1
|
Moore JM, Small M, Yan G, Yang H, Gu C, Wang H. Network Spreading from Network Dimension. PHYSICAL REVIEW LETTERS 2024; 132:237401. [PMID: 38905697 DOI: 10.1103/physrevlett.132.237401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/01/2024] [Accepted: 05/01/2024] [Indexed: 06/23/2024]
Abstract
Continuous-state network spreading models provide critical numerical and analytic insights into transmission processes in epidemiology, rumor propagation, knowledge dissemination, and many other areas. Most of these models reflect only local features such as adjacency, degree, and transitivity, so can exhibit substantial error in the presence of global correlations typical of empirical networks. Here, we propose mitigating this limitation via a network property ideally suited to capturing spreading. This is the network correlation dimension, which characterizes how the number of nodes within range of a source typically scales with distance. Applying the approach to susceptible-infected-recovered processes leads to a spreading model which, for a wide range of networks and epidemic parameters, can provide more accurate predictions of the early stages of a spreading process than important established models of substantially higher complexity. In addition, the proposed model leads to a basic reproduction number that provides information about the final state not available from popular established models.
Collapse
Affiliation(s)
- Jack Murdoch Moore
- MOE Key Laboratory of Advanced Micro-Structured Materials, and School of Physical Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
- National Key Laboratory of Autonomous Intelligent Unmanned Systems, MOE Frontiers Science Center for Intelligent Autonomous Systems, Tongji University, Shanghai 200092, People's Republic of China
| | - Michael Small
- Complex Systems Group, Department of Mathematics and Statistics, University of Western Australia, Crawley 6009, Western Australia, Australia
- Mineral Resources, CSIRO, Kensington 6151, Western Australia, Australia
| | - Gang Yan
- MOE Key Laboratory of Advanced Micro-Structured Materials, and School of Physical Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
- National Key Laboratory of Autonomous Intelligent Unmanned Systems, MOE Frontiers Science Center for Intelligent Autonomous Systems, Tongji University, Shanghai 200092, People's Republic of China
| | - Huijie Yang
- Business School, University of Shanghai for Science and Technology, 334 Jungong Road, Shanghai 200093, People's Republic of China
| | - Changgui Gu
- Business School, University of Shanghai for Science and Technology, 334 Jungong Road, Shanghai 200093, People's Republic of China
| | - Haiying Wang
- Business School, University of Shanghai for Science and Technology, 334 Jungong Road, Shanghai 200093, People's Republic of China
| |
Collapse
|
2
|
Pujante-Otalora L, Canovas-Segura B, Campos M, Juarez JM. The use of networks in spatial and temporal computational models for outbreak spread in epidemiology: A systematic review. J Biomed Inform 2023; 143:104422. [PMID: 37315830 DOI: 10.1016/j.jbi.2023.104422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 06/16/2023]
Abstract
OBJECTIVES To examine recent literature in order to present a comprehensive overview of the current trends as regards the computational models used to represent the propagation of an infectious outbreak in a population, paying particular attention to those that represent network-based transmission. METHODS a systematic review was conducted following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Papers published in English between 2010 and September 2021 were sought in the ACM Digital Library, IEEE Xplore, PubMed and Scopus databases. RESULTS Upon considering their titles and abstracts, 832 papers were obtained, of which 192 were selected for a full content-body check. Of these, 112 studies were eventually deemed suitable for quantitative and qualitative analysis. Emphasis was placed on the spatial and temporal scales studied, the use of networks or graphs, and the granularity of the data used to evaluate the models. The models principally used to represent the spreading of outbreaks have been stochastic (55.36%), while the type of networks most frequently used are relationship networks (32.14%). The most common spatial dimension used is a region (19.64%) and the most used unit of time is a day (28.57%). Synthetic data as opposed to an external source were used in 51.79% of the papers. With regard to the granularity of the data sources, aggregated data such as censuses or transportation surveys are the most common. CONCLUSION We identified a growing interest in the use of networks to represent disease transmission. We detected that research is focused on only certain combinations of the computational model, type of network (in both the expressive and the structural sense) and spatial scale, while the search for other interesting combinations has been left for the future.
Collapse
Affiliation(s)
- Lorena Pujante-Otalora
- AIKE Research Group (INTICO), University of Murcia, Campus Espinardo, Murcia 30100, Spain.
| | | | - Manuel Campos
- AIKE Research Group (INTICO), University of Murcia, Campus Espinardo, Murcia 30100, Spain; Murcian Bio-Health Institute (IMIB-Arrixaca), El Palmar, Murcia 30120, Spain.
| | - Jose M Juarez
- AIKE Research Group (INTICO), University of Murcia, Campus Espinardo, Murcia 30100, Spain.
| |
Collapse
|
3
|
Ren H, Ling Y, Cao R, Wang Z, Li Y, Huang T. Early warning of emerging infectious diseases based on multimodal data. BIOSAFETY AND HEALTH 2023; 5:S2590-0536(23)00074-5. [PMID: 37362865 PMCID: PMC10245235 DOI: 10.1016/j.bsheal.2023.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/18/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has dramatically increased the awareness of emerging infectious diseases. The advancement of multiomics analysis technology has resulted in the development of several databases containing virus information. Several scientists have integrated existing data on viruses to construct phylogenetic trees and predict virus mutation and transmission in different ways, providing prospective technical support for epidemic prevention and control. This review summarized the databases of known emerging infectious viruses and techniques focusing on virus variant forecasting and early warning. It focuses on the multi-dimensional information integration and database construction of emerging infectious viruses, virus mutation spectrum construction and variant forecast model, analysis of the affinity between mutation antigen and the receptor, propagation model of virus dynamic evolution, and monitoring and early warning for variants. As people have suffered from COVID-19 and repeated flu outbreaks, we focused on the research results of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza viruses. This review comprehensively viewed the latest virus research and provided a reference for future virus prevention and control research.
Collapse
Affiliation(s)
- Haotian Ren
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yunchao Ling
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ruifang Cao
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhen Wang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yixue Li
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Guangzhou Laboratory, Guangzhou 510005, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200433, China
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
4
|
Mendes CFO, Brugnago EL, Beims MW, Grimm AM. Temporal relation between human mobility, climate, and COVID-19 disease. CHAOS (WOODBURY, N.Y.) 2023; 33:2890079. [PMID: 37163993 DOI: 10.1063/5.0138469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/20/2023] [Indexed: 05/12/2023]
Abstract
Using the example of the city of São Paulo (Brazil), in this paper, we analyze the temporal relation between human mobility and meteorological variables with the number of infected individuals by the COVID-19 disease. For the temporal relation, we use the significant values of distance correlation t0(DC), which is a recently proposed quantity capable of detecting nonlinear correlations between time series. The analyzed period was from February 26, 2020 to June 28, 2020. Fewer movements in recreation and transit stations and the increase in the maximal temperature have strong correlations with the number of newly infected cases occurring 17 days after. Furthermore, more significant changes in grocery and pharmacy, parks, and recreation and sudden changes in the maximal pressure occurring 10 and 11 days before the disease begins are also correlated with it. Scanning the whole period of the data, not only the early stage of the disease, we observe that changes in human mobility also primarily affect the disease for 0-19 days after. In other words, our results demonstrate the crucial role of the municipal decree declaring an emergency in the city to influence the number of infected individuals.
Collapse
Affiliation(s)
- Carlos F O Mendes
- Escola Normal Superior, Universidade do Estado do Amazonas, 69050-010 Manaus, Amazonas, Brazil
| | - Eduardo L Brugnago
- Instituto de Física, Universidade de São Paulo, 05508-090 São Paulo, SP, Brazil
- Departamento de Física, Universidade Federal do Paraná, 81531-980 Curitiba, Paraná, Brazil
| | - Marcus W Beims
- Departamento de Física, Universidade Federal do Paraná, 81531-980 Curitiba, Paraná, Brazil
| | - Alice M Grimm
- Departamento de Física, Universidade Federal do Paraná, 81531-980 Curitiba, Paraná, Brazil
| |
Collapse
|
5
|
Qi X, Fang J, Sun Y, Xu W, Li G. Altered Functional Brain Network Structure between Patients with High and Low Generalized Anxiety Disorder. Diagnostics (Basel) 2023; 13:1292. [PMID: 37046509 PMCID: PMC10093329 DOI: 10.3390/diagnostics13071292] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 04/01/2023] Open
Abstract
To investigate the differences in functional brain network structures between patients with a high level of generalized anxiety disorder (HGAD) and those with a low level of generalized anxiety disorder (LGAD), a resting-state electroencephalogram (EEG) was recorded in 30 LGAD patients and 21 HGAD patients. Functional connectivity between all pairs of brain regions was determined by the Phase Lag Index (PLI) to construct a functional brain network. Then, the characteristic path length, clustering coefficient, and small world were calculated to estimate functional brain network structures. The results showed that the PLI values of HGAD were significantly increased in alpha2, and significantly decreased in the theta and alpha1 rhythms, and the small-world attributes for both HGAD patients and LGAD patients were less than one for all the rhythms. Moreover, the small-world values of HGAD were significantly lower than those of LGAD in the theta and alpha2 rhythms, which indicated that the brain functional network structure would deteriorate with the increase in generalized anxiety disorder (GAD) severity. Our findings may play a role in the development and understanding of LGAD and HGAD to determine whether interventions that target these brain changes may be effective in treating GAD.
Collapse
Affiliation(s)
- Xuchen Qi
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
- Department of Neurosurgery, Shaoxing People’s Hospital, Shaoxing 312000, China
| | - Jiaqi Fang
- College of Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Yu Sun
- Key Laboratory for Biomedical Engineering of Ministry of Education of China, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310000, China
| | - Wanxiu Xu
- College of Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Gang Li
- College of Mathematical Medicine, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
6
|
Bosman M, Esteve A, Gabbanelli L, Jordan X, López-Gay A, Manera M, Martínez M, Masjuan P, Mir L, Paradells J, Pignatelli A, Riu I, Vitagliano V. Stochastic simulation of successive waves of COVID-19 in the province of Barcelona. Infect Dis Model 2023; 8:145-158. [PMID: 36589597 PMCID: PMC9792425 DOI: 10.1016/j.idm.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Analytic compartmental models are currently used in mathematical epidemiology to forecast the COVID-19 pandemic evolution and explore the impact of mitigation strategies. In general, such models treat the population as a single entity, losing the social, cultural and economical specificities. We present a network model that uses socio-demographic datasets with the highest available granularity to predict the spread of COVID-19 in the province of Barcelona. The model is flexible enough to incorporate the effect of containment policies, such as lockdowns or the use of protective masks, and can be easily adapted to future epidemics. We follow a stochastic approach that combines a compartmental model with detailed individual microdata from the population census, including social determinants and age-dependent strata, and time-dependent mobility information. We show that our model reproduces the dynamical features of the disease across two waves and demonstrates its capability to become a powerful tool for simulating epidemic events.
Collapse
Affiliation(s)
- M. Bosman
- Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Corresponding author.
| | - A. Esteve
- Centre d’Estudis Demogràfics (CED-CERCA), Barcelona, Spain
- Serra Húnter Fellow, Departament de Ciències Polítiques i Socials, Universitat Pompeu Fabra, Barcelona, Spain
| | - L. Gabbanelli
- Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - X. Jordan
- i2CAT Foundation, Edifici Nexus (Campus Nord UPC), Barcelona, Spain
| | - A. López-Gay
- Centre d’Estudis Demogràfics (CED-CERCA), Barcelona, Spain
- Departament de Geografia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - M. Manera
- Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Serra Húnter Fellow, Departament de Física, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - M. Martínez
- Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - P. Masjuan
- Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Departament de Física, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Ll.M. Mir
- Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - J. Paradells
- i2CAT Foundation, Edifici Nexus (Campus Nord UPC), Barcelona, Spain
- Departament d’Enginyeria Telemàtica, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - A. Pignatelli
- Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - I. Riu
- Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - V. Vitagliano
- Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Barcelona, Spain
- DIME, University of Genova, Via all’Opera Pia 15, 16145, Genova, Italy
- INFN, Sezione di Genova, via Dodecaneso 33, 16146, Genoa, Italy
- Department of Mathematics and Physics, University of Hull, Kingston upon Hull, HU6 7RX, UK
| |
Collapse
|
7
|
Guevara C, Coronel D, Salazar Maldonado BE, Salazar Flores JE. COVID-19 spread algorithm in the international airport network-DetArpds. PeerJ Comput Sci 2023; 9:e1228. [PMID: 37346519 PMCID: PMC10280396 DOI: 10.7717/peerj-cs.1228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/09/2023] [Indexed: 06/23/2023]
Abstract
Due to COVID-19, the spread of diseases through air transport has become an important issue for public health in countries globally. Moreover, mass transportation (such as air travel) was a fundamental reason why infections spread to all countries within weeks. In the last 2 years in this research area, many studies have applied machine learning methods to predict the spread of COVID-19 in different environments with optimal results. These studies have implemented algorithms, methods, techniques, and other statistical models to analyze the information in accuracy form. Accordingly, this study focuses on analyzing the spread of COVID-19 in the international airport network. Initially, we conducted a review of the technical literature on algorithms, techniques, and theorems for generating routes between two points, comprising an analysis of 80 scientific papers that were published in indexed journals between 2017 and 2021. Subsequently, we analyzed the international airport database and information on the spread of COVID-19 from 2020 to 2022 to develop an algorithm for determining airport routes and the prevention of disease spread (DetARPDS). The main objective of this computational algorithm is to generate the routes taken by people infected with COVID-19 who transited the international airport network. The DetARPDS algorithm uses graph theory to map the international airport network using geographic allocations to position each terminal (vertex), while the distance between terminals was calculated with the Euclidian distance. Additionally, the proposed algorithm employs the Dijkstra algorithm to generate route simulations from a starting point to a destination air terminal. The generated routes are then compared with chronological contagion information to determine whether they meet the temporality in the spread of the virus. Finally, the obtained results are presented achieving a high probability of 93.46% accuracy for determining the entire route of how the disease spreads. Above all, the results of the algorithm proposed improved different computational aspects, such as time processing and detection of airports with a high rate of infection concentration, in comparison with other similar studies shown in the literature review.
Collapse
Affiliation(s)
- Cesar Guevara
- DataLab, The Institute of Mathematical Sciences (ICMAT-CSIC), Madrid, Spain
- Centre of Mechatronics and Interactive Systems (MIST), Universidad Tecnológica Indoamérica, Quito, Pichincha, Ecuador
| | - Dennys Coronel
- Centre of Mechatronics and Interactive Systems (MIST), Universidad Tecnológica Indoamérica, Quito, Pichincha, Ecuador
| | | | | |
Collapse
|
8
|
Malaspina G, Racković S, Valdeira F. A hybrid compartmental model with a case study of COVID-19 in Great Britain and Israel. JOURNAL OF MATHEMATICS IN INDUSTRY 2023; 13:1. [PMID: 36777087 PMCID: PMC9897620 DOI: 10.1186/s13362-022-00130-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 12/20/2022] [Indexed: 06/18/2023]
Abstract
Given the severe impact of COVID-19 on several societal levels, it is of crucial importance to model the impact of restriction measures on the pandemic evolution, so that governments are able to make informed decisions. Even though there have been countless attempts to propose diverse models since the rise of the outbreak, the increase in data availability and start of vaccination campaigns calls for updated models and studies. Furthermore, most of the works are focused on a very particular place or application and we strive to attain a more general model, resorting to data from different countries. In particular, we compare Great Britain and Israel, two highly different scenarios in terms of vaccination plans and social structure. We build a network-based model, complex enough to model different scenarios of government-mandated restrictions, but generic enough to be applied to any population. To ease the computational load we propose a decomposition strategy for our model.
Collapse
Affiliation(s)
- Greta Malaspina
- Department of Mathematics and Informatics, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Stevo Racković
- Institute for Systems and Robotics, Instituto Superior Técnico, Lisbon, Portugal
| | - Filipa Valdeira
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
9
|
Yang L, Iwami M, Chen Y, Wu M, van Dam KH. Computational decision-support tools for urban design to improve resilience against COVID-19 and other infectious diseases: A systematic review. PROGRESS IN PLANNING 2023; 168:100657. [PMID: 35280114 PMCID: PMC8904142 DOI: 10.1016/j.progress.2022.100657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The COVID-19 pandemic highlighted the need for decision-support tools to help cities become more resilient to infectious diseases. Through urban design and planning, non-pharmaceutical interventions can be enabled, impelling behaviour change and facilitating the construction of lower risk buildings and public spaces. Computational tools, including computer simulation, statistical models, and artificial intelligence, have been used to support responses to the current pandemic as well as to the spread of previous infectious diseases. Our multidisciplinary research group systematically reviewed state-of-the-art literature to propose a toolkit that employs computational modelling for various interventions and urban design processes. We selected 109 out of 8,737 studies retrieved from databases and analysed them based on the pathogen type, transmission mode and phase, design intervention and process, as well as modelling methodology (method, goal, motivation, focus, and indication to urban design). We also explored the relationship between infectious disease and urban design, as well as computational modelling support, including specific models and parameters. The proposed toolkit will help designers, planners, and computer modellers to select relevant approaches for evaluating design decisions depending on the target disease, geographic context, design stages, and spatial and temporal scales. The findings herein can be regarded as stand-alone tools, particularly for fighting against COVID-19, or be incorporated into broader frameworks to help cities become more resilient to future disasters.
Collapse
Affiliation(s)
- Liu Yang
- School of Architecture, Southeast University, Nanjing, China
- Research Center of Urban Design, Southeast University, Nanjing, China
| | - Michiyo Iwami
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, UK
| | - Yishan Chen
- Architecture and Urban Design Research Center, China IPPR International Engineering CO., LTD, Beijing, China
| | - Mingbo Wu
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Koen H van Dam
- Centre for Process Systems Engineering, Department of Chemical Engineering, Imperial College London, UK
| |
Collapse
|
10
|
Epidemic dynamics in census-calibrated modular contact network. NETWORK MODELING AND ANALYSIS IN HEALTH INFORMATICS AND BIOINFORMATICS 2023; 12:14. [PMID: 36685658 PMCID: PMC9838429 DOI: 10.1007/s13721-022-00402-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 01/11/2023]
Abstract
Network-based models are apt for understanding epidemic dynamics due to their inherent ability to model the heterogeneity of interactions in the contemporary world of intense human connectivity. We propose a framework to create a wire-frame that mimics the social contact network of the population in a geography by lacing it with demographic information. The framework results in a modular network with small-world topology that accommodates density variations and emulates human interactions in family, social, and work spaces. When loaded with suitable economic, social, and urban data shaping patterns of human connectance, the network emerges as a potent decision-making instrument for urban planners, demographers, and social scientists. We employ synthetic networks to experiment in a controlled environment and study the impact of zoning, density variations, and population mobility on the epidemic variables using a variant of the SEIR model. Our results reveal that these demographic factors have a characteristic influence on social contact patterns, manifesting as distinct epidemic dynamics. Subsequently, we present a real-world COVID-19 case study for three Indian states by creating corresponding surrogate social contact networks using available census data. The case study validates that the demography-laced modular contact network reduces errors in the estimates of epidemic variables.
Collapse
|
11
|
Wang H, Moore JM, Small M, Wang J, Yang H, Gu C. Epidemic dynamics on higher-dimensional small world networks. APPLIED MATHEMATICS AND COMPUTATION 2022; 421:126911. [PMID: 35068617 PMCID: PMC8759951 DOI: 10.1016/j.amc.2021.126911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/26/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Dimension governs dynamical processes on networks. The social and technological networks which we encounter in everyday life span a wide range of dimensions, but studies of spreading on finite-dimensional networks are usually restricted to one or two dimensions. To facilitate investigation of the impact of dimension on spreading processes, we define a flexible higher-dimensional small world network model and characterize the dependence of its structural properties on dimension. Subsequently, we derive mean field, pair approximation, intertwined continuous Markov chain and probabilistic discrete Markov chain models of a COVID-19-inspired susceptible-exposed-infected-removed (SEIR) epidemic process with quarantine and isolation strategies, and for each model identify the basic reproduction number R 0 , which determines whether an introduced infinitesimal level of infection in an initially susceptible population will shrink or grow. We apply these four continuous state models, together with discrete state Monte Carlo simulations, to analyse how spreading varies with model parameters. Both network properties and the outcome of Monte Carlo simulations vary substantially with dimension or rewiring rate, but predictions of continuous state models change only slightly. A different trend appears for epidemic model parameters: as these vary, the outcomes of Monte Carlo change less than those of continuous state methods. Furthermore, under a wide range of conditions, the four continuous state approximations present similar deviations from the outcome of Monte Carlo simulations. This bias is usually least when using the pair approximation model, varies only slightly with network size, and decreases with dimension or rewiring rate. Finally, we characterize the discrepancies between Monte Carlo and continuous state models by simultaneously considering network efficiency and network size.
Collapse
Affiliation(s)
- Haiying Wang
- Business School, University of Shanghai for Science and Technology, 334 Jungong Road, Shanghai, 200093, China
| | - Jack Murdoch Moore
- School of Physics Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, Western Australia, China
| | - Michael Small
- Complex Systems Group, Department of Mathematics and Statistics, University of Western Australia, 35 Stirling Highway, Crawley, 6009, Australia
- Mineral Resources, CSIRO, 26 Dick Perry Ave, Kensington, 6151, Western Australia, Australia
| | - Jun Wang
- School of Economics and Management, Beihang University, 37 Xueyuan Road, Beijing, 100191, China
| | - Huijie Yang
- Business School, University of Shanghai for Science and Technology, 334 Jungong Road, Shanghai, 200093, China
| | - Changgui Gu
- Business School, University of Shanghai for Science and Technology, 334 Jungong Road, Shanghai, 200093, China
| |
Collapse
|
12
|
Abstract
Intelligent data analysis based on artificial intelligence and Big Data tools is widely used by the scientific community to overcome global challenges. One of these challenges is the worldwide coronavirus pandemic, which began in early 2020. Data science not only provides an opportunity to assess the impact caused by a pandemic, but also to predict the infection spread. In addition, the model expansion by economic, social, and infrastructural factors makes it possible to predict changes in all spheres of human activity in competitive epidemiological conditions. This article is devoted to the use of anonymized and personal data in predicting the coronavirus infection spread. The basic “Susceptible–Exposed–Infected–Recovered” model was extended by including a set of demographic, administrative, and social factors. The developed model is more predictive and applicable in assessing future pandemic impact. After a series of simulation experiment results, we concluded that personal data use in high-level modeling of the infection spread is excessive.
Collapse
|
13
|
Tsiotas D, Tselios V. Understanding the uneven spread of COVID-19 in the context of the global interconnected economy. Sci Rep 2022; 12:666. [PMID: 35027646 PMCID: PMC8758726 DOI: 10.1038/s41598-021-04717-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 12/30/2021] [Indexed: 12/13/2022] Open
Abstract
The worldwide spread of the COVID-19 pandemic is a complex and multivariate process differentiated across countries, and geographical distance is acceptable as a critical determinant of the uneven spreading. Although social connectivity is a defining condition for virus transmission, the network paradigm in the study of the COVID-19 spatio-temporal spread has not been used accordingly. Toward contributing to this demand, this paper uses network analysis to develop a multidimensional methodological framework for understanding the uneven (cross-country) spread of COVID-19 in the context of the globally interconnected economy. The globally interconnected system of tourism mobility is modeled as a complex network and studied within the context of a three-dimensional (3D) conceptual model composed of network connectivity, economic openness, and spatial impedance variables. The analysis reveals two main stages in the temporal spread of COVID-19, defined by the cutting-point of the 44th day from Wuhan. The first describes the outbreak in Asia and North America, the second stage in Europe, South America, and Africa, while the outbreak in Oceania intermediates. The analysis also illustrates that the average node degree exponentially decays as a function of COVID-19 emergence time. This finding implies that the highly connected nodes, in the Global Tourism Network (GTN), are disproportionally earlier infected by the pandemic than the other nodes. Moreover, countries with the same network centrality as China are early infected on average by COVID-19. The paper also finds that network interconnectedness, economic openness, and transport integration are critical determinants in the early global spread of the pandemic, and it reveals that the spatio-temporal patterns of the worldwide spreading of COVID-19 are more a matter of network interconnectivity than of spatial proximity.
Collapse
Affiliation(s)
- Dimitrios Tsiotas
- Department of Regional and Economic Development, Agricultural University of Athens, Nea Poli, 33100, Amfissa, Greece.
| | - Vassilis Tselios
- Department of Economic and Regional Development, Panteion University of Social and Political Sciences, 17671, Athens, Greece
| |
Collapse
|
14
|
Kwok WC, Wong CK, Ma TF, Ho KW, Fan LWT, Chan KPF, Chan SSK, Tam TCC, Ho PL. Modelling the impact of travel restrictions on COVID-19 cases in Hong Kong in early 2020. BMC Public Health 2021; 21:1878. [PMID: 34663279 PMCID: PMC8522545 DOI: 10.1186/s12889-021-11889-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/21/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Coronavirus Disease 2019 (COVID-19) led to pandemic that affected almost all countries in the world. Many countries have implemented border restriction as a public health measure to limit local outbreak. However, there is inadequate scientific data to support such a practice, especially in the presence of an established local transmission of the disease. OBJECTIVE To apply a metapopulation Susceptible-Exposed-Infectious-Recovered (SEIR) model with inspected migration to investigate the effect of border restriction as a public health measure to limit outbreak of coronavirus disease 2019. METHODS We apply a modified metapopulation SEIR model with inspected migration with simulating population migration, and incorporating parameters such as efficiency of custom inspection in blocking infected travelers in the model. The population sizes were retrieved from government reports, while the number of COVID-19 patients were retrieved from Hong Kong Department of Health and China Centre for Disease Control (CDC) data. The R0 was obtained from previous clinical studies. RESULTS Complete border closure can help to reduce the cumulative COVID-19 case number and mortality in Hong Kong by 13.99% and 13.98% respectively. To prevent full occupancy of isolation facilities in Hong Kong; effective public health measures to reduce local R0 to below 1.6 was necessary, apart from having complete border closure. CONCLUSIONS Early complete travel restriction is effective in reducing cumulative cases and mortality. However, additional anti-COVID-19 measures to reduce local R0 to below 1.6 are necessary to prevent COVID-19 cases from overwhelming hospital isolation facilities.
Collapse
Affiliation(s)
- Wang-Chun Kwok
- Department of Medicine, Queen Mary Hospital, Hong Kong, SAR, China
| | - Chun-Ka Wong
- Department of Medicine, Queen Mary Hospital, Hong Kong, SAR, China
| | - Ting-Fung Ma
- Department of Statistics, University of Wisconsin, Madison, USA
| | - Ka-Wai Ho
- Department of Astronomy, University of Wisconsin, Madison, USA
| | | | | | | | | | - Pak-Leung Ho
- Department of Microbiology and Centre for Infection, University of Hong Kong, Hong Kong, SAR, China.
| |
Collapse
|
15
|
Mata AS, Dourado SMP. Mathematical modeling applied to epidemics: an overview. THE SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES 2021; 15:1025-1044. [PMID: 38624924 PMCID: PMC8482738 DOI: 10.1007/s40863-021-00268-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 09/17/2021] [Indexed: 12/13/2022]
Abstract
This work presents an overview of the evolution of mathematical modeling applied to the context of epidemics and the advances in modeling in epidemiological studies. In fact, mathematical treatments have contributed substantially in the epidemiology area since the formulation of the famous SIR (susceptible-infected-recovered) model, in the beginning of the 20th century. We presented the SIR deterministic model and we also showed a more realistic application of this model applying a stochastic approach in complex networks. Nowadays, computational tools, such as big data and complex networks, in addition to mathematical modeling and statistical analysis, have been shown to be essential to understand the developing of the disease and the scale of the emerging outbreak. These issues are fundamental concerns to guide public health policies. Lately, the current pandemic caused by the new coronavirus further enlightened the importance of mathematical modeling associated with computational and statistical tools. For this reason, we intend to bring basic knowledge of mathematical modeling applied to epidemiology to a broad audience. We show the progress of this field of knowledge over the years, as well as the technical part involving several numerical tools.
Collapse
Affiliation(s)
- Angélica S. Mata
- Departamento de Física, Universidade Federal de Lavras, 37200-900 Lavras, MG Brazil
| | - Stela M. P. Dourado
- Departamento de Ciências da Saúde, Universidade Federal de Lavras, 37200-900 Lavras, MG Brazil
| |
Collapse
|
16
|
Extension of SEIR Compartmental Models for Constructive Lyapunov Control of COVID-19 and Analysis in Terms of Practical Stability. MATHEMATICS 2021. [DOI: 10.3390/math9172076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Due to the worldwide outbreak of COVID-19, many strategies and models have been put forward by researchers who intend to control the current situation with the given means. In particular, compartmental models are being used to model and analyze the COVID-19 dynamics of different considered populations as Susceptible, Exposed, Infected and Recovered compartments (SEIR). This study derives control-oriented compartmental models of the pandemic, together with constructive control laws based on the Lyapunov theory. The paper presents the derivation of new vaccination and quarantining strategies, found using compartmental models and design methods from the field of Lyapunov theory. The Lyapunov theory offers the possibility to track desired trajectories, guaranteeing the stability of the controlled system. Computer simulations aid to demonstrate the efficacy of the results. Stabilizing control laws are obtained and analyzed for multiple variants of the model. The stability, constructivity, and feasibility are proven for each Lyapunov-like function. Obtaining the proof of practical stability for the controlled system, several interesting system properties such as herd immunity are shown. On the basis of a generalized SEIR model and an extended variant with additional Protected and Quarantined compartments, control strategies are conceived by using two fundamental system inputs, vaccination and quarantine, whose influence on the system is a crucial part of the model. Simulation results prove that Lyapunov-based approaches yield effective control of the disease transmission.
Collapse
|
17
|
Li J, Zhong J, Ji YM, Yang F. A new SEIAR model on small-world networks to assess the intervention measures in the COVID-19 pandemics. RESULTS IN PHYSICS 2021; 25:104283. [PMID: 33996400 PMCID: PMC8105129 DOI: 10.1016/j.rinp.2021.104283] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/02/2021] [Accepted: 05/04/2021] [Indexed: 05/06/2023]
Abstract
A new susceptible-exposed-infected-asymptomatically infected-removed (SEIAR) model is developed to depict the COVID-19 transmission process, considering the latent period and asymptomatically infected. We verify the suppression effect of typical measures, cultivating human awareness, and reducing social contacts. As for cutting off social connections, the feasible measures encompass social distancing policy, isolating infected communities, and isolating hub nodes. Furthermore, it is found that implementing corresponding anti-epidemic measures at different pandemic stages can achieve significant results at a low cost. In the beginning, global lockdown policy is necessary, but isolating infected wards and hub nodes could be more beneficial as the situation eases. The proposed SEIAR model emphasizes the latent period and asymptomatically infected, thus providing theoretical support for subsequent research.
Collapse
Affiliation(s)
- Jie Li
- School of Economics and Management, Hebei University of Technology, Tianjin 300401, China
| | - Jiu Zhong
- School of Economics and Management, Hebei University of Technology, Tianjin 300401, China
| | - Yong-Mao Ji
- School of Economics and Management, Hebei University of Technology, Tianjin 300401, China
| | - Fang Yang
- School of Economics and Management, Hebei University of Technology, Tianjin 300401, China
| |
Collapse
|
18
|
Singh PD, Kaur R, Singh KD, Dhiman G. A Novel Ensemble-based Classifier for Detecting the COVID-19 Disease for Infected Patients. INFORMATION SYSTEMS FRONTIERS : A JOURNAL OF RESEARCH AND INNOVATION 2021; 23:1385-1401. [PMID: 33935584 PMCID: PMC8068562 DOI: 10.1007/s10796-021-10132-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/30/2021] [Indexed: 05/02/2023]
Abstract
The recently discovered coronavirus, SARS-CoV-2, which was detected in Wuhan, China, has spread worldwide and is still being studied at the end of 2019. Detection of COVID-19 at an early stage is essential to provide adequate healthcare to affected patients and protect the uninfected community. This paper aims to design and develop a novel ensemble-based classifier to predict COVID-19 cases at a very early stage so that appropriate action can be taken by patients, doctors, health organizations, and the government. In this paper, a synthetic dataset of COVID-19 is generated by a dataset generation algorithm. A novel ensemble-based classifier of machine learning is employed on the COVID-19 dataset to predict the disease. A convex hull-based approach is also applied to the data to improve the proposed novel, ensemble-based classifier's accuracy and speed. The model is designed and developed through the python programming language and compares with the most popular classifier, i.e., Decision Tree, ID3, and support vector machine. The results indicate that the proposed novel classifier provides a more significant precision, kappa static, root means a square error, recall, F-measure, and accuracy.
Collapse
Affiliation(s)
- Prabh Deep Singh
- Department of Computer Science & Engineering, Punjabi University, Patiala, Punjab India
| | - Rajbir Kaur
- Department of Electronics & Communication Engineering, Punjabi University, Patiala, Punjab India
| | - Kiran Deep Singh
- Department of Computer Science & Engineering, IKG Punjab Technical University, Punjab, India
| | - Gaurav Dhiman
- Department of Computer Science, Government Bikram College of Commerce, Punjabi University, Patiala, Punjab India
| |
Collapse
|
19
|
Symptom Tracking and Experimentation Platform for Covid-19 or Similar Infections. COMPUTERS 2021. [DOI: 10.3390/computers10020022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Remote symptom tracking is critical for the prevention of Covid-19 spread. The qualified medical staff working in the call centers of primary health care units have to take critical decisions often based on vague information about the patient condition. The congestion and the medical protocols that are constantly changing often lead to incorrect decisions. The proposed platform allows the remote assessment of symptoms and can be useful for patients, health institutes and researchers. It consists of mobile desktop applications and medical sensors connected to cloud infrastructure. The unique features offered by the proposed solution are: (a) dynamic adaptation of Medical Protocols (MP) is supported (for the definition of alert rules, sensor sampling strategy and questionnaire structure) covering different medical cases (pre- or post-hospitalization, vulnerable population, etc.), (b) anonymous medical data can be statistically processed in the context of the research about an infection such as Covid-19, (c) reliable diagnosis is supported since several factors are taken into consideration, (d) the platform can be used to drastically reduce the congestion in various healthcare units. For the demonstration of (b), new classification methods based on similarity metrics have been tested for cough sound classification with an accuracy in the order of 90%.
Collapse
|
20
|
Friji H, Hamadi R, Ghazzai H, Besbes H, Massoud Y. A Generalized Mechanistic Model for Assessing and Forecasting the Spread of the COVID-19 Pandemic. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2021; 9:13266-13285. [PMID: 34976570 PMCID: PMC8675554 DOI: 10.1109/access.2021.3051929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 05/07/2023]
Abstract
Since early 2020, the world has been afflicted with an unprecedented global pandemic. The SARS-CoV-19 (COVID-19) has levied massive economic and public health costs across many countries. Due to its virulence, the pathogen is rapidly propagating throughout the world in such a way that makes it incredibly challenging for officials to contain its spread. Therefore, there is a pressing need for national and local authorities to have tools that aid in their ability to assess and extrapolate the future trends of the spread of COVID-19, so they may make rational and informed decisions that minimize public harm. Mechanistic models are prominent mathematical tools that are used to characterize epidemics. In this paper, we propose a generalized mechanistic model with eight states characterizing the COVID-19 pandemic evolution from a susceptible state to discharged states while passing by quarantined and hospitalized states. The parameters of the model are determined by solving a fitting optimization problem with three observed inputs: the number of infected, deceased, and reported cases. The model's objective function is weighted over the training days so as to guide the fitting algorithm towards the latest pandemic period and lead to more accurate trend predictions for a stronger forecast. We solve the fitting problem with the Levenberg-Marquardt algorithm; we compare the performance of the model generated from this algorithm to the one of another state-of-the-art fitting algorithm as well as to the one of another compartmental model widely used in literature. We test the model on the COVID-19 data from four highly afflicted countries. The fitting algorithm has been validated graphically and through numerical metrics, and results show significantly accurate results for most of the countries. Once the model's parameters are estimated, forecasting results are derived and uncertainty regions of the expected scenarios are provided.
Collapse
Affiliation(s)
- Hamdi Friji
- School of Systems and EnterprisesStevens Institute of Technology Hoboken NJ 07030 USA
| | - Raby Hamadi
- School of Systems and EnterprisesStevens Institute of Technology Hoboken NJ 07030 USA
| | - Hakim Ghazzai
- School of Systems and EnterprisesStevens Institute of Technology Hoboken NJ 07030 USA
| | - Hichem Besbes
- Higher School of Communication of TunisUniversity of Carthage Tunis 2083 Tunisia
| | - Yehia Massoud
- School of Systems and EnterprisesStevens Institute of Technology Hoboken NJ 07030 USA
| |
Collapse
|
21
|
Chang SL, Harding N, Zachreson C, Cliff OM, Prokopenko M. Modelling transmission and control of the COVID-19 pandemic in Australia. Nat Commun 2020; 11:5710. [PMID: 33177507 PMCID: PMC7659014 DOI: 10.1038/s41467-020-19393-6] [Citation(s) in RCA: 237] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023] Open
Abstract
There is a continuing debate on relative benefits of various mitigation and suppression strategies aimed to control the spread of COVID-19. Here we report the results of agent-based modelling using a fine-grained computational simulation of the ongoing COVID-19 pandemic in Australia. This model is calibrated to match key characteristics of COVID-19 transmission. An important calibration outcome is the age-dependent fraction of symptomatic cases, with this fraction for children found to be one-fifth of such fraction for adults. We apply the model to compare several intervention strategies, including restrictions on international air travel, case isolation, home quarantine, social distancing with varying levels of compliance, and school closures. School closures are not found to bring decisive benefits unless coupled with high level of social distancing compliance. We report several trade-offs, and an important transition across the levels of social distancing compliance, in the range between 70% and 80% levels, with compliance at the 90% level found to control the disease within 13-14 weeks, when coupled with effective case isolation and international travel restrictions.
Collapse
Affiliation(s)
- Sheryl L Chang
- Centre for Complex Systems, Faculty of Engineering, University of Sydney, Sydney, NSW, 2006, Australia
| | - Nathan Harding
- Centre for Complex Systems, Faculty of Engineering, University of Sydney, Sydney, NSW, 2006, Australia
| | - Cameron Zachreson
- Centre for Complex Systems, Faculty of Engineering, University of Sydney, Sydney, NSW, 2006, Australia
| | - Oliver M Cliff
- Centre for Complex Systems, Faculty of Engineering, University of Sydney, Sydney, NSW, 2006, Australia
| | - Mikhail Prokopenko
- Centre for Complex Systems, Faculty of Engineering, University of Sydney, Sydney, NSW, 2006, Australia.
- Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Westmead, NSW, 2145, Australia.
| |
Collapse
|
22
|
Eshragh A, Alizamir S, Howley P, Stojanovski E. Modeling the dynamics of the COVID-19 population in Australia: A probabilistic analysis. PLoS One 2020; 15:e0240153. [PMID: 33007054 PMCID: PMC7531857 DOI: 10.1371/journal.pone.0240153] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/21/2020] [Indexed: 11/19/2022] Open
Abstract
The novel coronavirus COVID-19 arrived on Australian shores around 25 January 2020. This paper presents a novel method of dynamically modeling and forecasting the COVID-19 pandemic in Australia with a high degree of accuracy and in a timely manner using limited data; a valuable resource that can be used to guide government decision-making on societal restrictions on a daily and/or weekly basis. The "partially-observable stochastic process" used in this study predicts not only the future actual values with extremely low error, but also the percentage of unobserved COVID-19 cases in the population. The model can further assist policy makers to assess the effectiveness of several possible alternative scenarios in their decision-making processes.
Collapse
Affiliation(s)
- Ali Eshragh
- School of Mathematical and Physical Sciences, University of Newcastle, Newcastle upon Tyne, NSW, Australia
- International Computer Science Institute, University of California-Berkeley, Berkeley, CA, United States of America
| | - Saed Alizamir
- School of Management, Yale University, New Haven, CT, United States of America
| | - Peter Howley
- School of Mathematical and Physical Sciences, University of Newcastle, Newcastle upon Tyne, NSW, Australia
| | - Elizabeth Stojanovski
- School of Mathematical and Physical Sciences, University of Newcastle, Newcastle upon Tyne, NSW, Australia
| |
Collapse
|
23
|
Abstract
BACKGROUND Contactless symptom tracking is essential for the diagnosis of COVID-19 cases that need hospitalization. Indications from sensors and user descriptions have to be combined in order to make the right decisions. METHODS The proposed multipurpose platform Coronario combines sensory information from different sources for a valid diagnosis following a dynamically adaptable protocol. The information exchanged can also be exploited for the advancement of research on COVID-19. The platform consists of mobile and desktop applications, sensor infrastructure, and cloud services. It may be used by patients in pre- and post-hospitalization stages, vulnerable populations, medical practitioners, and researchers. RESULTS The supported audio processing is used to demonstrate how the Coronario platform can assist research on the nature of COVID-19. Cough sounds are classified as a case study, with 90% accuracy. DISCUSSION/CONCLUSIONS The dynamic adaptation to new medical protocols is one of the main advantages of the developed platform, making it particularly useful for several target groups of patients that require different screening methods. A medical protocol determines the structure of the questionnaires, the medical sensor sampling strategy and, the alert rules.
Collapse
Affiliation(s)
- Nikos Petrellis
- Electrical and Computer Engineering Department, University of Peloponnese, Patras, Greece
| |
Collapse
|
24
|
Babac MB, Mornar V. Resetting the Initial Conditions for Calculating Epidemic Spread: COVID-19 Outbreak in Italy. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2020; 8:148021-148030. [PMID: 34786281 PMCID: PMC8545335 DOI: 10.1109/access.2020.3015923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 07/31/2020] [Indexed: 06/13/2023]
Abstract
Confirmed cases of the disease COVID-19 have spread to more than 200 countries and regions of the world within a few months. Although the authorities report the number of new cases on daily basis, there remains a gap between the number of reported cases and actual number of cases in a population. One way to bridge this gap is to gain more in-depth understanding of the disease. In this paper, we have used the recent findings about the clinical courses of inpatients with COVID-19 to reset the initial conditions of the epidemic process in order to estimate more realistic number of cases in the population. By translating the reported cases certain number of days earlier with regard to an average clinical course of the disease, we have obtained much higher number of cases, which suggests that the actual number of infected cases and death rate might have been higher than reported. Based on the outbreak of COVID-19 in Italy, this paper shows an estimate of the number of infected cases based on infection and removal rates from data during the pandemic.
Collapse
Affiliation(s)
- Marina Bagić Babac
- Faculty of Electrical Engineering and ComputingUniversity of Zagreb10000ZagrebCroatia
| | - Vedran Mornar
- Faculty of Electrical Engineering and ComputingUniversity of Zagreb10000ZagrebCroatia
| |
Collapse
|
25
|
Estrada E. COVID-19 and SARS-CoV-2. Modeling the present, looking at the future. PHYSICS REPORTS 2020; 869:1-51. [PMID: 32834430 PMCID: PMC7386394 DOI: 10.1016/j.physrep.2020.07.005] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 07/27/2020] [Indexed: 05/21/2023]
Abstract
Since December 2019 the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has produced an outbreak of pulmonary disease which has soon become a global pandemic, known as COronaVIrus Disease-19 (COVID-19). The new coronavirus shares about 82% of its genome with the one which produced the 2003 outbreak (SARS CoV-1). Both coronaviruses also share the same cellular receptor, which is the angiotensin-converting enzyme 2 (ACE2) one. In spite of these similarities, the new coronavirus has expanded more widely, more faster and more lethally than the previous one. Many researchers across the disciplines have used diverse modeling tools to analyze the impact of this pandemic at global and local scales. This includes a wide range of approaches - deterministic, data-driven, stochastic, agent-based, and their combinations - to forecast the progression of the epidemic as well as the effects of non-pharmaceutical interventions to stop or mitigate its impact on the world population. The physical complexities of modern society need to be captured by these models. This includes the many ways of social contacts - (multiplex) social contact networks, (multilayers) transport systems, metapopulations, etc. - that may act as a framework for the virus propagation. But modeling not only plays a fundamental role in analyzing and forecasting epidemiological variables, but it also plays an important role in helping to find cures for the disease and in preventing contagion by means of new vaccines. The necessity for answering swiftly and effectively the questions: could existing drugs work against SARS CoV-2? and can new vaccines be developed in time? demands the use of physical modeling of proteins, protein-inhibitors interactions, virtual screening of drugs against virus targets, predicting immunogenicity of small peptides, modeling vaccinomics and vaccine design, to mention just a few. Here, we review these three main areas of modeling research against SARS CoV-2 and COVID-19: (1) epidemiology; (2) drug repurposing; and (3) vaccine design. Therefore, we compile the most relevant existing literature about modeling strategies against the virus to help modelers to navigate this fast-growing literature. We also keep an eye on future outbreaks, where the modelers can find the most relevant strategies used in an emergency situation as the current one to help in fighting future pandemics.
Collapse
Affiliation(s)
- Ernesto Estrada
- Instituto Universitario de Matemáticas y Aplicaciones, Universidad de Zaragoza, 50009 Zaragoza, Spain
- ARAID Foundation, Government of Aragón, 50018 Zaragoza, Spain
| |
Collapse
|