOI: 10.1002/mp.15829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND As of 2022, breast cancer continues to be the most diagnosed cancer worldwide. This problem persists within the United States as well, as the American Cancer Society has reported that ∼12.5% of women will be diagnosed with invasive breast cancer over the course of their lifetime. Therefore, a clinical need continues to exist to address this disease from a treatment and therapeutic perspective. Current treatments for breast cancer and cancers more broadly include surgery, radiation, and chemotherapy. Adjuncts to these methods have been developed to improve the clinical outcomes for patients. One such adjunctive treatment is mild hyperthermia therapy (MHTh), which has been shown to be successful in the treatment of cancers by increasing effectiveness and reduced dosage requirements for radiation and chemotherapies. MHTh-assisted treatments can be performed with invasive thermal devices, noninvasive microwave induction, heating and recirculation of extracted patient blood, or whole-body hyperthermia with hot blankets. PURPOSE One common method for inducing MHTh is by using microwave for heat induction and magnetic resonance imaging for temperature monitoring. However, this leads to a complex, expensive, and inaccessible therapy platform. Therefore, in this work we aim to show the feasibility of a novel all-acoustic MHTh system that uses focused ultrasound (US) to induce heating while also using US tomography (UST) to provide temperature estimates. Changes in sound speed (SS) have been shown to be strongly correlated with temperature changes and can therefore be used to indirectly monitor heating throughout the therapy. Additionally, these SS estimates allow for heterogeneous SS-corrected phase delays when heating complex and heterogeneous tissue structures. METHODS Feasibility to induce localized heat in tissue was investigated in silico with a simulated breast model, including an embedded tumor using continuous wave US. Here, both heterogenous acoustic and thermal properties were modeled in addition to blood perfusion. We further demonstrate, with ex vivo tissue phantoms, the feasibility of using ring-based UST to monitor temperature by tracking changes in SS. Two phantoms (lamb tissue and human abdominal fat) with latex tubes containing varied temperature flowing water were imaged. The measured SS of the water at each temperature were compared against values that are reported in literature. RESULTS Results from ex vivo tissue studies indicate successful tracking of temperature under various phantom configurations and ranges of water temperature. The results of in silico studies show that the proposed system can heat an acoustically and thermally heterogenous breast model to the clinically relevant temperature of 42°C while accounting for a reasonable time needed to image the current cross section (200 ms). Further, we have performed an initial in silico study demonstrating the feasibility of adjusting the transmit waveform frequency to modify the effective heating height at the focused region. Lastly, we have shown in a simpler 2D breast model that MHTh level temperatures can be maintained by adjusting the transmit pressure intensity of the US ring. CONCLUSIONS This work has demonstrated the feasibility of using a 256-element ring array transducer for temperature monitoring; however, future work will investigate minimizing the difference between measured SS and the values shown in literature. A hypothesis attributes this bias to potential volumetric average artifacts from the ray-based SS inversion algorithm that was used, and that moving to a waveform-based SS inversion algorithm will greatly improve the SS estimates. Additionally, we have shown that an all-acoustic MHTh system is feasible via in silico studies. These studies have indicated that the proposed system can heat a tumor within a heterogenous breast model to 42°C within a narrow time frame. This holds great promise for increasing the accessibility and reducing the complexity of a future all-acoustic MHTh system.
Collapse
Affiliation(s)
- Alexander Pattyn
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, USA
| | - Karl Kratkiewicz
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, USA.,Department of Oncology, Wayne State University, Detroit, Michigan, USA
| | - Naser Alijabbari
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, USA
| | - Paul L Carson
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Peter Littrup
- Delphinus Medical Technologies, Novi, Michigan, USA.,Ascension Providence Rochester Radiology, Rochester, Michigan, USA
| | - J Brian Fowlkes
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Nebojsa Duric
- Delphinus Medical Technologies, Novi, Michigan, USA.,Department of Imaging Sciences, University of Rochester, Rochester, New York, USA
| | - Mohammad Mehrmohammadi
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, USA.,Department of Electrical and Computer Engineering, Wayne State University, Detroit, Michigan, USA.,Barbara Ann Karmanos Cancer Institute, Detroit, Michigan, USA
| |
Collapse
|
12
|
Byra M, Klimonda Z, Kruglenko E, Gambin B. Unsupervised deep learning based approach to temperature monitoring in focused ultrasound treatment. ULTRASONICS 2022; 122:106689. [PMID: 35134653 DOI: 10.1016/j.ultras.2022.106689] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 11/25/2021] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
Temperature monitoring in ultrasound (US) imaging is important for various medical treatments, such as high-intensity focused US (HIFU) therapy or hyperthermia. In this work, we present a deep learning based approach to temperature monitoring based on radio-frequency (RF) US data. We used Siamese neural networks in an unsupervised way to spatially compare RF data collected at different time points of the heating process. The Siamese model consisted of two identical networks initially trained on a large set of simulated RF data to assess tissue backscattering properties. To illustrate our approach, we experimented with a tissue-mimicking phantom and an ex-vivo tissue sample, which were both heated with a HIFU transducer. During the experiments, we collected RF data with a regular US scanner. To determine spatiotemporal variations in temperature distribution within the samples, we extracted small 2D patches of RF data and compared them with the Siamese network. Our method achieved good performance in determining the spatiotemporal distribution of temperature during heating. Compared with the temperature monitoring based on the change in radio-frequency signal backscattered energy parameter, our method provided more smooth spatial parametric maps and did not generate ripple artifacts. The proposed approach, when fully developed, might be used for US based temperature monitoring of tissues.
Collapse
Affiliation(s)
- Michal Byra
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland.
| | - Ziemowit Klimonda
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Eleonora Kruglenko
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Barbara Gambin
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
13
|
Yin C, Wang G, Xie Y, Tu J, Sun W, Kong X, Guo X, Zhang D. Separated Respiratory Phases for In Vivo Ultrasonic Thermal Strain Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:1219-1229. [PMID: 35130155 DOI: 10.1109/tuffc.2022.3149287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Thermal strain imaging (TSI) uses echo shifts in ultrasonic B-scan images to estimate changes in temperature which is of great values for thermotherapies. However, for in vivo applications, it is difficult to overcome the artifacts and errors arising from physiological motions. Here, a respiration separated TSI (RS-TSI) method is proposed, which can be considered as carrying out TSI in each of the exhalation and inhalation phases and then combining the results. Normalized cross correlation (NXcorr) coefficient between RF images along the timeline are used to extract the respiratory frequency, after which reference frames are selected to identify the exhalation and inhalation phases, and the two phases are divided quasi-periodically. RF images belonging to both phases are selected by applying NXcorr thresholds, and motion compensation together with a second frame selection helps to obtain two finely matched image sequences. After TSI calculations for each phase, the two processes are merged into one through extrapolation and interphase averaging. Compared to TSI based on dynamic frame selection (DFS), RS-TSI ensures that frames are selected during both the exhalation and inhalation phases while setting the frame selection range according to the respiratory frequency helps to improve motion compensation. The temporal intervals of TSI output are approximately half that employing DFS.
Collapse
|
14
|
Hornsby T, Shaswary E, Tavakkoli JJ. Development of an ultrasonic nonlinear frequency compounding method with applications in tissue thermometry. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 150:3192. [PMID: 34717469 DOI: 10.1121/10.0006207] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Frequency compounding is an ultrasound imaging technique used to improve signal-to-noise ratio (SNR). In this work, a nonlinear frequency compounding (NLFC) method was introduced, and its application in noninvasive tissue thermometry investigated. The NLFC method was used to produce two-dimensional maps of the temperature sensitive change in backscattered energy of acoustic harmonics (hCBE), during heating of ex vivo porcine tissue with a low intensity focused ultrasound transducer. A hCBE-to-temperature calibration was performed, and temperature maps produced and compared with a theoretical COMSOL based model. Last, a comparative study of the NLFC and previously used nonlinear single frequency (NLSF) methods was completed to quantify the improvement in SNR of the produced hCBE maps. When using the NLFC method, a SNR of 6.06 ± 1.28 was found. SNR values of 3.70 ± 0.53 and 4.38 ± 0.84 were found while using central frequencies of 4.31 and 5.43 MHz, respectively, with the NLSF method. This translates to an improvement of (64.13 ± 4.16)% over the 4.31 MHz NLSF, and (38.72 ± 2.97)% over the 5.43 MHz NLSF methods overall. It was concluded that the NLFC method can produce hCBE and temperature maps with superior image SNR over the NLSF method.
Collapse
Affiliation(s)
- Tyler Hornsby
- Department of Physics, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Elyas Shaswary
- Department of Physics, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Jahangir Jahan Tavakkoli
- Department of Physics, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| |
Collapse
|
15
|
Blais S, Porée J, Ramos-Palacios G, Desmarais S, Perrot V, Sadikot A, Provost J. Equivalent time active cavitation imaging. Phys Med Biol 2021; 66. [PMID: 34320473 DOI: 10.1088/1361-6560/ac1877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 07/28/2021] [Indexed: 11/12/2022]
Abstract
RATIONALE Despite the development of a large number of neurologically active drugs, brain diseases are difficult to treat due to the inability of many drugs to penetrate the blood-brain barrier. High-intensity focused ultrasound blood-brain barrier opening in a site-specific manner could significantly expand the spectrum of available drug treatments. However, without monitoring, brain damage and off target effects can occur during these treatments. While some methods can monitor inertial cavitation, temperature increase, or passively monitor cavitation events, to the best of our knowledge none of them can actively and spatiotemporally map the high intensity focused ultrasound pressure field during treatment. METHODS Here we detail the development of a novel ultrasound imaging modality called Equivalent Time Active Cavitation Imaging capable of characterizing the high-intensity focused ultrasound pressure field through stable cavitation events across the field of view with an ultrafast active imaging setup. This work introduces 1) a novel plane wave sequence whose transmit delays increase linearly with transmit events enabling the sampling of high-frequency cavitation events, and 2) an algorithm allowing the filtration of the microbubble signal for pressure field mapping. The pressure measurements with our modality were first carried out in vitro for hydrophone comparison and then in vivo during blood-brain barrier opening treatment in mice. RESULTS This study demonstrates the ability of our modality to spatiotemporally characterize a modulation pressure field with an active imaging setup. The resulting pressure field mapping reveals a good correlation with hydrophone measurements. Further proof is provided experimentally in vivo with promising results. CONCLUSION This proof of concept establishes the first steps towards a novel ultrasound modality for monitoring focused ultrasound blood-brain barrier opening, allowing new possibilities for a safe and precise monitoring method.
Collapse
Affiliation(s)
- Simon Blais
- Engineering Physics Department, Polytechnique Montréal, Montreal, Quebec, CANADA
| | - Jonathan Porée
- Engineering Physics Department, Polytechnique Montreal, Montreal, Quebec, CANADA
| | | | - Samuel Desmarais
- Engineering Physics Department, Montreal Polytechnic, Montreal, Quebec, CANADA
| | - Vincent Perrot
- Engineering Physics Department, Polytechnique Montréal, Montreal, Quebec, CANADA
| | - Abbas Sadikot
- Montreal Neurological Institute and Hospital, Montreal, Quebec, CANADA
| | - Jean Provost
- 1 Engineering Physics Department, Polytechnique Montreal, Montreal, Quebec, CANADA
| |
Collapse
|
16
|
Shaswary E, Assi H, Yang C, Kumaradas JC, Kolios MC, Peyman G, Tavakkoli J. Noninvasive calibrated tissue temperature estimation using backscattered energy of acoustic harmonics. ULTRASONICS 2021; 114:106406. [PMID: 33691235 DOI: 10.1016/j.ultras.2021.106406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/20/2020] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
PURPOSE A real-time and non-invasive thermometry technique is essential in thermal therapies to monitor and control the treatment. Ultrasound is an attractive thermometry modality due to its relatively high sensitivity to change in temperature and fast data acquisition and processing capabilities. A temperature-sensitive acoustic parameter is required for ultrasound thermometry in order to track the changes in that parameter during the treatment. Currently, the main ultrasound thermometry methods are based on variation in the attenuation coefficient, the change in backscattered energy of the signal (CBE), the backscattered radio-frequency (RF) echo-shift due to change in the speed of sound and thermal expansion of the medium, and change in the amplitudes of the acoustic harmonics. In this work, an ultrasound thermometry method based on second harmonic CBE (CBEh2) and combined fundamental and second harmonic CBE (CBEcomb) is used to produce 2D temperature maps, detect localized heated region generated by low intensity focused ultrasound (LIFU), and control temperature in the heated region. MATERIALS AND METHODS Ex vivo pork muscle tissue samples were exposed to localized LIFU heating source and 2D temperature maps were produced from the RF data acquired by a 4.2 MHz linear array probe using a Verasonics Vantage™ ultrasound scanner (Verasonics Inc., Redmond, WA) after the exposure. Calibrated needle thermocouples were also placed in the ex vivo tissue sample close to the LIFU focal zone for temperature calibration purposes. The estimated temperature maps were the established echo-shift technique. A tissue motion compensation algorithm was also used to reduce the susceptibility to motion artifacts. RESULTS 2D temperature maps were generated using CBE of acoustic harmonic and echo-shift techniques. The results show a direct correlation between the CBE of acoustic harmonics and focal tissue temperature for a range of temperatures from 37 °C (baseline) to 47 °C. CONCLUSIONS The findings of this study show that the CBE of acoustic harmonics technique can be used to noninvasively estimate temperature change in tissue in the hyperthermia temperature range.
Collapse
Affiliation(s)
- Elyas Shaswary
- Department of Physics, Ryerson University, 350 Victoria Street, Toronto, Ontario, Canada
| | - Hisham Assi
- Department of Physics, Ryerson University, 350 Victoria Street, Toronto, Ontario, Canada
| | - Celina Yang
- Department of Physics, Ryerson University, 350 Victoria Street, Toronto, Ontario, Canada
| | - J Carl Kumaradas
- Department of Physics, Ryerson University, 350 Victoria Street, Toronto, Ontario, Canada
| | - Michael C Kolios
- Department of Physics, Ryerson University, 350 Victoria Street, Toronto, Ontario, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Gholam Peyman
- Basic Medical Science, University of Arizona, Phoenix Campus, AZ, USA; College of Optical Sciences, University of Arizona, Tucson Campus, AZ, USA; Cancer Rx Inc., Sun City, AZ, USA
| | - Jahan Tavakkoli
- Department of Physics, Ryerson University, 350 Victoria Street, Toronto, Ontario, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada.
| |
Collapse
|
17
|
Khalid WB, Chen X, Kim K. Multifocus Thermal Strain Imaging Using a Curved Linear Array Transducer for Identification of Lipids in Deep Tissue. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:1711-1724. [PMID: 33931283 DOI: 10.1016/j.ultrasmedbio.2021.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 02/28/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Thermal strain imaging (TSI) is an ultrasound-based imaging technique intended primarily for diseases in which lipid accumulation is the main biomarker. The goal of the research described here was to successfully implement TSI on a single, commercially available curved linear array transducer for heating and imaging of organs at a deeper depth. For an effective temperature rise of the tissue over a large area, which is key to TSI performance, an innovative multifocus beamforming approach was applied. This yielded a heating area from 32 to 96 mm in the axial direction and -7 to +7 mm in the lateral direction. The pressure fields generated from simulation were in agreement with pressure fields measured with the hydrophone. TSI with safe acoustic power identified with high contrast a rubber inclusion and liposuction fat tissue embedded in a gelatin block.
Collapse
Affiliation(s)
- Waqas B Khalid
- Department of Bioengineering, University of Pittsburgh School of Engineering, Pittsburgh, Pennsylvania, USA
| | - Xucai Chen
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; Center for Ultrasound Molecular Imaging and Therapeutics, Department of Medicine, University of Pittsburgh School of Medicine, Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Kang Kim
- Department of Bioengineering, University of Pittsburgh School of Engineering, Pittsburgh, Pennsylvania, USA; Center for Ultrasound Molecular Imaging and Therapeutics, Department of Medicine, University of Pittsburgh School of Medicine, Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA; Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; Department of Mechanical Engineering and Materials Science, University of Pittsburgh School of Engineering, Pittsburgh, Pennsylvania, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
18
|
Takagi R, Koseki Y, Yoshizawa S, Umemura SI. Investigation of feasibility of noise suppression method for cavitation-enhanced high-intensity focused ultrasound treatment. ULTRASONICS 2021; 114:106394. [PMID: 33657511 DOI: 10.1016/j.ultras.2021.106394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 01/11/2021] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
In high-intensity focused ultrasound (HIFU) treatment, a method that monitors tissue changes while irradiating therapeutic ultrasound is needed to detect changes in the order of milliseconds due to thermal coagulation and the presence of cavitation bubbles. The new filtering method in which only the HIFU noise was reduced while the tissue signals remained intact was proposed in the conventional HIFU exposure in our preliminary study. However, HIFU was irradiated perpendicular to the direction of the imaging ultrasound in the preliminary experiment, which was believed to be impractical. This study investigated the efficacy of the proposed method a parallel setup, in which both HIFU and imaging beams have the same axis just as in a practical application. In addition, this filtering algorithm was applied to the "Trigger HIFU" sequence in which ultrasound-induced cavitation bubbles were generated in the HIFU focal region to enhance heating. In this setup and sequence, HIFU noise level was increased and the summation or difference tone induced by the interaction of HIFU waves with the imaging pulse has the potential to affect this proposed method. Ex-vivo experiments proved that the HIFU noise was selectively eliminated by the proposed filtering method in which chaotic acoustic signals were emitted by the cavitation bubbles at the HIFU focus. These results suggest that the proposed method was practically efficient for monitoring tissue changes in HIFU-induced cavitation bubbles.
Collapse
Affiliation(s)
- Ryo Takagi
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8564, Japan.
| | - Yoshihiko Koseki
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8564, Japan
| | - Shin Yoshizawa
- Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | | |
Collapse
|
19
|
Khalid WB, Farhat N, Lavery L, Jarnagin J, Delany JP, Kim K. Non-invasive Assessment of Liver Fat in ob/ob Mice Using Ultrasound-Induced Thermal Strain Imaging and Its Correlation with Hepatic Triglyceride Content. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:1067-1076. [PMID: 33468357 PMCID: PMC7936391 DOI: 10.1016/j.ultrasmedbio.2020.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/21/2020] [Accepted: 12/12/2020] [Indexed: 06/12/2023]
Abstract
Non-alcoholic fatty liver disease is the accumulation of triglycerides in liver. In its malignant form, it can proceed to steatohepatitis, fibrosis, cirrhosis, cancer and ultimately liver impairment, leading to liver transplantation. In a previous study, ultrasound-induced thermal strain imaging (US-TSI) was used to distinguish between excised fatty livers from obese mice and non-fatty livers from control mice. In this study, US-TSI was used to quantify lipid composition of fatty livers in ob/ob mice (n = 28) at various steatosis stages. A strong correlation coefficient was observed (R2 = 0.85) between lipid composition measured with US-TSI and hepatic triglyceride content. Hepatic triglyceride content is used to quantify adipose tissue in liver. The ob/ob mice were divided into three groups based on the degree of steatosis that is used in clinics: none, mild and moderate. A non-parametric Kruskal-Wallis test was conducted to determine if US-TSI can potentially differentiate among the steatosis grades in non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Waqas B Khalid
- Department of Bioengineering, University of Pittsburgh School of Engineering, Pittsburgh, Pennsylvania, USA
| | - Nadim Farhat
- Department of Bioengineering, University of Pittsburgh School of Engineering, Pittsburgh, Pennsylvania, USA
| | - Linda Lavery
- Center for Ultrasound Molecular Imaging and Therapeutics, Department of Medicine, University of Pittsburgh School of Medicine, Heart and Vascular Institute, University of Pittsburgh Medical Center
| | - Josh Jarnagin
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - James P Delany
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kang Kim
- Department of Bioengineering, University of Pittsburgh School of Engineering, Pittsburgh, Pennsylvania, USA; Center for Ultrasound Molecular Imaging and Therapeutics, Department of Medicine, University of Pittsburgh School of Medicine, Heart and Vascular Institute, University of Pittsburgh Medical Center; Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; Department of Mechanical Engineering and Materials Science, University of Pittsburgh School of Engineering, Pittsburgh, Pennsylvania, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
20
|
Zaltieri M, Massaroni C, Cauti FM, Schena E. Techniques for Temperature Monitoring of Myocardial Tissue Undergoing Radiofrequency Ablation Treatments: An Overview. SENSORS (BASEL, SWITZERLAND) 2021; 21:1453. [PMID: 33669692 PMCID: PMC7922285 DOI: 10.3390/s21041453] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 12/18/2022]
Abstract
Cardiac radiofrequency ablation (RFA) has received substantial attention for the treatment of multiple arrhythmias. In this scenario, there is an ever-growing demand for monitoring the temperature trend inside the tissue as it may allow an accurate control of the treatment effects, with a consequent improvement of the clinical outcomes. There are many methods for monitoring temperature in tissues undergoing RFA, which can be divided into invasive and non-invasive. This paper aims to provide an overview of the currently available techniques for temperature detection in this clinical scenario. Firstly, we describe the heat generation during RFA, then we report the principle of work of the most popular thermometric techniques and their features. Finally, we introduce their main applications in the field of cardiac RFA to explore the applicability in clinical settings of each method.
Collapse
Affiliation(s)
- Martina Zaltieri
- Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 00128 Rome, Italy; (M.Z.); (C.M.)
| | - Carlo Massaroni
- Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 00128 Rome, Italy; (M.Z.); (C.M.)
| | - Filippo Maria Cauti
- Arrhythmology Unit, Cardiology Division, S. Giovanni Calibita Hospital, Isola Tiberina, 00186 Rome, Italy;
| | - Emiliano Schena
- Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 00128 Rome, Italy; (M.Z.); (C.M.)
| |
Collapse
|
21
|
Yin C, Wang G, Yang K, Tu J, Guo X, Zhang D. Thermal strain imaging in vivo using interpolated IQ-images. ULTRASONICS 2021; 110:106292. [PMID: 33152656 DOI: 10.1016/j.ultras.2020.106292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/27/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
Thermal strain imaging (TSI) is a promising technique for ultrasonic thermometry, especially in the applications of thermal therapies. The accuracy of TSI is dependent on the sampling rate and line density of B-Scan images, and the prevalent IQ-demodulated ultrasound data outputted from low- and middle-end machines are therefore insufficient. Here, the feasibility of using interpolated IQ images for TSI (based on the "infinitesimal echo strain filter" model) is studied through in vivo experiments targeting the perirenal fat of pigs. It is demonstrated that, axial interpolations, especially those using the zero-padding algorithm, can recover the capabilities of the low-sampling-rate complex IQ images in TSI, and make their performances comparable to those of RF/IQ complex images with higher sample rate. Meanwhile, interpolations along the lateral direction can increase the line density of IQ images, reduce TSI errors, and reveal more details in the temperature maps. In the experiments, the variation in the thermometry coefficient (the k-value) is well below 3%. The findings here bring down the requirement of high sampling rate as well as high line density of US images in TSI, making it possible to be applied on common US machines.
Collapse
Affiliation(s)
- Chuhao Yin
- Key Laboratory of Modern Acoustics (MOE), School of Physics, Collaborative Innovation Centre of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Guanzhu Wang
- Key Laboratory of Modern Acoustics (MOE), School of Physics, Collaborative Innovation Centre of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Kexin Yang
- Key Laboratory of Modern Acoustics (MOE), School of Physics, Collaborative Innovation Centre of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Juan Tu
- Key Laboratory of Modern Acoustics (MOE), School of Physics, Collaborative Innovation Centre of Advanced Microstructure, Nanjing University, Nanjing 210093, China; The State Key Laboratory of Acoustics, Chinese Academy of Science, Beijing 10080, China
| | - Xiasheng Guo
- Key Laboratory of Modern Acoustics (MOE), School of Physics, Collaborative Innovation Centre of Advanced Microstructure, Nanjing University, Nanjing 210093, China.
| | - Dong Zhang
- Key Laboratory of Modern Acoustics (MOE), School of Physics, Collaborative Innovation Centre of Advanced Microstructure, Nanjing University, Nanjing 210093, China; The State Key Laboratory of Acoustics, Chinese Academy of Science, Beijing 10080, China.
| |
Collapse
|
22
|
Hadadian Y, Uliana JH, Carneiro AAO, Pavan TZ. A Novel Theranostic Platform: Integration of Magnetomotive and Thermal Ultrasound Imaging With Magnetic Hyperthermia. IEEE Trans Biomed Eng 2020; 68:68-77. [PMID: 32356735 DOI: 10.1109/tbme.2020.2990873] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Nanotheranostic systems integrate therapeutic and diagnostic procedures using nanotechnology. This type of approach has enabled the development of methods for early detection and treatment of different pathologies. Magnetic hyperthermia (MH) has been proposed as an alternative or complementary method of cancer therapy. However, challenges such as delivering and localizing the magnetic nanoparticles (MNPs) within tissues and monitoring the temperature during the treatment hinder this technique to be effectively translated into a clinical routine. Therefore, in this study a theranostic platform has been proposed and examined to address two main issues, localizing MNPs and real-time temperature monitoring, for preclinical MH. METHODS The system integrates magnetomotive (MMUS) and thermal ultrasound imaging with MH. An ultrasound device was used to acquire MMUS images to detect MNPs, and ultrasound thermometry to monitor the temperature. This platform was designed such that a single coil generated the magnetic field for MMUS and MH. The feasibility of the system was examined using a tissue mimicking phantom containing an inclusion filled with zinc substituted magnetite NPs. RESULTS These MNPs were effectively used as contrast agent for MMUS and to generate heat during MH. In addition to localizing MNPs, real-time two-dimensional temperature maps were obtained with substantial concordance (ρc > 0.97) with invasive measurements using fiber optic thermometer. The heating rate was proportional to the displacements in MMUS (r = 0.92). CONCLUSION Ultrasound thermometry was successfully used to monitor the temperature during MH. In addition, it was shown that acquiring MMUS images prior to MH can qualitatively predict the temperature distribution of the MNP-laden regions.
Collapse
|
23
|
Alvarenga AV, Teixeira CAD, von Krüger MA, Pereira WCA. Method for estimating average grey-level's measurement uncertainty from ultrasound images for non-invasive estimation of temperature in different tissue types. ULTRASONICS 2020; 106:106139. [PMID: 32298848 DOI: 10.1016/j.ultras.2020.106139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 06/11/2023]
Abstract
The objective of this work is to assess, on metrological basis, the average grey-levels (AVGL) calculated from B-Mode images for estimating temperature variations non-invasively in different kinds of tissues. Thermal medicine includes several thermal therapies, being hyperthermia the most noted and well known. Recently, efforts have been made to understand the benefits of ultrasound hyperthermia at mild temperature levels, i.e., between 39 °C and 41 °C. Moreover, the best practices on ultrasound bio-effects research have been encouraged by recommending that temperature rise in the region of interest should be measured even when a thermal mechanism is not being tested. In this work, the average grey-levels (AVGL) calculated from B-Mode images were assessed for non-invasive temperature estimation in a porcine tissue sample containing two different tissue types, fat and muscle, with temperature varying from 35 °C to 41 °C. The sample was continuously imaged with an ultrasound scanner, and simultaneously the temperature was measured. The achieved results were assessed under the light of the measurement uncertainty in order to allow comparability among different ultrasound thermometry methods. The highest expanded uncertainty of estimating temperature variation using AVGL was determined as 0.68 °C.
Collapse
Affiliation(s)
- André V Alvarenga
- Laboratory of Ultrasound, National Institute of Metrology, Quality and Technology (Inmetro), Brazil.
| | - César A D Teixeira
- Univ Coimbra, CISUC-Centre for Informatics and Systems of the University of Coimbra, Department of Informatics Engineering, 3030-290 Coimbra, Portugal
| | - Marco A von Krüger
- Biomedical Engineering Program - COPPE, Federal University of Rio de Janeiro (UFRJ), C.T. Block H, Room H327, Ilha do Fundão, ZIP 21.941-914 Rio de Janeiro, Brazil
| | - Wagner C A Pereira
- Biomedical Engineering Program - COPPE, Federal University of Rio de Janeiro (UFRJ), C.T. Block H, Room H327, Ilha do Fundão, ZIP 21.941-914 Rio de Janeiro, Brazil
| |
Collapse
|
24
|
Raiko J, Koskensalo K, Sainio T. Imaging-based internal body temperature measurements: The journal Temperature toolbox. Temperature (Austin) 2020; 7:363-388. [PMID: 33251282 PMCID: PMC7678923 DOI: 10.1080/23328940.2020.1769006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 12/27/2022] Open
Abstract
Noninvasive imaging methods of internal body temperature are in high demand in both clinical medicine and physiological research. Thermography and thermometry can be used to assess tissue temperature during thermal therapies: ablative and hyperthermia treatments to ensure adequate temperature rise in target tissues but also to avoid collateral damage by heating healthy tissues. In research use, measurement of internal body temperature enables us the production of thermal maps on muscles, internal organs, and other tissues of interest. The most used methods for noninvasive imaging of internal body temperature are based on different parameters acquired with magnetic resonance imaging, ultrasound, computed tomography, microwave radiometry, photoacoustic imaging, and near-infrared spectroscopy. In the current review, we examine the aforementioned imaging methods, their use in estimating internal body temperature in vivo with their advantages and disadvantages, and the physical phenomena the thermography or thermometry modalities are based on.
Collapse
Affiliation(s)
- Juho Raiko
- Turku PET Centre, University of Turku, Turku, Finland
- Department of Nutrition and Movement Sciences, Maastricht University, Maastricht, The Netherlands
| | - Kalle Koskensalo
- Department of Medical Physics, Turku University Hospital, Turku, Finland
| | - Teija Sainio
- Department of Medical Physics, Turku University Hospital, Turku, Finland
| |
Collapse
|
25
|
Yang K, Li Q, Liu HL, Chen CK, Huang CW, Chen JR, Tsai YW, Zhou Z, Tsui PH. Frequency-domain CBE imaging for ultrasound localization of the HIFU focal spot: a feasibility study. Sci Rep 2020; 10:5468. [PMID: 32214201 PMCID: PMC7096526 DOI: 10.1038/s41598-020-62363-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 03/10/2020] [Indexed: 11/25/2022] Open
Abstract
High-intensity focused ultrasound (HIFU) is a well-accepted tool for noninvasive thermal therapy. To control the quality of HIFU treatment, the focal spot generated in tissues must be localized. Ultrasound imaging can monitor heated regions; in particular, the change in backscattered energy (CBE) allows parametric imaging to visualize thermal information in the tissue. Conventional CBE imaging constructed in the spatial domain may be easily affected by noises when the HIFU focal spot is visualized. This study proposes frequency-domain CBE imaging to improve noise tolerance and image contrast in HIFU focal spot monitoring. Phantom experiments were performed in a temperature-controlled environment. HIFU of 2.12 MHz was applied to the phantoms, during which a clinical scanner equipped with a 3-MHz convex array transducer was used to collect raw image data consisting of backscattered signals for B-mode, spatial-, and frequency-domain CBE imaging. Concurrently, temperature changes were measured at the focal spot using a thermocouple for comparison with CBE values by calculating the correlation coefficient r. To further analyze CBE image contrast levels, a contrast factor was introduced, and an independent t-test was performed to calculate the probability value p. Experimental results showed that frequency-domain CBE imaging performed well in thermal distribution visualization, enabling quantitative detection of temperature changes. The CBE value calculated in the frequency domain also correlated strongly with that obtained using the conventional spatial-domain approach (r = 0.97). In particular, compared with the image obtained through the conventional method, the contrast of the CBE image obtained using the method based on frequency-domain analysis increased by 2.5-fold (4 dB; p < 0.05). Frequency-domain computations may constitute a new strategy when ultrasound CBE imaging is used to localize the focal spot in HIFU treatment planning.
Collapse
Affiliation(s)
- Kun Yang
- School of Microelectronics, Tianjin University, Tianjin, China
| | - Qiang Li
- School of Microelectronics, Tianjin University, Tianjin, China
| | - Hao-Li Liu
- Department of Electrical Engineering, Chang-Gung University, Taoyuan, Taiwan
| | - Chin-Kuo Chen
- Department of Otolaryngology - Head and Neck Surgery, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Wei Huang
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jheng-Ru Chen
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Wei Tsai
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Zhuhuang Zhou
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China.
| | - Po-Hsiang Tsui
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan. .,Medical Imaging Research Center, Institute for Radiological Research, Chang Gung University and Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan. .,Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
| |
Collapse
|
26
|
Kokuryo D, Kumamoto E, Kuroda K. Recent technological advancements in thermometry. Adv Drug Deliv Rev 2020; 163-164:19-39. [PMID: 33217482 DOI: 10.1016/j.addr.2020.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/25/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022]
Abstract
Thermometry is the key factor for achieving successful thermal therapy. Although invasive thermometry with a probe has been used for more than four decades, this method can only detect the local temperature within the probing volume. Noninvasive temperature imaging using a tomographic technique is ideal for monitoring hot-spot formation in the human body. Among various techniques, such as X-ray computed tomography, microwave tomography, echo sonography, and magnetic resonance (MR) imaging, the proton resonance frequency shift method of MR thermometry is the only method currently available for clinical practice because its temperature sensitivity is consistent in most aqueous tissues and can be easily observed using common clinical scanners. New techniques are being proposed to improve the robustness of this method against tissue motion. MR techniques for fat thermometry were also developed based on relaxation times. One of the latest non-MR techniques to attract attention is photoacoustic imaging.
Collapse
Affiliation(s)
- Daisuke Kokuryo
- Graduate School of System Informatics, Kobe University, Japan
| | - Etsuko Kumamoto
- Information Science and Technology Center, Kobe University, Japan
| | - Kagayaki Kuroda
- School of Information Science and Technology, Tokai University, Japan; Center for Frontier Medical Engineering, Chiba University, Japan.
| |
Collapse
|
27
|
Guo S, Wei S, Lee S, Sheu M, Kang S, Kang JU. Intraoperative Speckle Variance Optical Coherence Tomography for Tissue Temperature Monitoring During Cutaneous Laser Therapy. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2019; 7:1800608. [PMID: 32309052 PMCID: PMC6788854 DOI: 10.1109/jtehm.2019.2943317] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/13/2019] [Accepted: 09/19/2019] [Indexed: 01/18/2023]
Abstract
Background: Tissue temperature monitoring during cutaneous laser therapy can lead to safer and more effective treatments. In this study, we investigate the use of speckle variance optical coherence tomography (svOCT) to monitor real-time temperature changes in the excised human skin tissue sample during laser irradiation. Methods: To accomplish this, we combined the pulse laser system with a reference-based svOCT system. To calibrate the svOCT, the ex-vivo human skin samples from three individuals with tissues collected from the arm, face, and back were heated with 1-degree increments. Additionally, linear regression was used to extract and evaluate the linear relationship between the temperature and normalized speckle variance value. Experiments were conducted on excised human skin sample to monitor the temperature change during laser therapy with a svOCT system. Thermal modeling of ex-vivo human skin was used to numerically simulate the laser-tissue interaction and estimate the thermal diffusion and peak temperature of the tissue during the laser treatment. Results and Conclusion: These results showed that normalized speckle variance had a linear relationship with the tissue temperature before the onset of tissue coagulation (52°) and we were able to measure the rapid increase of the tissue temperature during laser therapy. The result of the experiment is also in good agreement with the numerical simulation result that estimated the laser-induced peak temperature and thermal relaxation time.
Collapse
Affiliation(s)
- Shoujing Guo
- Electrical and Computer Engineering DepartmentJohns Hopkins UniversityBaltimoreMD21218USA
| | - Shuwen Wei
- Electrical and Computer Engineering DepartmentJohns Hopkins UniversityBaltimoreMD21218USA
| | - Soohyun Lee
- Electrical and Computer Engineering DepartmentJohns Hopkins UniversityBaltimoreMD21218USA
| | - Mary Sheu
- Department of DermatologyJohns Hopkins Medicine - Green Spring StationLuthervilleMD21093USA
| | - Sewon Kang
- Department of DermatologyThe Johns Hopkins HospitalBaltimoreMD21287USA
| | - Jin U. Kang
- Electrical and Computer Engineering DepartmentJohns Hopkins UniversityBaltimoreMD21218USA
| |
Collapse
|
28
|
Maraghechi B, Kolios MC, Tavakkoli J. Feasibility of detecting change in backscattered energy of acoustic harmonics in locally heated tissues. Int J Hyperthermia 2019; 36:964-974. [DOI: 10.1080/02656736.2019.1660001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Borna Maraghechi
- Department of Physics, Ryerson University, Toronto, Ontario, Canada
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael C. Kolios
- Department of Physics, Ryerson University, Toronto, Ontario, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Jahan Tavakkoli
- Department of Physics, Ryerson University, Toronto, Ontario, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Ontario, Canada
| |
Collapse
|
29
|
Park S, Hwang J, Park JE, Ahn YC, Kang HW. Application of Ultrasound Thermal Imaging for Monitoring Laser Ablation in Ex Vivo Cardiac Tissue. Lasers Surg Med 2019; 52:218-227. [PMID: 31493345 DOI: 10.1002/lsm.23157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2019] [Indexed: 01/05/2023]
Abstract
BACKGROUND AND OBJECTIVE Laser ablation can be used to treat atrial fibrillation by thermally isolating pulmonary veins. In this study, we evaluated the feasibility of high-resolution (<1 mm) ultrasound thermal imaging to monitor spatial temperature distribution during laser ablation on ex vivo cardiac tissue. STUDY DESIGN/MATERIALS AND METHODS Laser ablation (808 nm) was performed on five porcine cardiac tissue samples. A thermocouple was used to measure the interstitial tissue temperature during the laser ablation process. Tissue-strain-based ultrasound thermal imaging was conducted to monitor the spatial distribution of the temperature in the cardiac tissue. The tissue temperature was estimated from the time shifts of ultrasound signals owing to the changes in the speed of sound and was compared with the measured temperature. The temperature estimation coefficient k of porcine cardiac tissue was calculated from the estimated thermal strain and the measured temperature. The degree of tissue coagulation (temperatures > 50°C) was derived from the estimated temperature and was compared with that of the tested cardiac tissue. RESULTS The estimated tissue temperature using strain-based ultrasound thermal imaging at a depth of 1 mm agreed with thermocouple measurements. During the 30-second period of the laser ablation process, the estimated tissue temperature increased from 25 to 70°C at a depth of 0.1 mm, while the estimated temperature at a depth of 1 mm increased up to 46°C. Owing to the uncertainty of the coefficient k, the k value of the porcine cardiac tissue varied from 160 to 220°C with temperature changes of up to 20°C. The estimated coagulation region in the ultrasound thermal imaging was 20% wider (+0.6 mm) but 9% shallower (-0.1 mm) than the measured region of the ablated porcine cardiac tissue. CONCLUSIONS The current study demonstrated the feasibility of temperature monitoring with the use of ultrasound thermal imaging during the laser ablation on ex vivo porcine cardiac tissue. The high-resolution ultrasound thermal imaging could map the spatial distribution of the tissue temperature. The proposed method can be used to monitor the temperature and thermal coagulation to achieve effective laser ablation for atrial fibrillation. Lasers Surg. Med. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Suhyun Park
- School of Electrical and Electronics Engineering, Chung-Ang University, Seoul, 06974, South Korea
| | - Jieun Hwang
- Interdisciplinary Program of Marine-Bio, Electrical & Mechanical Engineering, Pukyong National University, Busan, 48513, South Korea
| | - Jung-Eun Park
- Interdisciplinary Program of Marine-Bio, Electrical & Mechanical Engineering, Pukyong National University, Busan, 48513, South Korea
| | - Yeh-Chan Ahn
- Interdisciplinary Program of Marine-Bio, Electrical & Mechanical Engineering, Pukyong National University, Busan, 48513, South Korea.,Department of Biomedical Engineering and Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan, 48513, South Korea
| | - Hyun Wook Kang
- Interdisciplinary Program of Marine-Bio, Electrical & Mechanical Engineering, Pukyong National University, Busan, 48513, South Korea.,Department of Biomedical Engineering and Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan, 48513, South Korea
| |
Collapse
|
30
|
Lee FF, He Q, Gao J, Pan A, Sun S, Liang X, Luo J. Evaluating HIFU-mediated local drug release using thermal strain imaging: Phantom and preliminary in-vivo studies. Med Phys 2019; 46:3864-3876. [PMID: 31314917 DOI: 10.1002/mp.13719] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 06/21/2019] [Accepted: 07/10/2019] [Indexed: 01/25/2023] Open
Abstract
PURPOSE High-intensity focused ultrasound (HIFU)-mediated drug release becomes a promising therapeutic technique for treatment of cancer, which has merits of deep penetration, noninvasive approach and nonionizing radiation. However, conventional thermocouple-based approach for treatment monitoring would encounter big challenges such as the viscous heating artifact and difficulty in monitoring in the deep region. In this study, we develop an effective method based on thermal strain imaging (TSI) for the evaluation of HIFU-mediated drug release. METHODS Both phantom experiments and preliminary animal experiments were performed to investigate the feasibility of the proposed approach. Doxorubicin (DOX)-loaded cerasomes (HIFU and temperature-sensitive cerasomes, HTSCs) were prepared. In the phantom experiments, the HTSC solution is contained inside a cylindrical chamber within a tissue-mimicking phantom. In the animal experiments, the HTSCs are intravenously injected into tumor-bearing mice. An HIFU transducer is used to trigger DOX release from the HTSCs within the phantom or mice, and TSI is performed during HIFU heating. In the phantom experiments, the accuracy of temperature estimation using TSI is validated by measuring with a thermocouple. In animal experiments, the spatial consistency between the distribution of DOX released within the tumor and the location of the heating region estimated by TSI is validated using a spectrofluorophotometer. RESULTS In the phantom experiments, the HTSCs show a burst release of DOX when the temperature of the HTSC solution estimated by TSI reaches about 42°C, which is in agreement with the condition for drug release from the HTSCs. The temperature estimation using TSI has high accuracy with error below 2.5%. In animal experiments, fluorescence imaging of the tumor validates that the heating region of HIFU could be localized by the low-strain region of TSI. CONCLUSION The present framework demonstrates a reliable and effective solution to the evaluation of HIFU-mediated local drug delivery.
Collapse
Affiliation(s)
- Fu-Feng Lee
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Qiong He
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Jing Gao
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Anni Pan
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Suhui Sun
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Xiaolong Liang
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, China
| | - Jianwen Luo
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
31
|
Development of temperature controller-integrated portable HIFU driver for thermal coagulation. Biomed Eng Online 2019; 18:77. [PMID: 31242902 PMCID: PMC6595699 DOI: 10.1186/s12938-019-0697-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 06/21/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Temperature monitoring during high-intensity focused ultrasound (HIFU) therapy on tissue is essential to regulate the degree of thermal coagulation and to achieve the desired treatment outcomes eventually. The aim of the current study was to design and investigate the feasibility of a proportional-integral-derivative (PID) temperature controller-integrated portable HIFU driver for thermal coagulation. METHODS A portable HIFU driver was designed and operated at a maximum output voltage of 50 V with pulse-width modulation signals at 2 MHz. The temperature of ex vivo bovine liver tissue was monitored using a K-type thermocouple during the 2-MHz HIFU exposure. RESULTS The tissue temperature was maintained at 60 °C using a PID controller-integrated HIFU driver that modulated the output voltage during the 300-s HIFU exposure. The ex vivo testing demonstrated that the tissue temperature at the focal point approached the chosen temperature, i.e., 60 °C, within 70 s. The temperature was maintained with a deviation of less than 4 °C until the HIFU driver voltage was turned off at 300 s. CONCLUSIONS The designed PID controller-integrated HIFU driver can be used as a small portable tool to regulate the tissue temperature in real time and achieve thermal coagulation via HIFU sonication.
Collapse
|
32
|
Tiennot T, Kamimura HAS, Lee SA, Aurup C, Konofagou EE. Numerical modeling of ultrasound heating for the correction of viscous heating artifacts in soft tissue temperature measurements. APPLIED PHYSICS LETTERS 2019; 114:203702. [PMID: 31148844 PMCID: PMC6530881 DOI: 10.1063/1.5091108] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/06/2019] [Indexed: 05/27/2023]
Abstract
Measuring temperature during focused ultrasound (FUS) procedures is critical for characterization, calibration, and monitoring to ultimately ensure safety and efficacy. Despite the low cost and the high spatial and temporal resolutions of temperature measurements using thermocouples, the viscous heating (VH) artifact at the thermocouple-tissue interface requires reading corrections for correct thermometric analysis. In this study, a simulation pipeline is proposed to correct the VH artifact arising from temperature measurements using thermocouples in FUS fields. The numerical model consists of simulating a primary source of heating due to ultrasound absorption and a secondary source of heating from viscous forces generated by the thermocouple in the FUS field. Our numerical validation found that up to 90% of the measured temperature rise was due to VH effects. Experimental temperature measurements were performed using thermocouples embedded in fresh chicken breast samples. Temperature corrections were demonstrated for single high-intensity FUS pulses at 3.1 MHz and for multiple pulses (3.1 MHz, 100 Hz, and 500 Hz pulse repetition frequency). The VH accumulated during sonications and produced a temperature increase of 3.1 °C and 15.3 °C for the single and multiple pulse sequences, respectively. The methodology presented here enables the decoupling of the temperature increase generated by absorption and VH. Thus, more reliable temperature measurements can be extracted from thermocouple measurements by correcting for VH.
Collapse
Affiliation(s)
| | - Hermes A S Kamimura
- Department of Biomedical Engineering, Columbia University, New York, New York 10032, USA
| | - Stephen A Lee
- Department of Biomedical Engineering, Columbia University, New York, New York 10032, USA
| | - Christian Aurup
- Department of Biomedical Engineering, Columbia University, New York, New York 10032, USA
| | | |
Collapse
|
33
|
Kim J, Choi W, Park EY, Kang Y, Lee KJ, Kim HH, Kim WJ, Kim C. Real-Time Photoacoustic Thermometry Combined With Clinical Ultrasound Imaging and High-Intensity Focused Ultrasound. IEEE Trans Biomed Eng 2019; 66:3330-3338. [PMID: 30869607 DOI: 10.1109/tbme.2019.2904087] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
High-intensity focused ultrasound (HIFU) treatment is a promising non-invasive method for killing or destroying the diseased tissues by locally delivering thermal and mechanical energy without damaging surrounding normal tissues. In HIFU, measuring the temperature at the site of delivery is important for improving therapeutic efficacy, controlling safety, and appropriately planning a treatment. Several researchers have proposed photoacoustic thermometry for monitoring HIFU treatment, but they had many limitations, including the inability to image while the HIFU is on, inability to provide two-dimensional monitoring, and the inability to be used clinically. In this paper, we propose a novel integrated real-time photoacoustic thermometry system for HIFU treatment monitoring. The system provides ultrasound B-mode imaging, photoacoustic structural imaging, and photoacoustic thermometry during HIFU treatment in real-time for both in vitro and in vivo environments, without any interference from the strong therapeutic HIFU waves. We have successfully tested the real-time photoacoustic thermometry by investigating the relationship between the photoacoustic amplitude and the measured temperature with in vitro phantoms and in vivo tumor-bearing mice. The results show the feasibility of a real-time photoacoustic thermometry system for safe and effective monitoring of HIFU treatment.
Collapse
|
34
|
Nguyen TN, Do MN, Oelze ML. Visualization of the Intensity Field of a Focused Ultrasound Source In Situ. IEEE TRANSACTIONS ON MEDICAL IMAGING 2019; 38:124-133. [PMID: 30028696 PMCID: PMC6329298 DOI: 10.1109/tmi.2018.2857481] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In an increasing number of applications of focused ultrasound (FUS) therapy, such as opening of the blood-brain barrier or collapsing microbubbles in a tumor, elevation of tissue temperature is not involved. In these cases, real-time visualization of the field distribution of the FUS source would allow localization of the FUS beam within the targeted tissue and allow repositioning of the FUS beam during tissue motion. In this paper, in order to visualize the FUS beam in situ, a 6-MHz single-element transducer ( f /2) was used as the FUS source and aligned perpendicular to a linear array which passively received scattered ultrasound from the sample. An image of the reconstructed intensity field pattern of the FUS source using bistatic beamforming was then superimposed on a registered B-mode image of the sample acquired using the same linear array. The superimposed image is used to provide anatomical context of the FUS beam in the sample being treated. The intensity field pattern reconstructed from a homogeneous scattering phantom was compared with the field characteristics of the FUS source characterized by the wire technique. The beamwidth estimates at the FUS focus using the in situ reconstruction technique and the wire technique were 1.5 and 1.2 mm, respectively. The depth-of-field estimates for the in situ reconstruction technique and the wire technique were 11.8 and 16.8 mm, respectively. The FUS beams were also visualized in a two-layer phantom and a chicken breast. The novel reconstruction technique was able to accurately visualize the field of an FUS source in the context of the interrogated medium.
Collapse
|
35
|
Teixeira CA, Pastrana-Chalco M, Simões RJ, Pedrosa A, von Krüger MA, Alvarenga AV, Fontes-Pereira AJ, Pereira WCA. On the Feasibility of Ultrasound Imaging Enrichment by Medium-Temperature Changes. ULTRASONIC IMAGING 2019; 41:17-34. [PMID: 30239291 DOI: 10.1177/0161734618800660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We describe the concept of a new imaging modality based on the tracking and dynamic modeling of local intensity changes (ICs) observed in conventional ultrasound images collected during a medium-temperature change. We computed the pixel-by-pixel IC from averaged B-mode images that exhibited different behaviors with varying temperature resulting from changes in the speed of sound, which consequently induce changes in the backscattered energy. Moreover, for each pixel, a first-order polynomial model was adjusted to the different temperature-dependent ICs. The representation of the polynomial angular parameter in 2D pixel space was used to obtain a parametric image. The results obtained by simulations and with real B-mode images indicated that this new ultrasound imaging modality was able to enhance the contrast and highlight structures that were poorly visible or even undetected in conventional images. A temperature change of 3°C was found to be sufficient to generate appropriate images with the proposed method. In addition, if a temperature change of 6°C was considered, the thermal dose, measured as the cumulative number of equivalent minutes at 43°C (CEM43°C), was 2.4 CEM43°C, which is a value that is considered safe according to the literature. We provide a proof-of-concept of a new imaging modality that opens new opportunities for the enhancement of ultrasound images and consequently contributes to improvements in ultrasound-based diagnoses. Our approach is based on images returned by commercial ultrasound scanners. Therefore, it can be implemented in any ultrasound system and is independent of specific ultrasound hardware and software data acquisition characteristics.
Collapse
Affiliation(s)
- C A Teixeira
- 1 Department of Informatics Engineering, Centre for Informatics and Systems (CISUC), University of Coimbra, Coimbra, Portugal
| | - M Pastrana-Chalco
- 1 Department of Informatics Engineering, Centre for Informatics and Systems (CISUC), University of Coimbra, Coimbra, Portugal
- 2 Biomedical Engineering Program, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - R J Simões
- 1 Department of Informatics Engineering, Centre for Informatics and Systems (CISUC), University of Coimbra, Coimbra, Portugal
| | - A Pedrosa
- 1 Department of Informatics Engineering, Centre for Informatics and Systems (CISUC), University of Coimbra, Coimbra, Portugal
| | - M A von Krüger
- 2 Biomedical Engineering Program, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - A V Alvarenga
- 3 Laboratory of Ultrasound, National Institute of Metrology, Quality and Technology (Inmetro), Rio de Janeiro, Brazil
| | - A J Fontes-Pereira
- 2 Biomedical Engineering Program, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - W C A Pereira
- 2 Biomedical Engineering Program, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
36
|
Abstract
For more than 70 years, the promise of noninvasive neuromodulation using focused ultrasound has been growing while diagnostic ultrasound established itself as a foundation of clinical imaging. Significant technical challenges have been overcome to allow transcranial focused ultrasound to deliver spatially restricted energy into the nervous system at a wide range of intensities. High-intensity focused ultrasound produces reliable permanent lesions within the brain, and low-intensity focused ultrasound has been reported to both excite and inhibit neural activity reversibly. Despite intense interest in this promising new platform for noninvasive, highly focused neuromodulation, the underlying mechanism remains elusive, though recent studies provide further insight. Despite the barriers, the potential of focused ultrasound to deliver a range of permanent and reversible neuromodulation with seamless translation from bench to the bedside warrants unparalleled attention and scientific investment. Focused ultrasound boasts a number of key features such as multimodal compatibility, submillimeter steerable focusing, multifocal, high temporal resolution, coregistration, and the ability to monitor delivered therapy and temperatures in real time. Despite the technical complexity, the future of noninvasive focused ultrasound for neuromodulation as a neuroscience and clinical platform remains bright.
Collapse
Affiliation(s)
- David P Darrow
- Department of Neurosurgery, University of Minnesota, 420 Delaware St SE, MMC 96, Room D-429, Minneapolis, MN, 55455, USA.
| |
Collapse
|
37
|
Ho YJ, Wu CC, Hsieh ZH, Fan CH, Yeh CK. Thermal-sensitive acoustic droplets for dual-mode ultrasound imaging and drug delivery. J Control Release 2018; 291:26-36. [DOI: 10.1016/j.jconrel.2018.10.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 10/11/2018] [Accepted: 10/14/2018] [Indexed: 12/23/2022]
|
38
|
Tsujimoto Y, Morimoto M, Nitta N, Akiyama I. Ultrasonic measurement of sound velocity fluctuations in biological tissue due to ultrasonic heating and estimation of thermo-physical properties. J Med Ultrason (2001) 2018; 46:35-43. [DOI: 10.1007/s10396-018-0916-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 10/14/2018] [Indexed: 10/27/2022]
|
39
|
Zhang L, Li Q, Wang CY, Tsui PH. Ultrasound single-phase CBE imaging for monitoring radiofrequency ablation. Int J Hyperthermia 2018; 35:548-558. [PMID: 30354749 DOI: 10.1080/02656736.2018.1512160] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Radiofrequency (RF) ablation (RFA) is the most commonly used minimally invasive procedure for thermal ablation of liver tumors. Ultrasound not only provides real-time feedback of the electrode location for RFA guidance but also enables visualization of the tissue temperature. Changes in backscattered energy (CBE) have been widely applied to ultrasound temperature imaging for assessing thermal ablation. Pilot studies have revealed that significant shadowing features appear in CBE imaging and are caused by the electrode and RFA-induced gas bubbles. To resolve this problem, the current study proposed ultrasound single-phase CBE imaging based on positive CBE values. An in vitro model with tissue samples derived from the porcine tenderloin was used to validate the proposed method. During RFA with various electrode lengths, ultrasound scans of tissue samples were obtained using a clinical ultrasound scanner equipped with a convex array transducer of 3 MHz. Raw image data comprising 256 scan lines of backscattered RF signals were acquired for B-mode, conventional CBE, and single-phase CBE imaging by using the proposed algorithmic scheme. The ablation sizes estimated using CBE imaging and gross examinations were compared to calculate the correlation coefficient. The experimental results indicated that single-phase CBE imaging largely suppressed artificial CBE information in the shadowed region. Moreover, compared with conventional CBE imaging, single-phase CBE imaging provided a more accurate estimation of ablation sizes (the correlation coefficient was higher than 0.8).
Collapse
Affiliation(s)
- Lin Zhang
- a School of Microelectronics , Tianjin University , Tianjin , China
| | - Qiang Li
- a School of Microelectronics , Tianjin University , Tianjin , China
| | - Chiao-Yin Wang
- b Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University , Taoyuan , Taiwan.,c Department of Medical Imaging and Radiological Sciences , College of Medicine, Chang Gung University , Taoyuan , Taiwan
| | - Po-Hsiang Tsui
- c Department of Medical Imaging and Radiological Sciences , College of Medicine, Chang Gung University , Taoyuan , Taiwan.,d Medical Imaging Research Center, Institute for Radiological Research, Chang Gung University and Chang Gung Memorial Hospital at Linkou , Taoyuan , Taiwan.,e Department of Medical Imaging and Intervention , Chang Gung Memorial Hospital at Linkou , Taoyuan , Taiwan
| |
Collapse
|
40
|
Engrand C, Laux D, Ferrandis JY, Demaria R, Le Clézio E. Velocimetric ultrasound thermometry applied to myocardium protection monitoring. ULTRASONICS 2018; 87:1-6. [PMID: 29427896 DOI: 10.1016/j.ultras.2018.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/27/2017] [Accepted: 01/04/2018] [Indexed: 06/08/2023]
Abstract
Tissue temperature control during cardiac surgery is crucial for myocardial protection. To preserve the tissue, a hypothermic cardioplegia is applied in order to decrease the heart temperature down to around 10°C. The monitoring of the thermal evolution of the myocardium is then of importance to minimize deleterious effects on the heart. The present work aims at evaluating the potential of an ultrasonic velocimetric thermometry on the monitoring of in vitro tissues heating. An indentation process is first proposed to identify the experimental linear relationship linking, in myocardia, the speed of the ultrasonic longitudinal wave to the tissue temperature. An extension of this method based on the echo-tracking principle is then proposed to approach surgical conditions. Temperature changes are measured by monitoring the induced time delays of backscattered ultrasonic echoes. These results are compared to T-type thermocouple reference measurements. They are then discussed in terms of measurement precision and in situ applications.
Collapse
Affiliation(s)
- Céline Engrand
- University of Montpellier, IES UMR 5214, 860 Rue Saint Priest, CC 05 003, F-34000 Montpellier, France; CNRS, IES UMR 5214, 860 Rue Saint Priest, CC 05 003, F-34000 Montpellier, France
| | - Didier Laux
- University of Montpellier, IES UMR 5214, 860 Rue Saint Priest, CC 05 003, F-34000 Montpellier, France; CNRS, IES UMR 5214, 860 Rue Saint Priest, CC 05 003, F-34000 Montpellier, France
| | - Jean-Yves Ferrandis
- CNRS, IES UMR 5214, 860 Rue Saint Priest, CC 05 003, F-34000 Montpellier, France; University of Montpellier, IES UMR 5214, 860 Rue Saint Priest, CC 05 003, F-34000 Montpellier, France
| | - Roland Demaria
- University of Montpellier, Department of Thoracic and Cardiovascular Surgery, A de Villeneuve hospital 371 Av Giraud, F-34295 Montpellier, France
| | - Emmanuel Le Clézio
- University of Montpellier, IES UMR 5214, 860 Rue Saint Priest, CC 05 003, F-34000 Montpellier, France; CNRS, IES UMR 5214, 860 Rue Saint Priest, CC 05 003, F-34000 Montpellier, France.
| |
Collapse
|
41
|
Ebbini ES, Simon C, Liu D. Real-time Ultrasound Thermography and Thermometry. IEEE SIGNAL PROCESSING MAGAZINE 2018; 35:166-174. [PMID: 30283214 PMCID: PMC6167021 DOI: 10.1109/msp.2017.2773338] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
|
42
|
|
43
|
Alvarenga AV, Wilkens V, Georg O, Costa-Félix RPB. Non-invasive Estimation of Temperature during Physiotherapeutic Ultrasound Application Using the Average Gray-Level Content of B-Mode Images: A Metrological Approach. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:1938-1952. [PMID: 28619277 DOI: 10.1016/j.ultrasmedbio.2017.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 03/03/2017] [Accepted: 04/09/2017] [Indexed: 06/07/2023]
Abstract
Healing therapies that make use of ultrasound are based on raising the temperature in biological tissue. However, it is not possible to heal impaired tissue by applying a high dose of ultrasound. The temperature of the tissue is ultimately the physical quantity that has to be assessed to minimize the risk of undesired injury. Invasive temperature measurement techniques are easy to use, despite the fact that they are detrimental to human well being. Another approach to assessing a rise in tissue temperature is to derive the material's general response to temperature variations from ultrasonic parameters. In this article, a method for evaluating temperature variations is described. The method is based on the analytical study of an ultrasonic image, in which gray-level variations are correlated to the temperature variations in a tissue-mimicking material. The physical assumption is that temperature variations induce wave propagation changes modifying the backscattered ultrasound signal, which are expressed in the ultrasonographic images. For a temperature variation of about 15°C, the expanded uncertainty for a coverage probability of 0.95 was found to be 2.5°C in the heating regime and 1.9°C in the cooling regime. It is possible to use the model proposed in this article in a straightforward manner to monitor temperature variation during a physiotherapeutic ultrasound application, provided the tissue-mimicking material approach is transferred to actual biological tissue. The novelty of such approach resides in the metrology-based investigation outlined here, as well as in its ease of reproducibility.
Collapse
Affiliation(s)
- André V Alvarenga
- Laboratory of Ultrasound, Directory of Scientific and Industrial Metrology (DIMCI), National Institute of Metrology, Quality and Technology (INMETRO), Rio de Janeiro, Brazil.
| | - Volker Wilkens
- Physikalisch-Technische Bundesanstalt, Braunschweig, Germany
| | - Olga Georg
- Physikalisch-Technische Bundesanstalt, Braunschweig, Germany
| | - Rodrigo P B Costa-Félix
- Laboratory of Ultrasound, Directory of Scientific and Industrial Metrology (DIMCI), National Institute of Metrology, Quality and Technology (INMETRO), Rio de Janeiro, Brazil
| |
Collapse
|
44
|
Abstract
Radiofrequency ablation (RFA) has been widely used as an alternative treatment modality for liver tumors. Monitoring the temperature distribution in the tissue during RFA is required to assess the thermal dosage. Ultrasound temperature imaging based on the detection of echo time shifts has received the most attention in the past decade. The coefficient k, connecting the temperature change and the echo time shift, is a medium-dependent parameter used to describe the confounding effects of changes in the speed of sound and thermal expansion as temperature increases. The current algorithm of temperature estimate based on echo time shift detection typically uses a constant k, resulting in estimation errors when ablation temperatures are higher than 50°C. This study proposes an adaptive-k algorithm that enables the automatic adjustment of the coefficient k during ultrasound temperature monitoring of RFA. To verify the proposed algorithm, RFA experiments on in vitro porcine liver samples (total n = 15) were performed using ablation powers of 10, 15, and 20 W. During RFA, a clinical ultrasound system equipped with a 7.5-MHz linear transducer was used to collect backscattered signals for ultrasound temperature imaging using the constant- and adaptive-k algorithms. Concurrently, an infrared imaging system and thermocouples were used to measure surface temperature distribution of the sample and internal ablation temperatures for comparisons with ultrasound estimates. Experimental results demonstrated that the proposed adaptive-k method improved the performance in visualizing the temperature distribution. In particular, the estimation errors were also reduced even when the temperature of the tissue is higher than 50°C. The proposed adaptive-k ultrasound temperature imaging strategy has potential to serve as a thermal dosage evaluation tool for monitoring high-temperature RFA.
Collapse
|
45
|
Liu YD, Li Q, Zhou Z, Yeah YW, Chang CC, Lee CY, Tsui PH. Adaptive ultrasound temperature imaging for monitoring radiofrequency ablation. PLoS One 2017; 12:e0182457. [PMID: 28837584 PMCID: PMC5570358 DOI: 10.1371/journal.pone.0182457] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/18/2017] [Indexed: 12/31/2022] Open
Abstract
Radiofrequency ablation (RFA) has been widely used as an alternative treatment modality for liver tumors. Monitoring the temperature distribution in the tissue during RFA is required to assess the thermal dosage. Ultrasound temperature imaging based on the detection of echo time shifts has received the most attention in the past decade. The coefficient k, connecting the temperature change and the echo time shift, is a medium-dependent parameter used to describe the confounding effects of changes in the speed of sound and thermal expansion as temperature increases. The current algorithm of temperature estimate based on echo time shift detection typically uses a constant k, resulting in estimation errors when ablation temperatures are higher than 50°C. This study proposes an adaptive-k algorithm that enables the automatic adjustment of the coefficient k during ultrasound temperature monitoring of RFA. To verify the proposed algorithm, RFA experiments on in vitro porcine liver samples (total n = 15) were performed using ablation powers of 10, 15, and 20 W. During RFA, a clinical ultrasound system equipped with a 7.5-MHz linear transducer was used to collect backscattered signals for ultrasound temperature imaging using the constant- and adaptive-k algorithms. Concurrently, an infrared imaging system and thermocouples were used to measure surface temperature distribution of the sample and internal ablation temperatures for comparisons with ultrasound estimates. Experimental results demonstrated that the proposed adaptive-k method improved the performance in visualizing the temperature distribution. In particular, the estimation errors were also reduced even when the temperature of the tissue is higher than 50°C. The proposed adaptive-k ultrasound temperature imaging strategy has potential to serve as a thermal dosage evaluation tool for monitoring high-temperature RFA.
Collapse
Affiliation(s)
- Yi-Da Liu
- School of Electronic Information Engineering, Tianjin University, Tianjin, China
| | - Qiang Li
- School of Electronic Information Engineering, Tianjin University, Tianjin, China
| | - Zhuhuang Zhou
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
- Faculty of Information Technology, Beijing University of Technology, Beijing, China
| | - Yao-Wen Yeah
- Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan
| | - Chien-Cheng Chang
- Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan
- * E-mail: (PHT); (CCC)
| | - Chia-Yen Lee
- Department of Electrical Engineering, National United University, Miao-Li, Taiwan
| | - Po-Hsiang Tsui
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Medical Imaging Research Center, Institute for Radiological Research, Chang Gung University and Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- * E-mail: (PHT); (CCC)
| |
Collapse
|
46
|
Sanders JL, Stephens DN, Oralkan O. Photoacoustic-imaging-based temperature monitoring for high-intensity focused ultrasound therapy. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2016:3235-3238. [PMID: 28268997 DOI: 10.1109/embc.2016.7591418] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Temperature monitoring during high-intensity focused ultrasound (HIFU) application is necessary to ensure effective therapy while minimizing thermal damage to adjacent tissue. In this study, we demonstrate a noninvasive approach for temperature measurement during HIFU therapy based on photoacoustic imaging (PAI). Because of the dependence of photoacoustic (PA) signal amplitude on temperature of the source tissue and the linearity of the PAI system, changes in temperature will cause changes in PA image intensity. Experiments have been conducted in ex-vivo bovine tissue to characterize the linear dependence of PA image pixel values on temperature and subsequently to convert the PA image to a real-time temperature map.
Collapse
|
47
|
Mazumder D, Vasu RM, Roy D, Kanhirodan R. A remote temperature sensor for an ultrasound hyperthermia system using the acoustic signal derived from the heating signals. Int J Hyperthermia 2017; 34:122-131. [PMID: 28540819 DOI: 10.1080/02656736.2017.1324178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We demonstrate a non-invasive technique, based on the modal frequency shift of a region insonified by a dual-beam ultrasound (US) transducer (region of interest, ROI), to remotely assess the temperature of the region in a tissue-mimicking object. The application is in ultrasound hyperthermia systems for controlled maintenance of tumour temperature during chemotherapy. Towards this, we have characterised the variation of the storage modulus with the temperature of two tissue-mimicking visco-elastic materials. Due to this variation in tissue storage modulus (and viscosity), we have observed a shift in the resonant modes of the ROI, vibrated remotely with a dual-beam focussed ultrasound transducer. A modal analysis of the vibrating ROI is done to identify the modes captured by the detector. A variation in this modal frequency with temperature is computed and matches reasonably well with the experimental measurements. Through this, we demonstrate that an ultrasound hyperthermia system can have a remote temperature sensor without using an additional imaging modality.
Collapse
Affiliation(s)
- Dibbyan Mazumder
- a Department of Instrumentation & Applied Physics , Indian Institute of Science , Bangalore , India
| | - Ram Mohan Vasu
- a Department of Instrumentation & Applied Physics , Indian Institute of Science , Bangalore , India
| | - Debasish Roy
- b Computational Mechanics Lab, Civil Engineering , Indian Institute of Science , Bangalore , India
| | - Rajan Kanhirodan
- c Department of Physics , Indian Institute of Science , Bangalore , India
| |
Collapse
|
48
|
Pasternak M, Samset E, D'hooge J, Haugen GU. Temperature monitoring by channel data delays: Feasibility based on estimated delays magnitude for cardiac ablation. ULTRASONICS 2017; 77:32-37. [PMID: 28167318 DOI: 10.1016/j.ultras.2017.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 01/05/2017] [Accepted: 01/12/2017] [Indexed: 06/06/2023]
Abstract
Ultrasound thermometry is based on measuring tissue temperature by its impact on ultrasound wave propagation. This study focuses on the use of transducer array channel data (not beamformed) and examines how a layer of increased velocity (heat induced) affects the travel-times of the ultrasound backscatter signal. Based on geometric considerations, a new equation was derived for the change in time delay as a function of temperature change. The resulting expression provides insight into the key factors that link change in temperature to change in travel time. It shows that velocity enters in combination with heating geometry: complementary information is needed to compute velocity from the changes in travel time. Using the bio-heat equation as a second source of information in the derived expressions, the feasibility of monitoring the temperature increase during cardiac ablation therapy using channel data was investigated. For an intra-cardiac (ICE) probe, using this "time delay error approach" would not be feasible, while for a trans-esophageal array transducer (TEE) transducer it might be feasible.
Collapse
Affiliation(s)
- Margot Pasternak
- GE Vingmed Ultrasound, Horten, Norway; KU Leuven, Leuven, Belgium.
| | | | | | | |
Collapse
|
49
|
A method for sub-sample computation of time displacements between discrete signals based only on discrete correlation sequences. Biomed Signal Process Control 2017. [DOI: 10.1016/j.bspc.2016.09.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
50
|
Uncertainty estimation for temperature measurement with diagnostic ultrasound. J Ther Ultrasound 2016; 4:28. [PMID: 27957332 PMCID: PMC5131492 DOI: 10.1186/s40349-016-0071-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 10/01/2016] [Indexed: 12/16/2022] Open
Abstract
Background Ultrasound therapies are promising, non-invasive applications with potential to significantly improve, e.g. cancer therapies like viro- or immunotherapy or surgical applications. However, a crucial step towards their breakthrough is still missing: affordable and easy-to-handle quality assurance tools for therapy devices and ways to verify treatment planning algorithms. This deficiency limits the safety and comparability of treatments. Methods To overcome this deficiency accurate spatial and temporal temperature maps could be used. In this paper, the suitability of temperature calculation based on time-shifts of diagnostic ultrasound backscattered signals (echo-time-shift) is investigated and associated uncertainties are estimated. Different analysis variations were used to calculate the time-shifts: discrete and continuous methods as well as different frames as a reference for temperature calculation (4 s before, 16 s before the frame of interest, base frame). A sigmoid function was fitted and used to calculate temperatures. Two-dimensional temperature maps recorded during and after therapeutic ultrasound sonication were examined. All experiments were performed in agar-graphite phantoms mimicking non-fatty tissue, with high-intensity focused ultrasound being the source of heating. Results Continuous methods are more accurate than discrete ones, and uncertainties of calculated temperatures are in general lower, the earlier the reference frame was recorded. Depending on the purpose of the measurement, a compromise has to be made between the following: calculation accuracy (early reference frame), tolerance towards small movements (late reference frame), reproducing large temperature changes or cooling processes (reference frame at a certain point in time), speed of the algorithm (discrete (fast) vs. continuous (slower) shift calculation), and spatial accuracy (interval size for index-shift calculation). Within the range from 20 °C to 44 °C, uncertainties as low as 12.4 % are possible, being mainly due to medium properties. Conclusions Temperature measurements using the echo-time-shift method might be useful for validation of treatment plan algorithms. This might also be a comparatively accurate, fast, and affordable method for laboratory and clinical quality assessment. Further research is necessary to improve filter algorithms and to extend this method to multiple foci and the usage of temperature-dependent tissue quantities. We used an analytical approach to investigate the uncertainties of temperature measurement. Different analysis variations are compared to determine temperature distribution and development over time.
Collapse
|