1
|
AlZuhair MS, Ben Ismail MM, Bchir O. Novel Dual-Constraint-Based Semi-Supervised Deep Clustering Approach. SENSORS (BASEL, SWITZERLAND) 2025; 25:2622. [PMID: 40285310 PMCID: PMC12030844 DOI: 10.3390/s25082622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/05/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025]
Abstract
Semi-supervised clustering can be viewed as a clustering paradigm that exploits both labeled and unlabeled data to steer learning accurate data clusters and avoid local minimum solutions. Nonetheless, the attempts to refine existing semi-supervised clustering methods are relatively limited when compared to the advancements witnessed in the current benchmark methods in fully unsupervised clustering. This research introduces a novel semi-supervised method for deep clustering that leverages deep neural networks and fuzzy memberships to better capture the data partitions. In particular, the proposed Dual-Constraint-based Semi-Supervised Deep Clustering (DC-SSDEC) method utilizes two sets of pairwise soft constraints; "should-link" and "shouldNot-link", to guide the clustering process. The intended clustering task is expressed as an optimization of a newly designed objective function. Additionally, DC-SSDEC performance was evaluated through comprehensive experiments using three real-world and benchmark datasets. Moreover, a comparison with related state-of-the-art clustering techniques was conducted to showcase the DC-SSDEC outperformance. In particular, DC-SSDEC significance consists of the proposed dual-constraint formulation and its integration into a novel objective function. This contribution yielded an improvement in the resulting clustering performance compared to relevant state-of-the-art approaches. In addition, the assessment of the proposed model using real-world datasets represents another contribution of this research. In fact, increases of 3.25%, 1.44%, and 1.82% in the clustering accuracy were gained by DC-SSDEC over the best performing single-constraint-based approach, using MNIST, STL-10, and USPS datasets, respectively.
Collapse
Affiliation(s)
- Mona Suliman AlZuhair
- Department of Computer Science, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia; (M.M.B.I.); (O.B.)
| | | | | |
Collapse
|
2
|
Shakya KS, Alavi A, Porteous J, K P, Laddi A, Jaiswal M. A Critical Analysis of Deep Semi-Supervised Learning Approaches for Enhanced Medical Image Classification. INFORMATION 2024; 15:246. [DOI: 10.3390/info15050246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
Deep semi-supervised learning (DSSL) is a machine learning paradigm that blends supervised and unsupervised learning techniques to improve the performance of various models in computer vision tasks. Medical image classification plays a crucial role in disease diagnosis, treatment planning, and patient care. However, obtaining labeled medical image data is often expensive and time-consuming for medical practitioners, leading to limited labeled datasets. DSSL techniques aim to address this challenge, particularly in various medical image tasks, to improve model generalization and performance. DSSL models leverage both the labeled information, which provides explicit supervision, and the unlabeled data, which can provide additional information about the underlying data distribution. That offers a practical solution to resource-intensive demands of data annotation, and enhances the model’s ability to generalize across diverse and previously unseen data landscapes. The present study provides a critical review of various DSSL approaches and their effectiveness and challenges in enhancing medical image classification tasks. The study categorized DSSL techniques into six classes: consistency regularization method, deep adversarial method, pseudo-learning method, graph-based method, multi-label method, and hybrid method. Further, a comparative analysis of performance for six considered methods is conducted using existing studies. The referenced studies have employed metrics such as accuracy, sensitivity, specificity, AUC-ROC, and F1 score to evaluate the performance of DSSL methods on different medical image datasets. Additionally, challenges of the datasets, such as heterogeneity, limited labeled data, and model interpretability, were discussed and highlighted in the context of DSSL for medical image classification. The current review provides future directions and considerations to researchers to further address the challenges and take full advantage of these methods in clinical practices.
Collapse
Affiliation(s)
- Kaushlesh Singh Shakya
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
- CSIR-Central Scientific Instruments Organisation, Chandigarh 160030, India
- School of Computing Technologies, RMIT University, Melbourne, VIC 3000, Australia
| | - Azadeh Alavi
- School of Computing Technologies, RMIT University, Melbourne, VIC 3000, Australia
| | - Julie Porteous
- School of Computing Technologies, RMIT University, Melbourne, VIC 3000, Australia
| | - Priti K
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
- CSIR-Central Scientific Instruments Organisation, Chandigarh 160030, India
| | - Amit Laddi
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
- CSIR-Central Scientific Instruments Organisation, Chandigarh 160030, India
| | - Manojkumar Jaiswal
- Oral Health Sciences Centre, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| |
Collapse
|
3
|
Hossen MM, Ashraf A, Hasan M, Majid ME, Nashbat M, Kashem SBA, Kunju AKA, Khandakar A, Mahmud S, Chowdhury MEH. GCDN-Net: Garbage classifier deep neural network for recyclable urban waste management. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 174:439-450. [PMID: 38113669 DOI: 10.1016/j.wasman.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/10/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
The escalating waste volume due to urbanization and population growth has underscored the need for advanced waste sorting and recycling methods to ensure sustainable waste management. Deep learning models, adept at image recognition tasks, offer potential solutions for waste sorting applications. These models, trained on extensive waste image datasets, possess the ability to discern unique features of diverse waste types. Automating waste sorting hinges on robust deep learning models capable of accurately categorizing a wide range of waste types. In this study, a multi-stage machine learning approach is proposed to classify different waste categories using the "Garbage In, Garbage Out" (GIGO) dataset of 25,000 images. The novel Garbage Classifier Deep Neural Network (GCDN-Net) is introduced as a comprehensive solution, adept in both single-label and multi-label classification tasks. Single-label classification distinguishes between garbage and non-garbage images, while multi-label classification identifies distinct garbage categories within single or multiple images. The performance of GCDN-Net is rigorously evaluated and compared against state-of-the-art waste classification methods. Results demonstrate GCDN-Net's excellence, achieving 95.77% accuracy, 95.78% precision, 95.77% recall, 95.77% F1-score, and 95.54% specificity when classifying waste images, outperforming existing models in single-label classification. In multi-label classification, GCDN-Net attains an overall Mean Average Precision (mAP) of 0.69 and an F1-score of 75.01%. The reliability of network performance is affirmed through saliency map-based visualization generated by Score-CAM (class activation mapping). In conclusion, deep learning-based models exhibit efficacy in categorizing diverse waste types, paving the way for automated waste sorting and recycling systems that can mitigate costs and processing times.
Collapse
Affiliation(s)
- Md Mosarrof Hossen
- Department of Electrical and Electronics Engineering, University of Dhaka, Dhaka, Bangladesh.
| | - Azad Ashraf
- Chemical Engineering Department, University of Doha for Science and Technology, Doha, Qatar.
| | - Mazhar Hasan
- Chemical Engineering Department, University of Doha for Science and Technology, Doha, Qatar.
| | - Molla E Majid
- Computer Applications Department, Academic Bridge Program, Qatar Foundation, Doha, Qatar.
| | - Mohammad Nashbat
- Chemical Engineering Department, University of Doha for Science and Technology, Doha, Qatar.
| | - Saad Bin Abul Kashem
- Department of Computing Science, AFG College with the University of Aberdeen, Doha, Qatar.
| | - Ali K Ansaruddin Kunju
- Chemical Engineering Department, University of Doha for Science and Technology, Doha, Qatar.
| | - Amith Khandakar
- Department of Electrical Engineering, Qatar University, Doha, Qatar.
| | - Sakib Mahmud
- Department of Electrical Engineering, Qatar University, Doha, Qatar.
| | | |
Collapse
|
4
|
Petsiou DP, Martinos A, Spinos D. Applications of Artificial Intelligence in Temporal Bone Imaging: Advances and Future Challenges. Cureus 2023; 15:e44591. [PMID: 37795060 PMCID: PMC10545916 DOI: 10.7759/cureus.44591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2023] [Indexed: 10/06/2023] Open
Abstract
The applications of artificial intelligence (AI) in temporal bone (TB) imaging have gained significant attention in recent years, revolutionizing the field of otolaryngology and radiology. Accurate interpretation of imaging features of TB conditions plays a crucial role in diagnosing and treating a range of ear-related pathologies, including middle and inner ear diseases, otosclerosis, and vestibular schwannomas. According to multiple clinical studies published in the literature, AI-powered algorithms have demonstrated exceptional proficiency in interpreting imaging findings, not only saving time for physicians but also enhancing diagnostic accuracy by reducing human error. Although several challenges remain in routinely relying on AI applications, the collaboration between AI and healthcare professionals holds the key to better patient outcomes and significantly improved patient care. This overview delivers a comprehensive update on the advances of AI in the field of TB imaging, summarizes recent evidence provided by clinical studies, and discusses future insights and challenges in the widespread integration of AI in clinical practice.
Collapse
Affiliation(s)
- Dioni-Pinelopi Petsiou
- Otolaryngology-Head and Neck Surgery, National and Kapodistrian University of Athens, School of Medicine, Athens, GRC
| | - Anastasios Martinos
- Otolaryngology-Head and Neck Surgery, National and Kapodistrian University of Athens, School of Medicine, Athens, GRC
| | - Dimitrios Spinos
- Otolaryngology-Head and Neck Surgery, Gloucestershire Hospitals NHS Foundation Trust, Gloucester, GBR
| |
Collapse
|
5
|
Jiang X, Shen C, Caba B, Arnold DL, Elliott C, Zhu B, Fisher E, Belachew S, Gafson AR. Assessing the utility of magnetic resonance imaging-based "SuStaIn" disease subtyping for precision medicine in relapsing-remitting and secondary progressive multiple sclerosis. Mult Scler Relat Disord 2023; 77:104869. [PMID: 37459715 DOI: 10.1016/j.msard.2023.104869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/16/2023] [Accepted: 07/01/2023] [Indexed: 09/10/2023]
Abstract
BACKGROUND Patient stratification and individualized treatment decisions based on multiple sclerosis (MS) clinical phenotypes are arbitrary. Subtype and Staging Inference (SuStaIn), a published machine learning algorithm, was developed to identify data-driven disease subtypes with distinct temporal progression patterns using brain magnetic resonance imaging; its clinical utility has not been assessed. The objective of this study was to explore the prognostic capability of SuStaIn subtyping and whether it is a useful personalized predictor of treatment effects of natalizumab and dimethyl fumarate. METHODS Subtypes were available from the trained SuStaIn model for 3 phase 3 clinical trials in relapsing-remitting and secondary progressive MS. Regression models were used to determine whether baseline SuStaIn subtypes could predict on-study clinical and radiological disease activity and progression. Differences in treatment responses relative to placebo between subtypes were determined using interaction terms between treatment and subtype. RESULTS Natalizumab and dimethyl fumarate reduced inflammatory disease activity in all SuStaIn subtypes (all p < 0.001). SuStaIn MS subtyping alone did not discriminate responder heterogeneity based on new lesion formation and disease progression (p > 0.05 across subtypes). CONCLUSION SuStaIn subtypes correlated with disease severity and functional impairment at baseline but were not predictive of disability progression and could not discriminate treatment response heterogeneity.
Collapse
Affiliation(s)
| | - Changyu Shen
- Biogen, 225 Binney Street, Cambridge, MA 02142, USA
| | - Bastien Caba
- Biogen, 225 Binney Street, Cambridge, MA 02142, USA
| | - Douglas L Arnold
- NeuroRx Research, Montreal, Quebec, Canada; McGill University, Montreal, Quebec, Canada
| | | | - Bing Zhu
- Biogen, 225 Binney Street, Cambridge, MA 02142, USA
| | | | | | | |
Collapse
|
6
|
Perillo T, de Giorgi M, Papace UM, Serino A, Cuocolo R, Manto A. Current role of machine learning and radiogenomics in precision neuro-oncology. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:545-555. [PMID: 37720347 PMCID: PMC10501892 DOI: 10.37349/etat.2023.00151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/20/2023] [Indexed: 09/19/2023] Open
Abstract
In the past few years, artificial intelligence (AI) has been increasingly used to create tools that can enhance workflow in medicine. In particular, neuro-oncology has benefited from the use of AI and especially machine learning (ML) and radiogenomics, which are subfields of AI. ML can be used to develop algorithms that dynamically learn from available medical data in order to automatically do specific tasks. On the other hand, radiogenomics can identify relationships between tumor genetics and imaging features, thus possibly giving new insights into the pathophysiology of tumors. Therefore, ML and radiogenomics could help treatment tailoring, which is crucial in personalized neuro-oncology. The aim of this review is to illustrate current and possible future applications of ML and radiomics in neuro-oncology.
Collapse
Affiliation(s)
- Teresa Perillo
- Department of Neuroradiology, “Umberto I” Hospital, 84014 Norcera Inferiore, Italy
| | - Marco de Giorgi
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80138 Naples, Italy
| | - Umberto Maria Papace
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80138 Naples, Italy
| | - Antonietta Serino
- Department of Neuroradiology, “Umberto I” Hospital, 84014 Norcera Inferiore, Italy
| | - Renato Cuocolo
- Department of Medicine, Surgery, and Dentistry, University of Salerno, 84084 Fisciano, Italy
| | - Andrea Manto
- Department of Neuroradiology, “Umberto I” Hospital, 84014 Norcera Inferiore, Italy
| |
Collapse
|
7
|
Karimi D, Gholipour A. Improving Calibration and Out-of-Distribution Detection in Deep Models for Medical Image Segmentation. IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE 2023; 4:383-397. [PMID: 37868336 PMCID: PMC10586223 DOI: 10.1109/tai.2022.3159510] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Convolutional Neural Networks (CNNs) have proved to be powerful medical image segmentation models. In this study, we address some of the main unresolved issues regarding these models. Specifically, training of these models on small medical image datasets is still challenging, with many studies promoting techniques such as transfer learning. Moreover, these models are infamous for producing over-confident predictions and for failing silently when presented with out-of-distribution (OOD) test data. In this paper, for improving prediction calibration we advocate for multi-task learning, i.e., training a single model on several different datasets, spanning different organs of interest and different imaging modalities. We show that multi-task learning can significantly improve model confidence calibration. For OOD detection, we propose a novel method based on spectral analysis of CNN feature maps. We show that different datasets, representing different imaging modalities and/or different organs of interest, have distinct spectral signatures, which can be used to identify whether or not a test image is similar to the images used for training. We show that our proposed method is more accurate than several competing methods, including methods based on prediction uncertainty and image classification.
Collapse
Affiliation(s)
- Davood Karimi
- Department of Radiology, Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts, USA
| | - Ali Gholipour
- Department of Radiology, Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Reis HC, Turk V, Khoshelham K, Kaya S. MediNet: transfer learning approach with MediNet medical visual database. MULTIMEDIA TOOLS AND APPLICATIONS 2023; 82:1-44. [PMID: 37362724 PMCID: PMC10025796 DOI: 10.1007/s11042-023-14831-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/06/2022] [Accepted: 02/06/2023] [Indexed: 06/28/2023]
Abstract
The rapid development of machine learning has increased interest in the use of deep learning methods in medical research. Deep learning in the medical field is used in disease detection and classification problems in the clinical decision-making process. Large amounts of labeled datasets are often required to train deep neural networks; however, in the medical field, the lack of a sufficient number of images in datasets and the difficulties encountered during data collection are among the main problems. In this study, we propose MediNet, a new 10-class visual dataset consisting of Rontgen (X-ray), Computed Tomography (CT), Magnetic Resonance Imaging (MRI), Ultrasound, and Histopathological images such as calcaneal normal, calcaneal tumor, colon benign colon adenocarcinoma, brain normal, brain tumor, breast benign, breast malignant, chest normal, chest pneumonia. AlexNet, VGG19-BN, Inception V3, DenseNet 121, ResNet 101, EfficientNet B0, Nested-LSTM + CNN, and proposed RdiNet deep learning algorithms are used in the transfer learning for pre-training and classification application. Transfer learning aims to apply previously learned knowledge in a new task. Seven algorithms were trained with the MediNet dataset, and the models obtained from these algorithms, namely feature vectors, were recorded. Pre-training models were used for classification studies on chest X-ray images, diabetic retinopathy, and Covid-19 datasets with the transfer learning technique. In performance measurement, an accuracy of 94.84% was obtained in the traditional classification study for the InceptionV3 model in the classification study performed on the Chest X-Ray Images dataset, and the accuracy was increased 98.71% after the transfer learning technique was applied. In the Covid-19 dataset, the classification success of the DenseNet121 model before pre-trained was 88%, while the performance after the transfer application with MediNet was 92%. In the Diabetic retinopathy dataset, the classification success of the Nested-LSTM + CNN model before pre-trained was 79.35%, while the classification success was 81.52% after the transfer application with MediNet. The comparison of results obtained from experimental studies observed that the proposed method produced more successful results. Graphical abstract
Collapse
Affiliation(s)
- Hatice Catal Reis
- Department of Geomatics Engineering, Gumushane University, 2900 Gumushane, Turkey
| | - Veysel Turk
- Department of Computer Engineering, University of Harran, Sanliurfa, Turkey
| | - Kourosh Khoshelham
- Department of Infrastructure Engineering, The University of Melbourne, Parkville, 3052 Australia
| | - Serhat Kaya
- Department of Mining Engineering, Dicle University, Diyarbakir, Turkey
| |
Collapse
|
9
|
Li Y, Bai L, Liang Z, Du H. Incremental Label Propagation for Data Sets with Imbalanced Labels. Neurocomputing 2023. [DOI: 10.1016/j.neucom.2023.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
10
|
Hu M, Nardi C, Zhang H, Ang KK. Applications of Deep Learning to Neurodevelopment in Pediatric Imaging: Achievements and Challenges. APPLIED SCIENCES 2023; 13:2302. [DOI: 10.3390/app13042302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Deep learning has achieved remarkable progress, particularly in neuroimaging analysis. Deep learning applications have also been extended from adult to pediatric medical images, and thus, this paper aims to present a systematic review of this recent research. We first introduce the commonly used deep learning methods and architectures in neuroimaging, such as convolutional neural networks, auto-encoders, and generative adversarial networks. A non-exhaustive list of commonly used publicly available pediatric neuroimaging datasets and repositories are included, followed by a categorical review of recent works in pediatric MRI-based deep learning studies in the past five years. These works are categorized into recognizing neurodevelopmental disorders, identifying brain and tissue structures, estimating brain age/maturity, predicting neurodevelopment outcomes, and optimizing MRI brain imaging and analysis. Finally, we also discuss the recent achievements and challenges on these applications of deep learning to pediatric neuroimaging.
Collapse
Affiliation(s)
- Mengjiao Hu
- Institute for Infocomm Research (I2R), Agency for Science, Technology and Research (A*STAR), Singapore 138632, Singapore
| | - Cosimo Nardi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence—Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy
| | - Haihong Zhang
- Institute for Infocomm Research (I2R), Agency for Science, Technology and Research (A*STAR), Singapore 138632, Singapore
| | - Kai-Keng Ang
- Institute for Infocomm Research (I2R), Agency for Science, Technology and Research (A*STAR), Singapore 138632, Singapore
- School of Computer Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
11
|
Reis HC, Turk V. Transfer Learning Approach and Nucleus Segmentation with MedCLNet Colon Cancer Database. J Digit Imaging 2023; 36:306-325. [PMID: 36127531 PMCID: PMC9984669 DOI: 10.1007/s10278-022-00701-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/30/2022] Open
Abstract
Machine learning has been recently used especially in the medical field. In the diagnosis of serious diseases such as cancer, deep learning techniques can be used to reduce the workload of experts and to produce quick solutions. The nuclei found in the histopathology dataset are an essential parameter in disease detection. The nucleus segmentation was performed using the colorectal histology MNIST dataset for nucleus detection in this study. The graph theory, PSO, watershed, and random walker algorithms were used for the segmentation process. In addition, we present the 10-class MedCLNet visual dataset consisting of the NCT-CRC-HE-100 K dataset, LC25000 dataset, and GlaS dataset that can be used in transfer learning studies from deep learning techniques. The study proposes a transfer learning technique using the MedCLNet database. Deep neural networks pre-trained with the proposed transfer learning method were used in the classification with the colorectal histology MNIST dataset in the experimental process. DenseNet201, DenseNet169, InceptionResNetV2, InceptionV3, ResNet152V2, ResNet101V2, and Xception deep learning algorithms were used in transfer learning and the classification studies. The proposed approach was analyzed before and after transfer learning with different methods (DenseNet169 + SVM, DenseNet169 + GRU). In the performance measurement, using the colorectal histology MNIST dataset, 94.29% accuracy was obtained in the DenseNet169 model, which was initiated with random weights in the multi-classification study, and 95.00% accuracy after transfer learning was applied. In comparison with the results obtained from empirical studies, it was demonstrated that the proposed method produced satisfactory outcomes. The application is expected to provide a secondary evaluation for physicians in colon cancer detection and the segmentation.
Collapse
Affiliation(s)
- Hatice Catal Reis
- Department of Geomatics Engineering, Gumushane University, Gumushane, 2900, Turkey.
| | - Veysel Turk
- Department of Computer Engineering, University of Harran, Sanliurfa, Turkey
| |
Collapse
|
12
|
Chung YW, Choi IY. Detection of abnormal extraocular muscles in small datasets of computed tomography images using a three-dimensional variational autoencoder. Sci Rep 2023; 13:1765. [PMID: 36720904 PMCID: PMC9889739 DOI: 10.1038/s41598-023-28082-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 01/12/2023] [Indexed: 02/02/2023] Open
Abstract
We sought to establish an unsupervised algorithm with a three-dimensional (3D) variational autoencoder model (VAE) for the detection of abnormal extraocular muscles in small datasets of orbital computed tomography (CT) images. 334 CT images of normal orbits and 96 of abnormal orbits diagnosed as thyroid eye disease were used for training and validation; 24 normal and 11 abnormal orbits were used for the test. A 3D VAE was developed and trained. All images were preprocessed to emphasize extraocular muscles and to suppress background noise (e.g., high signal intensity from bones). The optimal cut-off value was identified through receiver operating characteristic (ROC) curve analysis. The ability of the model to detect muscles of abnormal size was assessed by visualization. The model achieved a sensitivity of 79.2%, specificity of 72.7%, accuracy of 77.1%, F1-score of 0.667, and AUROC of 0.801. Abnormal CT images correctly identified by the model showed differences in the reconstruction of extraocular muscles. The proposed model showed potential to detect abnormalities in extraocular muscles using a small dataset, similar to the diagnostic approach used by physicians. Unsupervised learning could serve as an alternative detection method for medical imaging studies in which annotation is difficult or impossible to perform.
Collapse
Affiliation(s)
- Yeon Woong Chung
- Department of Ophthalmology and Visual Science, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Banpo Dae-Ro 222, Seoul, 06591, Republic of Korea
| | - In Young Choi
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Banpo Dae-Ro 222, Seoul, 06591, Republic of Korea.
| |
Collapse
|
13
|
An automated unsupervised deep learning–based approach for diabetic retinopathy detection. Med Biol Eng Comput 2022; 60:3635-3654. [DOI: 10.1007/s11517-022-02688-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 10/02/2022] [Indexed: 11/07/2022]
|
14
|
Fiste O, Liontos M, Zagouri F, Stamatakos G, Dimopoulos MA. Machine learning applications in gynecological cancer: A critical review. Crit Rev Oncol Hematol 2022; 179:103808. [PMID: 36087852 DOI: 10.1016/j.critrevonc.2022.103808] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/18/2022] [Accepted: 09/05/2022] [Indexed: 11/30/2022] Open
Abstract
Machine Learning (ML) represents a computer science capable of generating predictive models, by exposure to raw, training data, without being rigidly programmed. Over the last few years, ML has gained attention within the field of oncology, with considerable strides in both diagnostic, predictive, and prognostic spectrum of malignancies, but also as a catalyst of cancer research. In this review, we discuss the state of ML applications on gynecologic oncology and systematically address major technical and ethical concerns, with respect to their real-world medical practice translation. Undoubtedly, advances in ML will enable the analysis of large, rather complex, datasets for improved, cost-effective, and efficient clinical decisions.
Collapse
Affiliation(s)
- Oraianthi Fiste
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Alexandra Hospital, 80 Vasilissis Sophias, 11528 Athens, Greece.
| | - Michalis Liontos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Alexandra Hospital, 80 Vasilissis Sophias, 11528 Athens, Greece
| | - Flora Zagouri
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Alexandra Hospital, 80 Vasilissis Sophias, 11528 Athens, Greece
| | - Georgios Stamatakos
- In Silico Oncology and In Silico Medicine Group, Institute of Communication and Computer Systems, School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece
| | - Meletios Athanasios Dimopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Alexandra Hospital, 80 Vasilissis Sophias, 11528 Athens, Greece
| |
Collapse
|
15
|
Fully used reliable data and attention consistency for semi-supervised learning. Knowl Based Syst 2022. [DOI: 10.1016/j.knosys.2022.108837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Research on Anomaly Identification and Screening and Metallogenic Prediction Based on Semisupervised Neural Network. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:8745036. [PMID: 35909834 PMCID: PMC9334094 DOI: 10.1155/2022/8745036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 11/17/2022]
Abstract
This paper firstly introduces the background of the research on neural network and anomaly identification screening and mineralization prediction under semisupervised learning, then introduces supervised learning, semisupervised learning, unsupervised learning, and reinforcement learning, analyzes and compares their advantages and disadvantages, and concludes that unsupervised learning is the best way to process the data. In the research method, this paper classifies the obtained geochemical data by using semisupervised learning and then trains the obtained samples using the convolutional neural network model to obtain the mineralization prediction model and check its correctness, which finally provides the direction for the subsequent mineralization prediction research.
Collapse
|
17
|
Hazratgholizadeh R, Balafar MA, Derakhshi MRF. Active constrained deep embedded clustering with dual source. APPL INTELL 2022. [DOI: 10.1007/s10489-022-03752-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
A novel self-learning framework for bladder cancer grading using histopathological images. Comput Biol Med 2021; 138:104932. [PMID: 34673472 DOI: 10.1016/j.compbiomed.2021.104932] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/07/2021] [Accepted: 10/07/2021] [Indexed: 11/23/2022]
Abstract
In recent times, bladder cancer has increased significantly in terms of incidence and mortality. Currently, two subtypes are known based on tumour growth: non-muscle invasive (NMIBC) and muscle-invasive bladder cancer (MIBC). In this work, we focus on the MIBC subtype because it has the worst prognosis and can spread to adjacent organs. We present a self-learning framework to grade bladder cancer from histological images stained by immunohistochemical techniques. Specifically, we propose a novel Deep Convolutional Embedded Attention Clustering (DCEAC) which allows for the classification of histological patches into different levels of disease severity, according to established patterns in the literature. The proposed DCEAC model follows a fully unsupervised two-step learning methodology to discern between non-tumour, mild and infiltrative patterns from high-resolution 512 × 512 pixel samples. Our system outperforms previous clustering-based methods by including a convolutional attention module, which enables the refinement of the features of the latent space prior to the classification stage. The proposed network surpasses state-of-the-art approaches by 2-3% across different metrics, reaching a final average accuracy of 0.9034 in a multi-class scenario. Furthermore, the reported class activation maps evidence that our model is able to learn by itself the same patterns that clinicians consider relevant, without requiring previous annotation steps. This represents a breakthrough in MIBC grading that bridges the gap with respect to training the model on labelled data.
Collapse
|
19
|
Deep Semi-Supervised Algorithm for Learning Cluster-Oriented Representations of Medical Images Using Partially Observable DICOM Tags and Images. Diagnostics (Basel) 2021; 11:diagnostics11101920. [PMID: 34679618 PMCID: PMC8534981 DOI: 10.3390/diagnostics11101920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 11/16/2022] Open
Abstract
The task of automatically extracting large homogeneous datasets of medical images based on detailed criteria and/or semantic similarity can be challenging because the acquisition and storage of medical images in clinical practice is not fully standardised and can be prone to errors, which are often made unintentionally by medical professionals during manual input. In this paper, we propose an algorithm for learning cluster-oriented representations of medical images by fusing images with partially observable DICOM tags. Pairwise relations are modelled by thresholding the Gower distance measure which is calculated using eight DICOM tags. We trained the models using 30,000 images, and we tested them using a disjoint test set consisting of 8000 images, gathered retrospectively from the PACS repository of the Clinical Hospital Centre Rijeka in 2017. We compare our method against the standard and deep unsupervised clustering algorithms, as well as the popular semi-supervised algorithms combined with the most commonly used feature descriptors. Our model achieves an NMI score of 0.584 with respect to the anatomic region, and an NMI score of 0.793 with respect to the modality. The results suggest that DICOM data can be used to generate pairwise constraints that can help improve medical images clustering, even when using only a small number of constraints.
Collapse
|
20
|
Chanti DA, Duque VG, Crouzier M, Nordez A, Lacourpaille L, Mateus D. IFSS-Net: Interactive Few-Shot Siamese Network for Faster Muscle Segmentation and Propagation in Volumetric Ultrasound. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:2615-2628. [PMID: 33560982 DOI: 10.1109/tmi.2021.3058303] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We present an accurate, fast and efficient method for segmentation and muscle mask propagation in 3D freehand ultrasound data, towards accurate volume quantification. A deep Siamese 3D Encoder-Decoder network that captures the evolution of the muscle appearance and shape for contiguous slices is deployed. We use it to propagate a reference mask annotated by a clinical expert. To handle longer changes of the muscle shape over the entire volume and to provide an accurate propagation, we devise a Bidirectional Long Short Term Memory module. Also, to train our model with a minimal amount of training samples, we propose a strategy combining learning from few annotated 2D ultrasound slices with sequential pseudo-labeling of the unannotated slices. We introduce a decremental update of the objective function to guide the model convergence in the absence of large amounts of annotated data. After training with a few volumes, the decremental update strategy switches from a weak supervised training to a few-shot setting. Finally, to handle the class-imbalance between foreground and background muscle pixels, we propose a parametric Tversky loss function that learns to penalize adaptively the false positives and the false negatives. We validate our approach for the segmentation, label propagation, and volume computation of the three low-limb muscles on a dataset of 61600 images from 44 subjects. We achieve a Dice score coefficient of over 95% and a volumetric error of 1.6035 ± 0.587%.
Collapse
|
21
|
Korot E, Gonçalves MB, Khan SM, Struyven R, Wagner SK, Keane PA. Clinician-driven artificial intelligence in ophthalmology: resources enabling democratization. Curr Opin Ophthalmol 2021; 32:445-451. [PMID: 34265784 DOI: 10.1097/icu.0000000000000785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW This article aims to discuss the current state of resources enabling the democratization of artificial intelligence (AI) in ophthalmology. RECENT FINDINGS Open datasets, efficient labeling techniques, code-free automated machine learning (AutoML) and cloud-based platforms for deployment are resources that enable clinicians with scarce resources to drive their own AI projects. SUMMARY Clinicians are the use-case experts who are best suited to drive AI projects tackling patient-relevant outcome measures. Taken together, open datasets, efficient labeling techniques, code-free AutoML and cloud platforms break the barriers for clinician-driven AI. As AI becomes increasingly democratized through such tools, clinicians and patients stand to benefit greatly.
Collapse
Affiliation(s)
- Edward Korot
- Stanford University Byers Eye Institute, Palo Alto, California, USA
- Moorfields Eye Hospital, London, UK
| | - Mariana B Gonçalves
- Moorfields Eye Hospital, London, UK
- Federal University of São Paulo (UNIFESP)
- Vision Institute (IPEPO), Sao Paulo, Brazil
| | | | - Robbert Struyven
- Moorfields Eye Hospital, London, UK
- University College London, London, UK
| | | | | |
Collapse
|
22
|
Nagy M, Radakovich N, Nazha A. Machine Learning in Oncology: What Should Clinicians Know? JCO Clin Cancer Inform 2021; 4:799-810. [PMID: 32926637 DOI: 10.1200/cci.20.00049] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The volume and complexity of scientific and clinical data in oncology have grown markedly over recent years, including but not limited to the realms of electronic health data, radiographic and histologic data, and genomics. This growth holds promise for a deeper understanding of malignancy and, accordingly, more personalized and effective oncologic care. Such goals require, however, the development of new methods to fully make use of the wealth of available data. Improvements in computer processing power and algorithm development have positioned machine learning, a branch of artificial intelligence, to play a prominent role in oncology research and practice. This review provides an overview of the basics of machine learning and highlights current progress and challenges in applying this technology to cancer diagnosis, prognosis, and treatment recommendations, including a discussion of current takeaways for clinicians.
Collapse
Affiliation(s)
- Matthew Nagy
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH
| | - Nathan Radakovich
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH
| | - Aziz Nazha
- Center for Clinical Artificial Intelligence, Cleveland Clinic, Cleveland, OH.,Department of Hematology and Medical Oncology, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
23
|
Chen J, Sun Y, Fang Z, Lin W, Li G, Wang L. Harmonized neonatal brain MR image segmentation model for cross-site datasets. Biomed Signal Process Control 2021; 69. [DOI: 10.1016/j.bspc.2021.102810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
24
|
A deep embedded refined clustering approach for breast cancer distinction based on DNA methylation. Neural Comput Appl 2021. [DOI: 10.1007/s00521-021-06357-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractEpigenetic alterations have an important role in the development of several types of cancer. Epigenetic studies generate a large amount of data, which makes it essential to develop novel models capable of dealing with large-scale data. In this work, we propose a deep embedded refined clustering method for breast cancer differentiation based on DNA methylation. In concrete, the deep learning system presented here uses the levels of CpG island methylation between 0 and 1. The proposed approach is composed of two main stages. The first stage consists in the dimensionality reduction of the methylation data based on an autoencoder. The second stage is a clustering algorithm based on the soft assignment of the latent space provided by the autoencoder. The whole method is optimized through a weighted loss function composed of two terms: reconstruction and classification terms. To the best of the authors’ knowledge, no previous studies have focused on the dimensionality reduction algorithms linked to classification trained end-to-end for DNA methylation analysis. The proposed method achieves an unsupervised clustering accuracy of 0.9927 and an error rate (%) of 0.73 on 137 breast tissue samples. After a second test of the deep-learning-based method using a different methylation database, an accuracy of 0.9343 and an error rate (%) of 6.57 on 45 breast tissue samples are obtained. Based on these results, the proposed algorithm outperforms other state-of-the-art methods evaluated under the same conditions for breast cancer classification based on DNA methylation data.
Collapse
|
25
|
Lima BVA, Neto ADD, Silva LES, Machado VP. Deep semi‐supervised classification based in deep clustering and cross‐entropy. INT J INTELL SYST 2021. [DOI: 10.1002/int.22446] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Bruno Vicente Alves Lima
- Departament of Computer and Automation Federal University of Rio Grande do Norte Natal Rio Grande do Norte Brazil
| | - Adrião Duarte Dória Neto
- Departament of Computer and Automation Federal University of Rio Grande do Norte Natal Rio Grande do Norte Brazil
| | | | | |
Collapse
|
26
|
Li J, Zhang X, Zhou X. ALBERT-Based Self-Ensemble Model With Semisupervised Learning and Data Augmentation for Clinical Semantic Textual Similarity Calculation: Algorithm Validation Study. JMIR Med Inform 2021; 9:e23086. [PMID: 33480858 PMCID: PMC7864778 DOI: 10.2196/23086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/22/2020] [Accepted: 12/15/2020] [Indexed: 11/22/2022] Open
Abstract
Background In recent years, with increases in the amount of information available and the importance of information screening, increased attention has been paid to the calculation of textual semantic similarity. In the field of medicine, electronic medical records and medical research documents have become important data resources for clinical research. Medical textual semantic similarity calculation has become an urgent problem to be solved. Objective This research aims to solve 2 problems—(1) when the size of medical data sets is small, leading to insufficient learning with understanding of the models and (2) when information is lost in the process of long-distance propagation, causing the models to be unable to grasp key information. Methods This paper combines a text data augmentation method and a self-ensemble ALBERT model under semisupervised learning to perform clinical textual semantic similarity calculations. Results Compared with the methods in the 2019 National Natural Language Processing Clinical Challenges Open Health Natural Language Processing shared task Track on Clinical Semantic Textual Similarity, our method surpasses the best result by 2 percentage points and achieves a Pearson correlation coefficient of 0.92. Conclusions When the size of medical data set is small, data augmentation can increase the size of the data set and improved semisupervised learning can boost the learning efficiency of the model. Additionally, self-ensemble methods improve the model performance. Our method had excellent performance and has great potential to improve related medical problems.
Collapse
Affiliation(s)
- Junyi Li
- School of Information Science and Engineering, Yunnan University, Kunming, China
| | - Xuejie Zhang
- School of Information Science and Engineering, Yunnan University, Kunming, China
| | - Xiaobing Zhou
- School of Information Science and Engineering, Yunnan University, Kunming, China
| |
Collapse
|
27
|
Jiang Y, Gu X, Wu D, Hang W, Xue J, Qiu S, Lin CT. A Novel Negative-Transfer-Resistant Fuzzy Clustering Model With a Shared Cross-Domain Transfer Latent Space and its Application to Brain CT Image Segmentation. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:40-52. [PMID: 31905144 DOI: 10.1109/tcbb.2019.2963873] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Traditional clustering algorithms for medical image segmentation can only achieve satisfactory clustering performance under relatively ideal conditions, in which there is adequate data from the same distribution, and the data is rarely disturbed by noise or outliers. However, a sufficient amount of medical images with representative manual labels are often not available, because medical images are frequently acquired with different scanners (or different scan protocols) or polluted by various noises. Transfer learning improves learning in the target domain by leveraging knowledge from related domains. Given some target data, the performance of transfer learning is determined by the degree of relevance between the source and target domains. To achieve positive transfer and avoid negative transfer, a negative-transfer-resistant mechanism is proposed by computing the weight of transferred knowledge. Extracting a negative-transfer-resistant fuzzy clustering model with a shared cross-domain transfer latent space (called NTR-FC-SCT) is proposed by integrating negative-transfer-resistant and maximum mean discrepancy (MMD) into the framework of fuzzy c-means clustering. Experimental results show that the proposed NTR-FC-SCT model outperformed several traditional non-transfer and related transfer clustering algorithms.
Collapse
|
28
|
Jafari M, Wang Y, Amiryousefi A, Tang J. Unsupervised Learning and Multipartite Network Models: A Promising Approach for Understanding Traditional Medicine. Front Pharmacol 2020; 11:1319. [PMID: 32982738 PMCID: PMC7479204 DOI: 10.3389/fphar.2020.01319] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/07/2020] [Indexed: 12/11/2022] Open
Abstract
The ultimate goal of precision medicine is to determine right treatment for right patients based on precise diagnosis. To achieve this goal, correct stratification of patients using molecular features and clinical phenotypes is crucial. During the long history of medical science, our understanding on disease classification has been improved greatly by chemistry and molecular biology. Nowadays, we gain access to large scale patient-derived data by high-throughput technologies, generating a greater need for data science including unsupervised learning and network modeling. Unsupervised learning methods such as clustering could be a better solution to stratify patients when there is a lack of predefined classifiers. In network modularity analysis, clustering methods can be also applied to elucidate the complex structure of biological and disease networks at the systems level. In this review, we went over the main points of clustering analysis and network modeling, particularly in the context of Traditional Chinese medicine (TCM). We showed that this approach can provide novel insights on the rationale of classification for TCM herbs. In a case study, using a modularity analysis of multipartite networks, we illustrated that the TCM classifications are associated with the chemical properties of the herb ingredients. We concluded that multipartite network modeling may become a suitable data integration tool for understanding the mechanisms of actions of traditional medicine.
Collapse
Affiliation(s)
- Mohieddin Jafari
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Yinyin Wang
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ali Amiryousefi
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jing Tang
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
29
|
Cuocolo R, Caruso M, Perillo T, Ugga L, Petretta M. Machine Learning in oncology: A clinical appraisal. Cancer Lett 2020; 481:55-62. [PMID: 32251707 DOI: 10.1016/j.canlet.2020.03.032] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/11/2020] [Accepted: 03/31/2020] [Indexed: 02/07/2023]
Abstract
Machine learning (ML) is a branch of artificial intelligence centered on algorithms which do not need explicit prior programming to function but automatically learn from available data, creating decision models to complete tasks. ML-based tools have numerous promising applications in several fields of medicine. Its use has grown following the increased availability of patient data due to technological advances such as digital health records and high-volume information extraction from medical images. Multiple ML algorithms have been proposed for applications in oncology. For instance, they have been employed for oncological risk assessment, automated segmentation, lesion detection, characterization, grading and staging, prediction of prognosis and therapy response. In the near future, ML could become essential part of every step of oncological screening strategies and patients' management thus leading to precision medicine.
Collapse
Affiliation(s)
- Renato Cuocolo
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via S. Pansini 5, 80131, Naples, Italy
| | - Martina Caruso
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via S. Pansini 5, 80131, Naples, Italy
| | - Teresa Perillo
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via S. Pansini 5, 80131, Naples, Italy.
| | - Lorenzo Ugga
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via S. Pansini 5, 80131, Naples, Italy
| | - Mario Petretta
- Department of Translational Medical Sciences, University of Naples "Federico II", Via S. Pansini 5, 80131, Naples, Italy
| |
Collapse
|
30
|
Lauw HW, Wong RCW, Ntoulas A, Lim EP, Ng SK, Pan SJ. Human Activity Recognition Using Semi-supervised Multi-modal DEC for Instagram Data. ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING 2020. [PMCID: PMC7206193 DOI: 10.1007/978-3-030-47426-3_67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human Activity Recognition (HAR) using social media provides a solid basis for a variety of context-aware applications. Existing HAR approaches have adopted supervised machine learning algorithms using texts and their meta-data such as time, venue, and keywords. However, their recognition accuracy may decrease when applied to image-sharing social media where users mostly describe their daily activities and thoughts using both texts and images. In this paper, we propose a semi-supervised multi-modal deep embedding clustering method to recognize human activities on Instagram. Our proposed method learns multi-modal feature representations by alternating a supervised learning phase and an unsupervised learning phase. By utilizing a large number of unlabeled data, it learns a more generalized feature distribution for each HAR class and avoids overfitting to limited labeled data. Evaluation results show that leveraging multi-modality and unlabeled data is effective for HAR and our method outperforms existing approaches.
Collapse
Affiliation(s)
- Hady W. Lauw
- School of Information Systems, Singapore Management University, Singapore, Singapore
| | - Raymond Chi-Wing Wong
- Department of Computer Science and Engineering, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
| | - Alexandros Ntoulas
- Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Athens, Greece
| | - Ee-Peng Lim
- School of Information Systems, Singapore Management University, Singapore, Singapore
| | - See-Kiong Ng
- Institute of Data Science, National University of Singapore, Singapore, Singapore
| | - Sinno Jialin Pan
- School of Computer Science and Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
31
|
Abstract
In this paper, we present a framework to study the spatial structure of noctilucent clouds formed by ice particles in the upper atmosphere at mid and high latitudes during summer. We studied noctilucent cloud activity in optical images taken from three different locations and under different atmospheric conditions. In order to identify and distinguish noctilucent cloud activity from other objects in the scene, we employed linear discriminant analysis (LDA) with feature vectors ranging from simple metrics to higher-order local autocorrelation (HLAC), and histogram of oriented gradients (HOG). Finally, we propose a convolutional neural networks (CNN)-based method for the detection of noctilucent clouds. The results clearly indicate that the CNN-based approach outperforms the LDA-based methods used in this article. Furthermore, we outline suggestions for future research directions to establish a framework that can be used for synchronizing the optical observations from ground-based camera systems with echoes measured with radar systems like EISCAT in order to obtain independent additional information on the ice clouds.
Collapse
|
32
|
3D Flow Entropy Contour Fitting Segmentation Algorithm Based on Multi-Scale Transform Contour Constraint. Symmetry (Basel) 2019. [DOI: 10.3390/sym11070857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Image segmentation is a crucial topic in image analysis and understanding, and the foundation of target detection and recognition. Image segmentation, essentially, can be considered as classifying the image according to the consistency of the region and the inconsistency between regions, it is widely used in medical and criminal investigation, cultural relic identification, monitoring and so forth. There are two outstanding common problems in the existing segmentation algorithm, one is the lack of accuracy, and the other is that it is not widely applicable. The main contribution of this paper is to present a novel segmentation method based on the information entropy theory and multi-scale transform contour constraint. Firstly, the target contour is initially obtained by means of a multi-scale sample top-hat and bottom-hat transform and an improved watershed method. Subsequently, in terms of this initial contour, the interesting areas can be finely segmented out with an innovative 3D flow entropy method. Finally, the sufficient synthetic and real experiments proved that the proposed algorithm can greatly improve the segmentation effect. In addition, it is widely applicable.
Collapse
|