1
|
Yang J, Fischer NG, Ye Z. Revolutionising oral organoids with artificial intelligence. BIOMATERIALS TRANSLATIONAL 2024; 5:372-389. [PMID: 39872928 PMCID: PMC11764189 DOI: 10.12336/biomatertransl.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/20/2024] [Accepted: 11/01/2024] [Indexed: 01/30/2025]
Abstract
The convergence of organoid technology and artificial intelligence (AI) is poised to revolutionise oral healthcare. Organoids - three-dimensional structures derived from human tissues - offer invaluable insights into the complex biology of diseases, allowing researchers to effectively study disease mechanisms and test therapeutic interventions in environments that closely mimic in vivo conditions. In this review, we first present the historical development of organoids and delve into the current types of oral organoids, focusing on their use in disease models, regeneration and microbiome intervention. We then compare single-source and multi-lineage oral organoids and assess the latest progress in bioprinted, vascularised and neural-integrated organoids. In the next part of the review, we highlight significant advancements in AI, emphasising how AI algorithms may potentially promote organoid development for early disease detection and diagnosis, personalised treatment, disease prediction and drug screening. However, our main finding is the identification of remaining challenges, such as data integration and the critical need for rigorous validation of AI algorithms to ensure their clinical reliability. Our main viewpoint is that current AI-enabled oral organoids are still limited in applications but, as we look to the future, we offer insights into the potential transformation of AI-integrated oral organoids in oral disease diagnosis, oral microbial interactions and drug discoveries. By synthesising these components, this review aims to provide a comprehensive perspective on the current state and future implications of AI-enabled oral organoids, emphasising their role in advancing oral healthcare and improving patient outcomes.
Collapse
Affiliation(s)
- Jiawei Yang
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Nicholas G. Fischer
- MDRCBB, Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, Minneapolis, MN, USA
| | - Zhou Ye
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong Special Administrative Region, China
| |
Collapse
|
2
|
Chen Z, Chen J, Lin D, Kang H, Luo Y, Wang X, Wang L, Liu D. Forming Single-Cell-Derived Colon Cancer Organoid Arrays on a Microfluidic Chip for High Throughput Tumor Heterogeneity Analysis. ACS Biomater Sci Eng 2024; 10:5265-5273. [PMID: 39087916 DOI: 10.1021/acsbiomaterials.4c00727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Single-cell-derived tumor organoids (STOs) possess a distinct genetic background, making them valuable tools for demonstrating tumor heterogeneity. In order to fulfill the high throughput demands of STO assays, we have developed a microfluidic chip containing 30 000 microwells, which is dedicated to a single cell culture approach for selective expansion and differential induction of cancer stem cells. The microwells are coated with a hydrophilic copolymer to eliminate cell adhesion, and the cell culture is supported by poly(ethylene glycol) (PEG) to establish a nonadhesive culture environment. By utilizing an input cell density of 7 × 103·mL-1, it is possible to construct a 4000 single cell culture system through stochastic cell occupation. We demonstrate that the addition of 15% PEG10000 in the cell culture medium effectively prevents cell loss while facilitating tumor stem cell expansion. As were demonstrated by HCT116, HT29, and SW480 colon cancer cells, the microfluidic approach achieved a STO formation rate of ∼20%, resulting in over 800 STOs generated from a single culture. Comprehensive analysis through histomorphology, immunohistochemistry, drug response evaluation, assessment of cell invasion, and biomarker detection reveals the heterogeneity among individual STOs. Specifically, the smaller STOs exhibited higher invasion and drug resistance capabilities compared with the larger ones. The developed microfluidic approach effectively facilitates STO formation and offers promising prospects for investigating tumor heterogeneity, as well as conducting personalized therapy-focused drug screening.
Collapse
Affiliation(s)
- Zihe Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Jueming Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Dongguo Lin
- Department of Laboratory Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
- Guangdong Engineering Technology Research Center of Microfluidic Chip Medical Diagnosis, Guangzhou 510180, China
| | - Hui Kang
- Department of Pathology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Yanzhang Luo
- Department of Laboratory Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Xiaogang Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Lihui Wang
- Department of Pathology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Dayu Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
- Guangdong Engineering Technology Research Center of Microfluidic Chip Medical Diagnosis, Guangzhou 510180, China
| |
Collapse
|
3
|
Chen HC, Ma Y, Cheng J, Chen YC. Advances in Single-Cell Techniques for Linking Phenotypes to Genotypes. CANCER HETEROGENEITY AND PLASTICITY 2024; 1:0004. [PMID: 39156821 PMCID: PMC11328949 DOI: 10.47248/chp2401010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Single-cell analysis has become an essential tool in modern biological research, providing unprecedented insights into cellular behavior and heterogeneity. By examining individual cells, this approach surpasses conventional population-based methods, revealing critical variations in cellular states, responses to environmental cues, and molecular signatures. In the context of cancer, with its diverse cell populations, single-cell analysis is critical for investigating tumor evolution, metastasis, and therapy resistance. Understanding the phenotype-genotype relationship at the single-cell level is crucial for deciphering the molecular mechanisms driving tumor development and progression. This review highlights innovative strategies for selective cell isolation based on desired phenotypes, including robotic aspiration, laser detachment, microraft arrays, optical traps, and droplet-based microfluidic systems. These advanced tools facilitate high-throughput single-cell phenotypic analysis and sorting, enabling the identification and characterization of specific cell subsets, thereby advancing therapeutic innovations in cancer and other diseases.
Collapse
Affiliation(s)
- Hsiao-Chun Chen
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
| | - Yushu Ma
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
| | - Jinxiong Cheng
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA 15260, USA
| | - Yu-Chih Chen
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA 15260, USA
- CMU-Pitt Ph.D. Program in Computational Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
| |
Collapse
|
4
|
Freitas SC, Sanderson D, Caspani S, Magalhães R, Cortés-Llanos B, Granja A, Reis S, Belo JH, Azevedo J, Gómez-Gaviro MV, de Sousa CT. New Frontiers in Colorectal Cancer Treatment Combining Nanotechnology with Photo- and Radiotherapy. Cancers (Basel) 2023; 15:383. [PMID: 36672333 PMCID: PMC9856291 DOI: 10.3390/cancers15020383] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/19/2022] [Accepted: 12/24/2022] [Indexed: 01/11/2023] Open
Abstract
Colorectal cancer is the third most common cancer worldwide. Despite recent advances in the treatment of this pathology, which include a personalized approach using radio- and chemotherapies in combination with advanced surgical techniques, it is imperative to enhance the performance of these treatments and decrease their detrimental side effects on patients' health. Nanomedicine is likely the pathway towards solving this challenge by enhancing both the therapeutic and diagnostic capabilities. In particular, plasmonic nanoparticles show remarkable potential due to their dual therapeutic functionalities as photothermal therapy agents and as radiosensitizers in radiotherapy. Their dual functionality, high biocompatibility, easy functionalization, and targeting capabilities make them potential agents for inducing efficient cancer cell death with minimal side effects. This review aims to identify the main challenges in the diagnosis and treatment of colorectal cancer. The heterogeneous nature of this cancer is also discussed from a single-cell point of view. The most relevant works in photo- and radiotherapy using nanotechnology-based therapies for colorectal cancer are addressed, ranging from in vitro studies (2D and 3D cell cultures) to in vivo studies and clinical trials. Although the results using nanoparticles as a photo- and radiosensitizers in photo- and radiotherapy are promising, preliminary studies showed that the possibility of combining both therapies must be explored to improve the treatment efficiency.
Collapse
Affiliation(s)
- Sara C. Freitas
- IFIMUP-Institute of Physics for Advanced Materials, Nanotechnology and Photonics of University of Porto, LaPMET-Laboratory of Physics for Materials and Emergent Technologies, Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Daniel Sanderson
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Doctor Esquerdo 46, 28007 Madrid, Spain
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, 28911 Leganés, Spain
| | - Sofia Caspani
- IFIMUP-Institute of Physics for Advanced Materials, Nanotechnology and Photonics of University of Porto, LaPMET-Laboratory of Physics for Materials and Emergent Technologies, Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Ricardo Magalhães
- IFIMUP-Institute of Physics for Advanced Materials, Nanotechnology and Photonics of University of Porto, LaPMET-Laboratory of Physics for Materials and Emergent Technologies, Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | | | - Andreia Granja
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Salette Reis
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - João Horta Belo
- IFIMUP-Institute of Physics for Advanced Materials, Nanotechnology and Photonics of University of Porto, LaPMET-Laboratory of Physics for Materials and Emergent Technologies, Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - José Azevedo
- Colorectal Surgery—Champalimaud Foundation, Champalimaud Centre for the Unknown, Avenida Brasília, 1400-038 Lisboa, Portugal
| | - Maria Victoria Gómez-Gaviro
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Doctor Esquerdo 46, 28007 Madrid, Spain
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, 28911 Leganés, Spain
| | - Célia Tavares de Sousa
- IFIMUP-Institute of Physics for Advanced Materials, Nanotechnology and Photonics of University of Porto, LaPMET-Laboratory of Physics for Materials and Emergent Technologies, Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
- Departamento de Física Aplicada, Facultad de Ciencias, Universidad Autonoma de Madrid (UAM), Campus de Cantoblanco, C/ Francisco Tomas y Valiente, 7, 28049 Madrid, Spain
| |
Collapse
|
5
|
Yu YY, Zhu YJ, Xiao ZZ, Chen YD, Chang XS, Liu YH, Tang Q, Zhang HB. The pivotal application of patient-derived organoid biobanks for personalized treatment of gastrointestinal cancers. Biomark Res 2022; 10:73. [PMID: 36207749 PMCID: PMC9547471 DOI: 10.1186/s40364-022-00421-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/21/2022] [Indexed: 12/02/2022] Open
Abstract
Gastrointestinal cancers (GICs) occupy more than 30% of the cancer-related incidence and mortality around the world. Despite advances in the treatment strategies, the long-term overall survival has not been improved for patients with GICs. Recently, the novel patient-derived organoid (PDO) culture technology has become a powerful tool for GICs in a manner that recapitulates the morphology, pathology, genetic, phenotypic, and behavior traits of the original tumors. Excitingly, a number of evidences suggest that the versatile technology has great potential for personalized treatment, suppling the clinical application of molecularly guided personalized treatment. In the paper, we summarize the literature on the topics of establishing organoid biobanks of PDOs, and their application in the personalized treatment allowing for radiotherapy, chemotherapy, targeted therapy, and immunotherapy selection for GICs. Despite the limitations of current organoid models, high-throughput drug screening of GIC PDO combined with next-generation sequencing technology represents a novel and pivotal preclinical model for precision medicine of tumors and has a great value in promoting the transformation from basic cancer research to clinical application.
Collapse
Affiliation(s)
- Ya-Ya Yu
- Department of Oncology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yan-Juan Zhu
- Department of Oncology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhen-Zhen Xiao
- Department of Oncology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Ya-Dong Chen
- Department of Oncology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xue-Song Chang
- Department of Oncology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yi-Hong Liu
- Department of Oncology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Qing Tang
- Department of Oncology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China.,Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Hai-Bo Zhang
- Department of Oncology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China. .,Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China. .,State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
6
|
Yan H, Ye Y, Zhao H, Zuo H, Li Y. Single-Cell RNA Sequencing for Analyzing the Intestinal Tract in Healthy and Diseased Individuals. Front Cell Dev Biol 2022; 10:915654. [PMID: 35874838 PMCID: PMC9300858 DOI: 10.3389/fcell.2022.915654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
The intestinal tract is composed of different cell lineages with distinct functions and gene expression profiles, providing uptake of nutrients and protection against insults to the gut lumen. Changes in or damage to the cellulosity or local environment of the intestinal tract can cause various diseases. Single-cell RNA sequencing (scRNA-seq) is a powerful tool for profiling and analyzing individual cell data, making it possible to resolve rare and intermediate cell states that are hardly observed at the bulk level. In this review, we discuss the application of intestinal tract scRNA-seq in identifying novel cell subtypes and states, targets, and explaining the molecular mechanisms involved in intestinal diseases. Finally, we provide future perspectives on using single-cell techniques to discover molecular and cellular targets and biomarkers as a new approach for developing novel therapeutics for intestinal diseases.
Collapse
Affiliation(s)
- Hua Yan
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
- The Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Yumeng Ye
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
| | - HanZheng Zhao
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongyan Zuo
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
- Department of Pathology, Chengde Medical College, Chengde, China
- *Correspondence: Hongyan Zuo, ; Yang Li,
| | - Yang Li
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
- Department of Pathology, Chengde Medical College, Chengde, China
- Academy of Life Sciences, Anhui Medical University, Hefei, China
- *Correspondence: Hongyan Zuo, ; Yang Li,
| |
Collapse
|
7
|
Luo L, Ma Y, Zheng Y, Su J, Huang G. Application Progress of Organoids in Colorectal Cancer. Front Cell Dev Biol 2022; 10:815067. [PMID: 35273961 PMCID: PMC8902504 DOI: 10.3389/fcell.2022.815067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/31/2022] [Indexed: 12/24/2022] Open
Abstract
Currently, colorectal cancer is still the third leading cause of cancer-related mortality, and the incidence is rising. It is a long time since the researchers used cancer cell lines and animals as the study subject. However, these models possess various limitations to reflect the cancer progression in the human body. Organoids have more clinical significance than cell lines, and they also bridge the gap between animal models and humans. Patient-derived organoids are three-dimensional cultures that simulate the tumor characteristics in vivo and recapitulate tumor cell heterogeneity. Therefore, the emergence of colorectal cancer organoids provides an unprecedented opportunity for colorectal cancer research. It retains the molecular and cellular composition of the original tumor and has a high degree of homology and complexity with patient tissues. Patient-derived colorectal cancer organoids, as personalized tumor organoids, can more accurately simulate colorectal cancer patients’ occurrence, development, metastasis, and predict drug response in colorectal cancer patients. Colorectal cancer organoids show great potential for application, especially preclinical drug screening and prediction of patient response to selected treatment options. Here, we reviewed the application of colorectal cancer organoids in disease model construction, basic biological research, organoid biobank construction, drug screening and personalized medicine, drug development, drug toxicity and safety, and regenerative medicine. In addition, we also displayed the current limitations and challenges of organoids and discussed the future development direction of organoids in combination with other technologies. Finally, we summarized and analyzed the current clinical trial research of organoids, especially the clinical trials of colorectal cancer organoids. We hoped to lay a solid foundation for organoids used in colorectal cancer research.
Collapse
Affiliation(s)
- Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China.,The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Yucui Ma
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Yilin Zheng
- Clinical Research Center, Shantou Central Hospital, Shantou, China
| | - Jiating Su
- The First Clinical College, Guangdong Medical University, Zhanjiang, China
| | - Guoxin Huang
- Clinical Research Center, Shantou Central Hospital, Shantou, China
| |
Collapse
|
8
|
Furbo S, Urbano PCM, Raskov HH, Troelsen JT, Kanstrup Fiehn AM, Gögenur I. Use of Patient-Derived Organoids as a Treatment Selection Model for Colorectal Cancer: A Narrative Review. Cancers (Basel) 2022; 14:cancers14041069. [PMID: 35205817 PMCID: PMC8870458 DOI: 10.3390/cancers14041069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Colorectal cancer (CRC) is the third most common type of cancer globally. Despite successful treatment, it has a 40% chance of recurrence within five years after surgery. While neoadjuvant chemotherapy is offered for stage IV cancers, it comes with a risk of resistance and disease progression. CRC tumors vary biologically, recur frequently, and pose a significant risk for cancer-related mortality, making it increasingly relevant to develop methods to study personalized treatment. A tumor organoid is a miniature, multicellular, and 3D replica of a tumor in vitro that retains its characteristics. Here, we discuss the current methods of culturing organoids and the correlation of drug response in organoids with clinical responses in patients. This helps us to determine whether organoids can be used for treatment selection in a clinical setting. Based on the studies included, there was a strong correlation between treatment responses of organoids and clinical treatment responses. Abstract Surgical resection is the mainstay in intended curative treatment of colorectal cancer (CRC) and may be accompanied by adjuvant chemotherapy. However, 40% of the patients experience recurrence within five years of treatment, highlighting the importance of improved, personalized treatment options. Monolayer cell cultures and murine models, which are generally used to study the biology of CRC, are associated with certain drawbacks; hence, the use of organoids has been emerging. Organoids obtained from tumors display similar genotypic and phenotypic characteristics, making them ideal for investigating individualized treatment strategies and for integration as a core platform to be used in prediction models. Here, we review studies correlating the clinical response in patients with CRC with the therapeutic response in patient-derived organoids (PDO), as well as the limitations and potentials of this model. The studies outlined in this review reported strong associations between treatment responses in the PDO model and clinical treatment responses. However, as PDOs lack the tumor microenvironment, they do not genuinely account for certain crucial characteristics that influence therapeutic response. To this end, we reviewed studies investigating PDOs co-cultured with tumor-infiltrating lymphocytes. This model is a promising method allowing evaluation of patient-specific tumors and selection of personalized therapies. Standardized methodologies must be implemented to reach a “gold standard” for validating the use of this model in larger cohorts of patients. The introduction of this approach to a clinical scenario directing neoadjuvant treatment and in other curative and palliative treatment strategies holds incredible potential for improving personalized treatment and its outcomes.
Collapse
Affiliation(s)
- Sara Furbo
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark; (S.F.); (P.C.M.U.); (H.H.R.); (A.-M.K.F.)
| | - Paulo César Martins Urbano
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark; (S.F.); (P.C.M.U.); (H.H.R.); (A.-M.K.F.)
| | - Hans Henrik Raskov
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark; (S.F.); (P.C.M.U.); (H.H.R.); (A.-M.K.F.)
| | - Jesper Thorvald Troelsen
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark;
- Enhanced Perioperative Oncology (EPeOnc) Consortium, Zealand University Hospital, 4600 Køge, Denmark
| | - Anne-Marie Kanstrup Fiehn
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark; (S.F.); (P.C.M.U.); (H.H.R.); (A.-M.K.F.)
- Department of Pathology, Zealand University Hospital, Sygehusvej 10, 4000 Roskilde, Denmark
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 København, Denmark
| | - Ismail Gögenur
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark; (S.F.); (P.C.M.U.); (H.H.R.); (A.-M.K.F.)
- Enhanced Perioperative Oncology (EPeOnc) Consortium, Zealand University Hospital, 4600 Køge, Denmark
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 København, Denmark
- Correspondence: ; Tel.: +45-2633-6426
| |
Collapse
|
9
|
Capturing tumour heterogeneity in pre- and post-chemotherapy colorectal cancer ascites-derived cells using single-cell RNA-sequencing. Biosci Rep 2021; 41:230018. [PMID: 34708245 PMCID: PMC8655500 DOI: 10.1042/bsr20212093] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/16/2021] [Accepted: 10/22/2021] [Indexed: 12/18/2022] Open
Abstract
Malignant ascites is an abnormal accumulation of fluid within the peritoneal cavity, caused by metastasis of several types of cancers, including colorectal cancer (CRC). Cancer cells in ascites reflect poor prognosis and serve as a good specimen to study tumour heterogeneity, as they represent a collection of multiple metastatic sites in the peritoneum. In the present study, we have employed single-cell RNA-sequencing (scRNA-seq) to explore and characterise ascites-derived cells from a CRC patient. The samples were prepared using mechanical and enzymatic dissociations, and obtained before and after a chemotherapy treatment. Unbiased clustering of 19,653 cells from four samples reveals 14 subclusters with unique transcriptomic patterns in four major cell types: epithelial cells, myeloid cells, fibroblasts, and lymphocytes. Interestingly, the percentages of cells recovered from different cell types appeared to be influenced by the preparation protocols, with more than 90% reduction in the number of myeloid cells recovered by enzymatic preparation. Analysis of epithelial cell subpopulations unveiled only three out of eleven subpopulations with clear contraction after the treatment, suggesting that the majority of the heterogeneous ascites-derived cells were resistant to the treatment, potentially reflecting the poor treatment outcome observed in the patient. Overall, our study showcases highly heterogeneous cancer subpopulations at single-cell resolution, which respond differently to a particular chemotherapy treatment. All in all, this work highlights the potential benefit of single-cell analyses in planning appropriate treatments and real-time monitoring of therapeutic response in cancer patients through routinely discarded ascites samples.
Collapse
|
10
|
Yeoh Y, Low TY, Abu N, Lee PY. Regulation of signal transduction pathways in colorectal cancer: implications for therapeutic resistance. PeerJ 2021; 9:e12338. [PMID: 34733591 PMCID: PMC8544255 DOI: 10.7717/peerj.12338] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/28/2021] [Indexed: 12/13/2022] Open
Abstract
Resistance to anti-cancer treatments is a critical and widespread health issue that has brought serious impacts on lives, the economy and public policies. Mounting research has suggested that a selected spectrum of patients with advanced colorectal cancer (CRC) tend to respond poorly to both chemotherapeutic and targeted therapeutic regimens. Drug resistance in tumours can occur in an intrinsic or acquired manner, rendering cancer cells insensitive to the treatment of anti-cancer therapies. Multiple factors have been associated with drug resistance. The most well-established factors are the emergence of cancer stem cell-like properties and overexpression of ABC transporters that mediate drug efflux. Besides, there is emerging evidence that signalling pathways that modulate cell survival and drug metabolism play major roles in the maintenance of multidrug resistance in CRC. This article reviews drug resistance in CRC as a result of alterations in the MAPK, PI3K/PKB, Wnt/β-catenin and Notch pathways.
Collapse
Affiliation(s)
- Yeelon Yeoh
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Teck Yew Low
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nadiah Abu
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Pey Yee Lee
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
11
|
Ebrahimi N, Nasr Esfahani A, Samizade S, Mansouri A, Ghanaatian M, Adelian S, Shadman Manesh V, Hamblin MR. The potential application of organoids in breast cancer research and treatment. Hum Genet 2021; 141:193-208. [PMID: 34713317 DOI: 10.1007/s00439-021-02390-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 10/16/2021] [Indexed: 12/23/2022]
Abstract
Tumor heterogeneity is a major challenge for breast cancer researchers who have struggled to find effective treatments despite recent advances in oncology. Although the use of 2D cell culture methods in breast cancer research has been effective, it cannot model the heterogeneity of breast cancer as found within the body. The development of 3D culture of tumor cells and breast cancer organoids has provided a new approach in breast cancer research, allowing the identification of biomarkers, study of the interaction of tumor cells with the microenvironment, and for drug screening and discovery. In addition, the possibility of gene editing in organoids, especially using the CRISPR/Cas9 system, is convenient, and has allowed a more detailed study of tumor behavior in models closer to the physiological condition. The present review covers the application of organoids in breast cancer research. The recent use of gene-editing systems to provide insights into therapeutic approaches for breast cancer, is highlighted. The study of organoids and the possibility of gene manipulation may be a step towards the personalized treatment of breast cancer, which has so far remained unattainable due to the high heterogeneity of breast cancer.
Collapse
Affiliation(s)
- Nasim Ebrahimi
- Division of Genetics, Department of Cell, Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Islamic Republic of Iran
| | - Alireza Nasr Esfahani
- Department of Cellular and Molecular Biology, School of Biological Sciences, Islamic Azad University of Falavarjan, Falavarjan, Iran
| | - Setare Samizade
- Department of Cellular and Molecular Biology, School of Biological Sciences, Islamic Azad University of Falavarjan, Falavarjan, Iran
| | - Atena Mansouri
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Masoud Ghanaatian
- Department of Microbiology, Islamic Azad University of Jahrom, Jahrom, Fars, Iran
| | - Samaneh Adelian
- Department of Genetics, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Vida Shadman Manesh
- Medical Engineering Tissue Engineering, Department of Medical Technologies, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Michael R Hamblin
- Faculty of Health Science, Laser Research Centre, University of Johannesburg, Doornfontein, Johannesburg, 2028, South Africa.
| |
Collapse
|
12
|
Chowdhury S, Hofree M, Lin K, Maru D, Kopetz S, Shen JP. Implications of Intratumor Heterogeneity on Consensus Molecular Subtype (CMS) in Colorectal Cancer. Cancers (Basel) 2021; 13:4923. [PMID: 34638407 PMCID: PMC8507736 DOI: 10.3390/cancers13194923] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/21/2021] [Accepted: 09/25/2021] [Indexed: 01/04/2023] Open
Abstract
The implications of intratumor heterogeneity on the four consensus molecular subtypes (CMS) of colorectal cancer (CRC) are not well known. Here, we use single-cell RNA sequencing (scRNASeq) to build an algorithm to assign CMS classification to individual cells, which we use to explore the distributions of CMSs in tumor and non-tumor cells. A dataset of colorectal tumors with bulk RNAseq (n = 3232) was used to identify CMS specific-marker gene sets. These gene sets were then applied to a discovery dataset of scRNASeq profiles (n = 10) to develop an algorithm for single-cell CMS (scCMS) assignment, which recapitulated the intrinsic biology of all four CMSs. The single-cell CMS assignment algorithm was used to explore the scRNASeq profiles of two prospective CRC tumors with mixed CMS via bulk sequencing. We find that every CRC tumor contains individual cells of each scCMS, as well as many individual cells that have enrichment for features of more than one scCMS (called mixed cells). scCMS4 and scCMS1 cells dominate stroma and immune cell clusters, respectively, but account for less than 3% epithelial cells. These data imply that CMS1 and CMS4 are driven by the transcriptomic contribution of immune and stromal cells, respectively, not tumor cells.
Collapse
Affiliation(s)
- Saikat Chowdhury
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.C.); (K.L.); (S.K.)
| | - Matan Hofree
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA;
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Kangyu Lin
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.C.); (K.L.); (S.K.)
| | - Dipen Maru
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.C.); (K.L.); (S.K.)
| | - John Paul Shen
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.C.); (K.L.); (S.K.)
| |
Collapse
|
13
|
Biomarkers and cell-based models to predict the outcome of neoadjuvant therapy for rectal cancer patients. Biomark Res 2021; 9:60. [PMID: 34321074 PMCID: PMC8317379 DOI: 10.1186/s40364-021-00313-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/08/2021] [Indexed: 12/16/2022] Open
Abstract
Rectal cancer constitutes approximately one-third of all colorectal cancers and contributes to considerable mortality globally. In contrast to colon cancer, the standard treatment for localized rectal cancer often involves neoadjuvant chemoradiotherapy. Tumour response rates to treatment show substantial inter-patient heterogeneity, indicating a need for treatment stratification. Consequently researchers have attempted to establish new means for predicting tumour response in order to assist in treatment decisions. In this review we have summarized published findings regarding potential biomarkers to predict neoadjuvant treatment response for rectal cancer tumours. In addition, we describe cell-based models that can be utilized both for treatment prediction and for studying the complex mechanisms involved.
Collapse
|
14
|
Gil DA, Deming DA, Skala MC. Volumetric growth tracking of patient-derived cancer organoids using optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2021; 12:3789-3805. [PMID: 34457380 PMCID: PMC8367263 DOI: 10.1364/boe.428197] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 05/02/2023]
Abstract
Patient-derived cancer organoids (PCOs) are in vitro organotypic models that reflect in vivo drug response, thus PCOs are an accessible model for cancer drug screening in a clinically relevant timeframe. However, current methods to assess the response of PCOs are limited. Here, a custom swept-source optical coherence tomography (OCT) system was used to rapidly evaluate volumetric growth and drug response in PCOs. This system was optimized for an inverted imaging geometry to enable high-throughput imaging of PCOs. An automated image analysis framework was developed to perform 3D single-organoid tracking of PCOs across multiple time points over 48 hours. Metabolic inhibitors and cancer therapies decreased PCOs volumetric growth rate compared to control PCOs. Single-organoid tracking improved sensitivity to drug treatment compared to a pooled analysis of changes in organoid volume. OCT provided a more accurate assessment of organoid volume compared to a volume estimation method based on 2D projections. Single-organoid tracking with OCT also identified heterogeneity in drug response between solid and hollow PCOs. This work demonstrates that OCT and 3D single-organoid tracking are attractive tools to monitor volumetric growth and drug response in PCOs, providing rapid, non-destructive methods to quantify heterogeneity in PCOs.
Collapse
Affiliation(s)
- Daniel A. Gil
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI 53704, USA
- Morgridge Institute for Research, Madison, WI 53704, USA
| | - Dustin A. Deming
- University of Wisconsin Carbone Cancer Center, Madison, WI 53704, USA
- Division of Hematology, Medical Oncology and Palliative Care, Department of Medicine, University of Wisconsin, Madison, WI 53704, USA
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI 53704, USA
| | - Melissa C. Skala
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI 53704, USA
- Morgridge Institute for Research, Madison, WI 53704, USA
- University of Wisconsin Carbone Cancer Center, Madison, WI 53704, USA
| |
Collapse
|
15
|
Gil DA, Deming D, Skala MC. Patient-derived cancer organoid tracking with wide-field one-photon redox imaging to assess treatment response. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-200400R. [PMID: 33754540 PMCID: PMC7983069 DOI: 10.1117/1.jbo.26.3.036005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/24/2021] [Indexed: 05/04/2023]
Abstract
SIGNIFICANCE Accessible tools are needed for rapid, non-destructive imaging of patient-derived cancer organoid (PCO) treatment response to accelerate drug discovery and streamline treatment planning for individual patients. AIM To segment and track individual PCOs with wide-field one-photon redox imaging to extract morphological and metabolic variables of treatment response. APPROACH Redox imaging of the endogenous fluorophores, nicotinamide dinucleotide (NADH), nicotinamide dinucleotide phosphate (NADPH), and flavin adenine dinucleotide (FAD), was used to monitor the metabolic state and morphology of PCOs. Redox imaging was performed on a wide-field one-photon epifluorescence microscope to evaluate drug response in two colorectal PCO lines. An automated image analysis framework was developed to track PCOs across multiple time points over 48 h. Variables quantified for each PCO captured metabolic and morphological response to drug treatment, including the optical redox ratio (ORR) and organoid area. RESULTS The ORR (NAD(P)H/(FAD + NAD(P)H)) was independent of PCO morphology pretreatment. Drugs that induced cell death decreased the ORR and growth rate compared to control. Multivariate analysis of redox and morphology variables identified distinct PCO subpopulations. Single-organoid tracking improved sensitivity to drug treatment compared to pooled organoid analysis. CONCLUSIONS Wide-field one-photon redox imaging can monitor metabolic and morphological changes on a single organoid-level, providing an accessible, non-destructive tool to screen drugs in patient-matched samples.
Collapse
Affiliation(s)
- Daniel A. Gil
- University of Wisconsin, Department of Biomedical Engineering, Madison, Wisconsin, United States
- Morgridge Institute for Research, Madison, Wisconsin, United States
| | - Dustin Deming
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin, United States
- University of Wisconsin, Division of Hematology and Oncology, Department of Medicine, Madison, Wisconsin, United States
- University of Wisconsin, McArdle Laboratory for Cancer Research, Madison, Wisconsin, United States
- William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, United States
| | - Melissa C. Skala
- University of Wisconsin, Department of Biomedical Engineering, Madison, Wisconsin, United States
- Morgridge Institute for Research, Madison, Wisconsin, United States
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin, United States
- Address all correspondence to Melissa C. Skala,
| |
Collapse
|
16
|
Organoid and Spheroid Tumor Models: Techniques and Applications. Cancers (Basel) 2021; 13:cancers13040874. [PMID: 33669619 PMCID: PMC7922036 DOI: 10.3390/cancers13040874] [Citation(s) in RCA: 230] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/05/2021] [Accepted: 02/11/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Cell cultures can be carried out in three dimensions (3D). Organoids and spheroids are different 3D cell culture models that can be cultured with different techniques. These 3D cell culture units established from a patient tumor have several similarities to the original tumor tissue and possess several advantages in conducting basic and clinical cancer research. Organoids prepared from a patient tissue can be preserved in a living biobank. Testing chemo-, radio- and immuno-therapies on these organoids has the potential to predict the patient responses and these models have incredible promise for personalized medicine. This review presents different organoid models, the techniques to prepare them and recent advances in their applications. Abstract Techniques to develop three-dimensional cell culture models are rapidly expanding to bridge the gap between conventional cell culture and animal models. Organoid and spheroid cultures have distinct and overlapping purposes and differ in cellular sources and protocol for establishment. Spheroids are of lower complexity structurally but are simple and popular models for drug screening. Organoids histologically and genetically resemble the original tumor from which they were derived. Ease of generation, ability for long-term culture and cryopreservation make organoids suitable for a wide range of applications. Organoids-on-chip models combine organoid methods with powerful designing and fabrication of micro-chip technology. Organoid-chip models can emulate the dynamic microenvironment of tumor pathophysiology as well as tissue–tissue interactions. In this review, we outline different tumor spheroid and organoid models and techniques to establish them. We also discuss the recent advances and applications of tumor organoids with an emphasis on tumor modeling, drug screening, personalized medicine and immunotherapy.
Collapse
|
17
|
Yu J, Huang W. The Progress and Clinical Application of Breast Cancer Organoids. Int J Stem Cells 2020; 13:295-304. [PMID: 32840232 PMCID: PMC7691857 DOI: 10.15283/ijsc20082] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the malignant tumor with the highest incidence in women. Nowadays, the objects in vitro of models of this disease are mainly from breast cancer cell lines and patient-derived patient-derived xenograft (PDX). However, there is a significant gap between traditional cell lines and breast cancer solid tumors, meanwhiles, PDX is not highly consistent with patients due to different species. As a techonlogy, obtaining patient-derived tumor cells, combined with three-dimensional culture technology, adding cytokines that promotes the proliferation of breast cancer stem cells and inhibit their apoptosis, breast cancer organoids form a structure in vitro which is similar to tumor in the body. This model can not only study the occurrence and envolution of breast cancer, but is more prominent in clinical application. screening drugs by high-throughput, personalized treatment, textingtoxicity and immunotherapy. This article will review the breast cancer organoids, in evolution, source, culture system and clinical applications.
Collapse
Affiliation(s)
- Jin Yu
- Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Wei Huang
- Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| |
Collapse
|
18
|
Zhang AW, Campbell KR. Computational modelling in single-cell cancer genomics: methods and future directions. Phys Biol 2020; 17:061001. [DOI: 10.1088/1478-3975/abacfe] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
19
|
Tieng FYF, Baharudin R, Abu N, Mohd Yunos RI, Lee LH, Ab Mutalib NS. Single Cell Transcriptome in Colorectal Cancer-Current Updates on Its Application in Metastasis, Chemoresistance and the Roles of Circulating Tumor Cells. Front Pharmacol 2020; 11:135. [PMID: 32174835 PMCID: PMC7056698 DOI: 10.3389/fphar.2020.00135] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 01/31/2020] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer (CRC) is among the most common cancer worldwide, a challenge for research, and a model for studying the molecular mechanisms involved in its development. Previously, bulk transcriptomics analyses were utilized to classify CRC based on its distinct molecular and clinicopathological features for prognosis and diagnosis of patients. The introduction of single-cell transcriptomics completely turned the table by enabling the examination of the expression levels of individual cancer cell within a single tumor. In this review, we highlighted the importance of these single-cell transcriptomics analyses as well as suggesting circulating tumor cells (CTCs) as the main focus of single-cell RNA sequencing. Characterization of these cells might reveal the intratumoral heterogeneity present in CRC while providing critical insights into cancer metastasis. To summarize, we believed the analysis of gene expression patterns of CTC from CRC at single-cell resolution holds the potential to provide key information for identification of prognostic and diagnostic markers as well as the development of precise and personalized cancer treatment.
Collapse
Affiliation(s)
- Francis Yew Fu Tieng
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Rashidah Baharudin
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nadiah Abu
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Ryia-Illani Mohd Yunos
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
| | - Nurul-Syakima Ab Mutalib
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|