1
|
Acharjee MC, Ledden B, Thomas B, He X, Messina T, Giurleo J, Talaga D, Li J. Aggregation and Oligomerization Characterization of ß-Lactoglobulin Protein Using a Solid-State Nanopore Sensor. SENSORS (BASEL, SWITZERLAND) 2023; 24:81. [PMID: 38202943 PMCID: PMC10781269 DOI: 10.3390/s24010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024]
Abstract
Protein aggregation is linked to many chronic and devastating neurodegenerative human diseases and is strongly associated with aging. This work demonstrates that protein aggregation and oligomerization can be evaluated by a solid-state nanopore method at the single molecule level. A silicon nitride nanopore sensor was used to characterize both the amyloidogenic and native-state oligomerization of a model protein ß-lactoglobulin variant A (βLGa). The findings from the nanopore measurements are validated against atomic force microscopy (AFM) and dynamic light scattering (DLS) data, comparing βLGa aggregation from the same samples at various stages. By calibrating with linear and circular dsDNA, this study estimates the amyloid fibrils' length and diameter, the quantity of the βLGa aggregates, and their distribution. The nanopore results align with the DLS and AFM data and offer additional insight at the level of individual protein molecular assemblies. As a further demonstration of the nanopore technique, βLGa self-association and aggregation at pH 4.6 as a function of temperature were measured at high (2 M KCl) and low (0.1 M KCl) ionic strength. This research highlights the advantages and limitations of using solid-state nanopore methods for analyzing protein aggregation.
Collapse
Affiliation(s)
- Mitu C. Acharjee
- Material Science and Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Brad Ledden
- Material Science and Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Brian Thomas
- Department of Physics, University of Arkansas, Fayetteville, AR 72701, USA
| | - Xianglan He
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (X.H.); (J.G.)
| | - Troy Messina
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (X.H.); (J.G.)
- Department of Physics, Berea College, Berea, KY 40404, USA
| | - Jason Giurleo
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (X.H.); (J.G.)
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | - David Talaga
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (X.H.); (J.G.)
- Department of Chemistry, Sokol Institute, Montclair State University, Montclair, NJ 07043, USA
| | - Jiali Li
- Material Science and Engineering, University of Arkansas, Fayetteville, AR 72701, USA
- Department of Physics, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
2
|
Kaur H, Nandivada S, Acharjee MC, McNabb DS, Li J. Estimating RNA Polymerase Protein Binding Sites on λ DNA Using Solid-State Nanopores. ACS Sens 2019; 4:100-109. [PMID: 30561195 DOI: 10.1021/acssensors.8b00976] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this work, using a silicon nitride nanopore based device, we measure the binding locations of RNA Polymerase (RNAP) on 48.5 kbp (16.5 μm) long λ DNA. To prevent the separation of bound RNAPs from a λ DNA molecule in the high electric field inside a nanopore, we cross-linked RNAP proteins to λ DNA by formaldehyde. We compare the current blockage event data measured with a mixture of λ DNA and RNAP under cross-link conditions with our control samples: RNAP, λ DNA, RNAP, and λ DNA incubated in formaldehyde separately and in a mixture. By analyzing the time durations and amplitudes of current blockage signals of events and their subevents, as well as subevent starting times, we can estimate the binding efficiency and locations of RNAPs on a λ DNA. Our data analysis shows that under the conditions of our experiment with the ratio of 6 to 1 for RNAP to λ DNA molecules, the probability of an RNAP molecule to bind a λ DNA is ∼42%, and that RNAP binding has a main peak at 3.51 μm ± 0.53 μm, most likely corresponding to the two strong promoter regions at 3.48 and 4.43 μm of λ DNA. However, individual RNAP binding sites were not distinguished with this nanopore setup. This work brings out new perspectives and complications to study transcription factor RNAP binding at various positions on very long DNA molecules.
Collapse
|
3
|
Langecker M, Ivankin A, Carson S, Kinney SM, Simmel FC, Wanunu M. Nanopores suggest a negligible influence of CpG methylation on nucleosome packaging and stability. NANO LETTERS 2015; 15:783-90. [PMID: 25495735 PMCID: PMC4296928 DOI: 10.1021/nl504522n] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 12/09/2014] [Indexed: 05/21/2023]
Abstract
Nucleosomes are the fundamental repeating units of chromatin, and dynamic regulation of their positioning along DNA governs gene accessibility in eukaryotes. Although epigenetic factors have been shown to influence nucleosome structure and dynamics, the impact of DNA methylation on nucleosome packaging remains controversial. Further, all measurements to date have been carried out under zero-force conditions. In this paper, we present the first automated force measurements that probe the impact of CpG DNA methylation on nucleosome stability. In solid-state nanopore force spectroscopy, a nucleosomal DNA tail is captured into a pore and pulled on with a time-varying electrophoretic force until unraveling is detected. This is automatically repeated for hundreds of nucleosomes, yielding statistics of nucleosome lifetime vs electrophoretic force. The force geometry, which is similar to displacement forces exerted by DNA polymerases and helicases, reveals that nucleosome stability is sensitive to DNA sequence yet insensitive to CpG methylation. Our label-free method provides high-throughput data that favorably compares with other force spectroscopy experiments and is suitable for studying a variety of DNA-protein complexes.
Collapse
Affiliation(s)
- Martin Langecker
- Lehrstuhl für
Bioelektronik, Physics Department and ZNN/WSI, Technische Universität München, Am Coulombwall 4a, 85748 Garching, Germany
| | - Andrey Ivankin
- Departments of Physics and Chemistry/Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Spencer Carson
- Departments of Physics and Chemistry/Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Shannon
R. M. Kinney
- Department
of Pharmaceutical and Administrative Sciences, Western New England University, Springfield, Massachusetts 01119, United States
| | - Friedrich C. Simmel
- Lehrstuhl für
Bioelektronik, Physics Department and ZNN/WSI, Technische Universität München, Am Coulombwall 4a, 85748 Garching, Germany
- E-mail:
| | - Meni Wanunu
- Departments of Physics and Chemistry/Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
- E-mail:
| |
Collapse
|