1
|
Gamage R, Rossetti I, Niedermayer G, Münch G, Buskila Y, Gyengesi E. Chronic neuroinflammation during aging leads to cholinergic neurodegeneration in the mouse medial septum. J Neuroinflammation 2023; 20:235. [PMID: 37833764 PMCID: PMC10576363 DOI: 10.1186/s12974-023-02897-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/14/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Low-grade, chronic inflammation in the central nervous system characterized by glial reactivity is one of the major hallmarks for aging-related neurodegenerative diseases like Alzheimer's disease (AD). The basal forebrain cholinergic neurons (BFCN) provide the primary source of cholinergic innervation of the human cerebral cortex and may be differentially vulnerable in various neurodegenerative diseases. However, the impact of chronic neuroinflammation on the cholinergic function is still unclear. METHODS To gain further insight into age-related cholinergic decline, we investigated the cumulative effects of aging and chronic neuroinflammation on the structure and function of the septal cholinergic neurons in transgenic mice expressing interleukin-6 under the GFAP promoter (GFAP-IL6), which maintains a constant level of gliosis. Immunohistochemistry combined with unbiased stereology, single cell 3D morphology analysis and in vitro whole cell patch-clamp measurements were used to validate the structural and functional changes of BFCN and their microglial environment in the medial septum. RESULTS Stereological estimation of MS microglia number displayed significant increase across all three age groups, while a significant decrease in cholinergic cell number in the adult and aged groups in GFAP-IL6 mice compared to control. Moreover, we observed age-dependent alterations in the electrophysiological properties of cholinergic neurons and an increased excitability profile in the adult GFAP-IL6 group due to chronic neuroinflammation. These results complimented the significant decrease in hippocampal pyramidal spine density seen with aging and neuroinflammation. CONCLUSIONS We provide evidence of the significant impact of both aging and chronic glial activation on the cholinergic and microglial numbers and morphology in the MS, and alterations in the passive and active electrophysiological membrane properties of septal cholinergic neurons, resulting in cholinergic dysfunction, as seen in AD. Our results indicate that aging combined with gliosis is sufficient to cause cholinergic disruptions in the brain, as seen in dementias.
Collapse
Affiliation(s)
- Rashmi Gamage
- School of Medicine, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Ilaria Rossetti
- School of Medicine, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Garry Niedermayer
- School of Science, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Gerald Münch
- School of Medicine, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Yossi Buskila
- School of Medicine, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Erika Gyengesi
- School of Medicine, Western Sydney University, Penrith, NSW, 2751, Australia.
| |
Collapse
|
2
|
Nolan SO, Melugin PR, Erickson KR, Adams WR, Farahbakhsh ZZ, Mcgonigle CE, Kwon MH, Costa VD, Lapish CC, Hackett TA, Cuzon Carlson VC, Constantinidis C, Grant KA, Siciliano CA. Recurrent activity within microcircuits of macaque dorsolateral prefrontal cortex tracks cognitive flexibility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.23.559125. [PMID: 38529503 PMCID: PMC10962741 DOI: 10.1101/2023.09.23.559125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Human and non-human primate data clearly implicate the dorsolateral prefrontal cortex (dlPFC) as critical for advanced cognitive functions 1,2 . It is thought that intracortical synaptic architectures within dlPFC are the integral neurobiological substrate that gives rise to these processes, including working memory, inferential reasoning, and decision-making 3-7 . In the prevailing model, each cortical column makes up one fundamental processing unit composed of dense intrinsic connectivity, conceptualized as the 'canonical' cortical microcircuit 3,8 . Each cortical microcircuit receives sensory and cognitive information from a variety of sources which are represented by sustained activity within the microcircuit, referred to as persistent or recurrent activity 4,9 . Via recurrent connections within the microcircuit, activity can propagate for a variable length of time, thereby allowing temporary storage and computations to occur locally before ultimately passing a transformed representation to a downstream output 4,5,10 . Competing theories regarding how microcircuit activity is coordinated have proven difficult to reconcile in vivo where intercortical and intracortical computations cannot be fully dissociated 5,9,11,12 . Here, we interrogated the intrinsic features of isolated microcircuit networks using high-density calcium imaging of macaque dlPFC ex vivo . We found that spontaneous activity is intrinsically maintained by microcircuit architecture, persisting at a high rate in the absence of extrinsic connections. Further, using perisulcal stimulation to evoke persistent activity in deep layers, we found that activity propagates through stochastically assembled intracortical networks, creating predictable population-level events from largely non-overlapping ensembles. Microcircuit excitability covaried with individual cognitive performance, thus anchoring heuristic models of abstract cortical functions within quantifiable constraints imposed by the underlying synaptic architecture.
Collapse
|
3
|
Chaichim C, Cannings MJ, Dumlao G, Power JM. Long-term depression of excitatory transmission in the lateral septum. J Neurophysiol 2021; 125:1825-1832. [PMID: 33852819 DOI: 10.1152/jn.00657.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 04/13/2021] [Indexed: 11/22/2022] Open
Abstract
Neurons in the lateral septum (LS) integrate glutamatergic synaptic inputs, primarily from hippocampus, and send inhibitory projections to brain regions involved in reward and the generation of motivated behavior. Motivated learning and drugs of abuse have been shown to induce long-term changes in the strength of glutamatergic synapses in the LS, but the cellular mechanisms underlying long-term synaptic modification in the LS are poorly understood. Here, we examined synaptic transmission and long-term depression (LTD) in brain slices prepared from male and female C57BL/6 mice. No sex differences were observed in whole cell patch-clamp recordings of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPA-R)- and N-methyl-d-aspartate receptor (NMDA-R)-mediated currents. Low-frequency stimulation of the fimbria fiber bundle (1 Hz 15 min) induced LTD of the LS field excitatory postsynaptic potential (fEPSP). Induction of LTD was blocked by the NMDA-R antagonist (d)-2-amino-5-phosphonovaleric acid (APV), but not the selective antagonist of GluN2B-containing NMDA-Rs ifenprodil. These results demonstrate the NMDA-R dependence of LTD in the LS. The LS is a sexually dimorphic structure, and sex differences in glutamatergic transmission have been reported in vivo; our results suggest sex differences observed in vivo result from network activity rather than intrinsic differences in glutamatergic transmission.NEW & NOTEWORTHY The lateral septum (LS) integrates information from hippocampus and other regions to provide context-dependent (top down or higher order) regulation of mood and motivated behavior. Learning and drugs of abuse induce long-term changes in the strength of glutamatergic projections to the LS; however, the cellular mechanisms underlying such changes are poorly understood. Here, we demonstrate there are no apparent sex differences in fast excitatory transmission and that long-term synaptic depression in the LS is NMDA-R dependent.
Collapse
Affiliation(s)
- Chanchanok Chaichim
- Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Madeleine J Cannings
- Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Gadiel Dumlao
- Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - John M Power
- Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
4
|
Bellot-Saez A, Stevenson R, Kékesi O, Samokhina E, Ben-Abu Y, Morley JW, Buskila Y. Neuromodulation of Astrocytic K + Clearance. Int J Mol Sci 2021; 22:ijms22052520. [PMID: 33802343 PMCID: PMC7959145 DOI: 10.3390/ijms22052520] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 12/21/2022] Open
Abstract
Potassium homeostasis is fundamental for brain function. Therefore, effective removal of excessive K+ from the synaptic cleft during neuronal activity is paramount. Astrocytes play a key role in K+ clearance from the extracellular milieu using various mechanisms, including uptake via Kir channels and the Na+-K+ ATPase, and spatial buffering through the astrocytic gap-junction coupled network. Recently we showed that alterations in the concentrations of extracellular potassium ([K+]o) or impairments of the astrocytic clearance mechanism affect the resonance and oscillatory behavior of both the individual and networks of neurons. These results indicate that astrocytes have the potential to modulate neuronal network activity, however, the cellular effectors that may affect the astrocytic K+ clearance process are still unknown. In this study, we have investigated the impact of neuromodulators, which are known to mediate changes in network oscillatory behavior, on the astrocytic clearance process. Our results suggest that while some neuromodulators (5-HT; NA) might affect astrocytic spatial buffering via gap-junctions, others (DA; Histamine) primarily affect the uptake mechanism via Kir channels. These results suggest that neuromodulators can affect network oscillatory activity through parallel activation of both neurons and astrocytes, establishing a synergistic mechanism to maximize the synchronous network activity.
Collapse
Affiliation(s)
- Alba Bellot-Saez
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (A.B.-S.); (R.S.); (O.K.); (E.S.); (J.W.M.)
| | - Rebecca Stevenson
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (A.B.-S.); (R.S.); (O.K.); (E.S.); (J.W.M.)
| | - Orsolya Kékesi
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (A.B.-S.); (R.S.); (O.K.); (E.S.); (J.W.M.)
| | - Evgeniia Samokhina
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (A.B.-S.); (R.S.); (O.K.); (E.S.); (J.W.M.)
| | - Yuval Ben-Abu
- Projects and Physics Section, Sapir Academic College, D.N. Hof Ashkelon, Sderot 79165, Israel;
| | - John W. Morley
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (A.B.-S.); (R.S.); (O.K.); (E.S.); (J.W.M.)
| | - Yossi Buskila
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (A.B.-S.); (R.S.); (O.K.); (E.S.); (J.W.M.)
- International Centre for Neuromorphic Systems, The MARCS Institute, Western Sydney University, Penrith, NSW 2751, Australia
- Correspondence: ; Tel.: +61-246203853
| |
Collapse
|
5
|
Kékesi O, Buskila Y. Method for Prolonged Incubation of Brain Slices. Bio Protoc 2020; 10:e3683. [PMID: 33659354 DOI: 10.21769/bioprotoc.3683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/10/2020] [Accepted: 05/13/2020] [Indexed: 11/02/2022] Open
Abstract
Slices of neuronal tissue maintain a high degree of topographical and functional properties of neurons and glia and therefore are extensively used for measurements of neuronal activity at the molecular, cellular and network levels. However, the lifespan of slice preparations is narrow, averaging of 6-8 hours. Moreover, the average viability of brain slices varies according to animal age and region of interest, leading to the high variability and low reproducibility of recorded data. Previous techniques to increase the viability of brain slices focused on reducing cytotoxicity by chemical means, including alterations of the artificial cerebrospinal fluid (aCSF) composition to alleviate the direct damage of the slicing procedure or adding protective antioxidants to reduce cellular deterioration. In this protocol, we use a combination of hypothermia with firm control of the aCSF conditions in the recovery chamber (pH, temperature, and bacteria levels) to extend the slice viability significantly. Given the breadth of its usage, improving slice viability and longevity can considerably increase data reproducibility and reduce the cost, time, and number of animals used in neurophysiological studies.
Collapse
Affiliation(s)
- Orsolya Kékesi
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia.,Department of Physiology & Monash Biomedicine and Discovery Institute, Monash University, Melbourne, Victoria 3800, Australia
| | - Yossi Buskila
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia.,The MARCS Institute, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
6
|
Buskila Y, Kékesi O, Bellot-Saez A, Seah W, Berg T, Trpceski M, Yerbury JJ, Ooi L. Dynamic interplay between H-current and M-current controls motoneuron hyperexcitability in amyotrophic lateral sclerosis. Cell Death Dis 2019; 10:310. [PMID: 30952836 PMCID: PMC6450866 DOI: 10.1038/s41419-019-1538-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/13/2019] [Accepted: 03/19/2019] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a type of motor neuron disease (MND) in which humans lose motor functions due to progressive loss of motoneurons in the cortex, brainstem, and spinal cord. In patients and in animal models of MND it has been observed that there is a change in the properties of motoneurons, termed neuronal hyperexcitability, which is an exaggerated response of the neurons to a stimulus. Previous studies suggested neuronal excitability is one of the leading causes for neuronal loss, however the factors that instigate excitability in neurons over the course of disease onset and progression are not well understood, as these studies have looked mainly at embryonic or early postnatal stages (pre-symptomatic). As hyperexcitability is not a static phenomenon, the aim of this study was to assess the overall excitability of upper motoneurons during disease progression, specifically focusing on their oscillatory behavior and capabilities to fire repetitively. Our results suggest that increases in the intrinsic excitability of motoneurons are a global phenomenon of aging, however the cellular mechanisms that underlie this hyperexcitability are distinct in SOD1G93A ALS mice compared with wild-type controls. The ionic mechanism driving increased excitability involves alterations of the expression levels of HCN and KCNQ channel genes leading to a complex dynamic of H-current and M-current activation. Moreover, we show a negative correlation between the disease onset and disease progression, which correlates with a decrease in the expression level of HCN and KCNQ channels. These findings provide a potential explanation for the increased vulnerability of motoneurons to ALS with aging.
Collapse
Affiliation(s)
- Yossi Buskila
- Biomedical Engineering and Neuroscience research group, The MARCS Institute, Western Sydney University, Penrith, NSW, 2751, Australia.
- School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia.
| | - Orsolya Kékesi
- Biomedical Engineering and Neuroscience research group, The MARCS Institute, Western Sydney University, Penrith, NSW, 2751, Australia
- School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia
- School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia
- Illawarra Health and Medical Research Institute, Northfields Avenue, Wollongong, NSW, 2522, Australia
| | - Alba Bellot-Saez
- Biomedical Engineering and Neuroscience research group, The MARCS Institute, Western Sydney University, Penrith, NSW, 2751, Australia
- School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia
| | - Winston Seah
- Biomedical Engineering and Neuroscience research group, The MARCS Institute, Western Sydney University, Penrith, NSW, 2751, Australia
- School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia
- School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia
- Illawarra Health and Medical Research Institute, Northfields Avenue, Wollongong, NSW, 2522, Australia
| | - Tracey Berg
- School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia
- Illawarra Health and Medical Research Institute, Northfields Avenue, Wollongong, NSW, 2522, Australia
| | - Michael Trpceski
- School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia
- Illawarra Health and Medical Research Institute, Northfields Avenue, Wollongong, NSW, 2522, Australia
| | - Justin J Yerbury
- School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia
- Illawarra Health and Medical Research Institute, Northfields Avenue, Wollongong, NSW, 2522, Australia
| | - Lezanne Ooi
- School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia.
- Illawarra Health and Medical Research Institute, Northfields Avenue, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
7
|
Abstract
Brain waves are rhythmic voltage oscillations emerging from the synchronization of individual neurons into a neuronal network. These oscillations range from slow to fast fluctuations, and are classified by power and frequency band, with different frequency bands being associated with specific behaviours. It has been postulated that at least ten distinct mechanisms are required to cover the frequency range of neural oscillations, however the mechanisms that gear the transition between distinct oscillatory frequencies are unknown. In this study, we have used electrophysiological recordings to explore the involvement of astrocytic K+ clearance processes in modulating neural oscillations at both network and cellular levels. Our results indicate that impairment of astrocytic K+ clearance capabilities, either through blockade of K+ uptake or astrocytic connectivity, enhance network excitability and form high power network oscillations over a wide range of frequencies. At the cellular level, local increases in extracellular K+ results in modulation of the oscillatory behaviour of individual neurons, which underlies the network behaviour. Since astrocytes are central for maintaining K+ homeostasis, our study suggests that modulation of their inherent capabilities to clear K+ from the extracellular milieu is a potential mechanism to optimise neural resonance behaviour and thus tune neural oscillations.
Collapse
|
8
|
Cameron MA, Kekesi O, Morley JW, Bellot-Saez A, Kueh S, Breen P, van Schaik A, Tapson J, Buskila Y. Prolonged Incubation of Acute Neuronal Tissue for Electrophysiology and Calcium-imaging. J Vis Exp 2017. [PMID: 28287542 DOI: 10.3791/55396] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Acute neuronal tissue preparations, brain slices and retinal wholemount, can usually only be maintained for 6 - 8 h following dissection. This limits the experimental time, and increases the number of animals that are utilized per study. This limitation specifically impacts protocols such as calcium imaging that require prolonged pre-incubation with bath-applied dyes. Exponential bacterial growth within 3 - 4 h after slicing is tightly correlated with a decrease in tissue health. This study describes a method for limiting the proliferation of bacteria in acute preparations to maintain viable neuronal tissue for prolonged periods of time (>24 h) without the need for antibiotics, sterile procedures, or tissue culture media containing growth factors. By cycling the extracellular fluid through UV irradiation and keeping the tissue in a custom holding chamber at 15 - 16 °C, the tissue shows no difference in electrophysiological properties, or calcium signaling through intracellular calcium dyes at >24 h postdissection. These methods will not only extend experimental time for those using acute neuronal tissue, but will reduce the number of animals required to complete experimental goals, and will set a gold standard for acute neuronal tissue incubation.
Collapse
Affiliation(s)
| | - Orsolya Kekesi
- The MARCS Institute, Western Sydney University; School of Medicine, Western Sydney University
| | - John W Morley
- The MARCS Institute, Western Sydney University; School of Medicine, Western Sydney University
| | - Alba Bellot-Saez
- The MARCS Institute, Western Sydney University; School of Medicine, Western Sydney University
| | - Sindy Kueh
- School of Medicine, Western Sydney University
| | - Paul Breen
- The MARCS Institute, Western Sydney University
| | | | | | - Yossi Buskila
- The MARCS Institute, Western Sydney University; School of Medicine, Western Sydney University;
| |
Collapse
|
9
|
Cameron M, Kékesi O, Morley JW, Tapson J, Breen PP, van Schaik A, Buskila Y. Calcium Imaging of AM Dyes Following Prolonged Incubation in Acute Neuronal Tissue. PLoS One 2016; 11:e0155468. [PMID: 27183102 PMCID: PMC4868260 DOI: 10.1371/journal.pone.0155468] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/30/2016] [Indexed: 12/12/2022] Open
Abstract
Calcium-imaging is a sensitive method for monitoring calcium dynamics during neuronal activity. As intracellular calcium concentration is correlated to physiological and pathophysiological activity of neurons, calcium imaging with fluorescent indicators is one of the most commonly used techniques in neuroscience today. Current methodologies for loading calcium dyes into the tissue require prolonged incubation time (45-150 min), in addition to dissection and recovery time after the slicing procedure. This prolonged incubation curtails experimental time, as tissue is typically maintained for 6-8 hours after slicing. Using a recently introduced recovery chamber that extends the viability of acute brain slices to more than 24 hours, we tested the effectiveness of calcium AM staining following long incubation periods post cell loading and its impact on the functional properties of calcium signals in acute brain slices and wholemount retinae. We show that calcium dyes remain within cells and are fully functional >24 hours after loading. Moreover, the calcium dynamics recorded >24 hrs were similar to the calcium signals recorded in fresh tissue that was incubated for <4 hrs. These results indicate that long exposure of calcium AM dyes to the intracellular cytoplasm did not alter the intracellular calcium concentration, the functional range of the dye or viability of the neurons. This data extends our previous work showing that a custom recovery chamber can extend the viability of neuronal tissue, and reliable data for both electrophysiology and imaging can be obtained >24hrs after dissection. These methods will not only extend experimental time for those using acute neuronal tissue, but also may reduce the number of animals required to complete experimental goals.
Collapse
Affiliation(s)
- Morven Cameron
- Biomedical Engineering and Neuroscience group, The MARCS Institute, Western Sydney University, Penrith, NSW, Australia
| | - Orsolya Kékesi
- School of Medicine, Western Sydney University, Penrith, NSW, Australia
- Biomedical Engineering and Neuroscience group, The MARCS Institute, Western Sydney University, Penrith, NSW, Australia
| | - John W. Morley
- School of Medicine, Western Sydney University, Penrith, NSW, Australia
- Biomedical Engineering and Neuroscience group, The MARCS Institute, Western Sydney University, Penrith, NSW, Australia
| | - Jonathan Tapson
- School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Paul P. Breen
- School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - André van Schaik
- School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Yossi Buskila
- School of Medicine, Western Sydney University, Penrith, NSW, Australia
- Biomedical Engineering and Neuroscience group, The MARCS Institute, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|