1
|
Jiang F, Bhusal B, Nguyen B, Monge M, Webster G, Kim D, Bonmassar G, Popsecu AR, Golestanirad L. Modifying the trajectory of epicardial leads can substantially reduce MRI-induced RF heating in pediatric patients with a cardiac implantable electronic device at 1.5T. Magn Reson Med 2023; 90:2510-2523. [PMID: 37526134 PMCID: PMC10863853 DOI: 10.1002/mrm.29776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 05/12/2023] [Accepted: 06/06/2023] [Indexed: 08/02/2023]
Abstract
PURPOSE After epicardial cardiac implantable electronic devices are implanted in pediatric patients, they become ineligible to receive MRI exams due to an elevated risk of RF heating. We investigated whether simple modifications in the trajectories of epicardial leads could substantially and reliably reduce RF heating during MRI at 1.5 T, with benefits extending to abandoned leads. METHODS Electromagnetic simulations were performed to assess RF heating of two common 35-cm epicardial lead trajectories exhibiting different degrees of coupling with MRI incident electric fields. Experiments in anthropomorphic phantoms implanted with commercial cardiac implantable electronic devices confirmed the findings. Both electromagnetic simulations and experimental measurements were performed using head-first and feet-first positioning and various landmarks. Transfer function approach was used to assess the performance of suggested modifications in realistic body models. RESULTS Simulations (head-first, chest landmark) of a 35-cm epicardial lead with a trajectory where the excess length of the lead was looped and placed on the inferior surface of the heart showed an 87-fold reduction in the 0.1 g-averaged specific absorption rate compared with the lead where the excess length was looped on the anterior surface. Repeated experiments with a commercial epicardial device confirmed this. For fully implanted systems following low-specific absorption rate trajectories, there was a 16-fold reduction in the average temperature rise and a 28-fold reduction for abandoned leads. The transfer function method predicted a 7-fold reduction in the RF heating in 336 realistic scenarios. CONCLUSION Surgical modification of epicardial lead trajectory can substantially reduce RF heating at 1.5 T, with benefits extending to abandoned leads.
Collapse
Affiliation(s)
- Fuchang Jiang
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois, USA
| | - Bhumi Bhusal
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Bach Nguyen
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Michael Monge
- Division of Cardiovascular-Thoracic Surgery, Ann & Robert H. Lurie Children’s Hospital of Chicago, Box 22, 225 E. Chicago Ave, Chicago, Illinois, 60611, USA
| | - Gregory Webster
- Division of Cardiology, Ann and Robert H. Lurie Children’s Hospital of Chicago, Northwestern University Feinberg School of Medicine, 225 East Chicago Avenue, Box 21, Chicago, IL, 60611, USA
| | - Daniel Kim
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Giorgio Bonmassar
- A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Andrada R. Popsecu
- Division of Medical Imaging, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA
| | - Laleh Golestanirad
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois, USA
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
2
|
Jiang F, Henry KR, Bhusal B, Sanpitak P, Webster G, Popescu A, Laternser C, Kim D, Golestanirad L. Age Matters: A Comparative Study of RF Heating of Epicardial and Endocardial Electronic Devices in Pediatric and Adult Phantoms during Cardiothoracic MRI. Diagnostics (Basel) 2023; 13:2847. [PMID: 37685385 PMCID: PMC10486594 DOI: 10.3390/diagnostics13172847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/29/2023] [Accepted: 08/04/2023] [Indexed: 09/10/2023] Open
Abstract
This study focused on the potential risks of radiofrequency-induced heating of cardiac implantable electronic devices (CIEDs) in children and adults with epicardial and endocardial leads of varying lengths during cardiothoracic MRI scans. Infants and young children are the primary recipients of epicardial CIEDs, though the devices have not been approved as MR conditional by the FDA due to limited data, leading to pediatric hospitals either refusing the MRI service to most pediatric CIED patients or adopting a scan-all strategy based on results from adult studies. The study argues that risk-benefit decisions should be made on an individual basis. We used 120 clinically relevant epicardial and endocardial device configurations in adult and pediatric anthropomorphic phantoms to determine the temperature rise during RF exposure at 1.5 T. The results showed that there was significantly higher RF heating of epicardial leads than endocardial leads in the pediatric phantom, but not in the adult phantom. Additionally, body size and lead length significantly affected RF heating, with RF heating up to 12 °C observed in models based on younger children with short epicardial leads. The study provides evidence-based knowledge on RF-induced heating of CIEDs and highlights the importance of making individual risk-benefit decisions when assessing the potential risks of MRI scans in pediatric CIED patients.
Collapse
Affiliation(s)
- Fuchang Jiang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Kaylee R. Henry
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Bhumi Bhusal
- Department of Radiology, Northwestern University, Chicago, IL 60611, USA
| | - Pia Sanpitak
- Department of Radiology, Northwestern University, Chicago, IL 60611, USA
| | - Gregory Webster
- Division of Cardiology, Ann and Robert H. Lurie Children’s Hospital of Chicago, Northwestern University, Chicago, IL 60611, USA
| | - Andrada Popescu
- Division of Medical Imaging, Ann and Robert H. Lurie Children’s Hospital of Chicago, Northwestern University, Chicago, IL 60611, USA
| | - Christina Laternser
- Division of Cardiology, Ann and Robert H. Lurie Children’s Hospital of Chicago, Northwestern University, Chicago, IL 60611, USA
| | - Daniel Kim
- Department of Radiology, Northwestern University, Chicago, IL 60611, USA
| | - Laleh Golestanirad
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Radiology, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
3
|
Jiang F, Henry KR, Bhusal B, Webster G, Bonmassar G, Kim D, Golestanirad L. RF-induced heating of capped and uncapped abandoned epicardial leads during MRI at 1.5 T and 3 T. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-5. [PMID: 38082570 PMCID: PMC10838566 DOI: 10.1109/embc40787.2023.10340533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
There is a paucity of data regarding the safety of magnetic resonance imaging (MRI) in patients with abandoned epicardial leads. Few studies have reported temperature rises up to 76 °C during MRI at 1.5 T in gel phantoms implanted with epicardial leads; however, lead trajectories used in these experiments were not clinically relevant. This work reports patient-specific RF heating of both capped and uncapped abandoned epicardial lead configurations during MRI at both 1.5 T and 3 T field strengths. We found that leads routed along realistic, patient-derived trajectories generated substantially lower RF heating than the previously reported worst-case phantom experiments. We also found that MRI at the head imaging landmark leads to substantially lower RF heating compared to MRI at the chest or abdomen landmarks at both 1.5 T and 3 T. Our results suggest that patients with abandoned epicardial leads may safely undergo MRI for head imaging, but caution is warranted during chest and abdominal imaging.Clinical Relevance- Patients with abandoned epicardial leads may safely undergo MRI for head imaging, but caution is warranted during chest and abdominal imaging.
Collapse
|
4
|
Vu J, Bhusal B, Rosenow J, Pilitsis J, Golestanirad L. Optimizing the trajectory of deep brain stimulation leads reduces RF heating during MRI at 3 T: Characteristics and clinical translation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-5. [PMID: 38083480 PMCID: PMC10838567 DOI: 10.1109/embc40787.2023.10340979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Radiofrequency (RF) induced tissue heating around deep brain stimulation (DBS) leads is a well-known safety risk during magnetic resonance imaging (MRI), hindering routine protocols for patients. Known factors that contribute to variations in the magnitude of RF heating across patients include the implanted lead's trajectory and its orientation with respect to the MRI electric fields. Currently, there are no consistent requirements for surgically implanting the extracranial portion of the DBS lead. Recent studies have shown that incorporating concentric loops in the extracranial trajectory of the lead can reduce RF heating, but the optimal positioning of the loop is unknown. In this study, we evaluated RF heating of 77 unique lead trajectories to determine how different characteristics of the trajectory affect RF heating during MRI at 3 T. We performed phantom experiments with commercial DBS systems from two manufacturers to determine how consistently modifying the lead trajectory mitigates RF heating. We also presented the first surgical implementation of these modified trajectories in patients. Low-heating trajectories included small concentric loops near the surgical burr hole which were readily implemented during the surgical procedure; these trajectories generated nearly a 2-fold reduction in RF heating compared to unmodified trajectories.Clinical Relevance- Surgically modifying the DBS lead trajectory can be a cost-effective strategy for reducing RF-induced heating during MRI at 3 T.
Collapse
|
5
|
Kazemivalipour E, Sadeghi-Tarakameh A, Keil B, Eryaman Y, Atalar E, Golestanirad L. Effect of field strength on RF power deposition near conductive leads: A simulation study of SAR in DBS lead models during MRI at 1.5 T-10.5 T. PLoS One 2023; 18:e0280655. [PMID: 36701285 PMCID: PMC9879463 DOI: 10.1371/journal.pone.0280655] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 01/05/2023] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Since the advent of magnetic resonance imaging (MRI) nearly four decades ago, there has been a quest for ever-higher magnetic field strengths. Strong incentives exist to do so, as increasing the magnetic field strength increases the signal-to-noise ratio of images. However, ensuring patient safety becomes more challenging at high and ultrahigh field MRI (i.e., ≥3 T) compared to lower fields. The problem is exacerbated for patients with conductive implants, such as those with deep brain stimulation (DBS) devices, as excessive local heating can occur around implanted lead tips. Despite extensive effort to assess radio frequency (RF) heating of implants during MRI at 1.5 T, a comparative study that systematically examines the effects of field strength and various exposure limits on RF heating is missing. PURPOSE This study aims to perform numerical simulations that systematically compare RF power deposition near DBS lead models during MRI at common clinical and ultra-high field strengths, namely 1.5, 3, 7, and 10.5 T. Furthermore, we assess the effects of different exposure constraints on RF power deposition by imposing limits on either the B1+ or global head specific absorption rate (SAR) as these two exposure limits commonly appear in MRI guidelines. METHODS We created 33 unique DBS lead models based on postoperative computed tomography (CT) images of patients with implanted DBS devices and performed electromagnetic simulations to evaluate the SAR of RF energy in the tissue surrounding lead tips during RF exposure at frequencies ranging from 64 MHz (1.5 T) to 447 MHz (10.5 T). The RF exposure was implemented via realistic MRI RF coil models created based on physical prototypes built in our institutions. We systematically examined the distribution of local SAR at different frequencies with the input coil power adjusted to either limit the B1+ or the global head SAR. RESULTS The MRI RF coils at higher resonant frequencies generated lower SARs around the lead tips when the global head SAR was constrained. The trend was reversed when the constraint was imposed on B1+. CONCLUSION At higher static fields, MRI is not necessarily more dangerous than at lower fields for patients with conductive leads. Specifically, when a conservative safety criterion, such as constraints on the global SAR, is imposed, coils at a higher resonant frequency tend to generate a lower local SAR around implanted leads due to the decreased B1+ and, by proxy, E field levels.
Collapse
Affiliation(s)
- Ehsan Kazemivalipour
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Electrical and Electronics Engineering Department, Bilkent University, Ankara, Turkey
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Alireza Sadeghi-Tarakameh
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Boris Keil
- Institute of Medical Physics and Radiation Protection, TH Mittelhessen University of Applied Sciences, Giessen, Germany
| | - Yigitcan Eryaman
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Ergin Atalar
- Electrical and Electronics Engineering Department, Bilkent University, Ankara, Turkey
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey
| | - Laleh Golestanirad
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois, United States of America
| |
Collapse
|
6
|
Nuzov NB, Bhusal B, Henry KR, Jiang F, Rosenow J, Elahi B, Golestanirad L. True location of deep brain stimulation electrodes differs from what is seen on postoperative magnetic resonance images: An anthropomorphic phantom study. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:1863-1866. [PMID: 36086639 PMCID: PMC10848148 DOI: 10.1109/embc48229.2022.9871619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Deep brain stimulation (DBS) is an established yet growing treatment for a range of neurological and psychiatric disorders. Over the last decade, numerous studies have underscored the effect of electrode placement on the clinical outcome of DBS. As a result, imaging is now extensively used for DBS electrode localization, even though the accuracy of different modalities in determining the true coordinates of DBS electrodes is less explored. Postoperative magnetic resonance imaging (MRI) is a gold standard method for DBS electrode localization, however, the geometrical distortion induced by the lead's artifact could limit the accuracy. In this work, we investigated to what degree the difference between the true location of the lead's tip and the location of the tip estimated from the MRI artifact varies depending on the MRI sequence parameters, acquisition plane, phase encoding direction, and the implant"s extracranial trajectory. Clinical Relevance- Results will help researchers and clinicians to estimate the true location of DBS leads and contacts from postoperative MRI scans.
Collapse
|
7
|
Bhusal B, Jiang F, Kim D, Hong K, Monge MC, Webster G, Bonmassar G, Golestanirad L. The Position and Orientation of the Pulse Generator Affects MRI RF Heating of Epicardial Leads in Children. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:5000-5003. [PMID: 36086119 PMCID: PMC10843986 DOI: 10.1109/embc48229.2022.9871968] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Infants and children with congenital heart defects often receive a cardiac implantable electronic device (CIED). Because transvenous access to the heart is difficult in patients with small veins, the majority of young children receive epicardial CIEDs. Unfortunately, however, once an epicardial CIED is placed, patients are no longer eligible to receive magnetic resonance imaging (MRI) exams due to the unknown risk of MRI-induced radiofrequency (RF) heating of the device. Although many studies have assessed the role of device configuration in RF heating of endocardial CIEDs in adults, such case for epicardial devices in pediatric patients is relatively unexplored. In this study, we evaluated the variation in RF heating of an epicardial lead due to changes in the lateral position and orientation of the implantable pulse generator (IPG). We found that changing the orientation and position of the IPG resulted in a five-fold variation in the RF heating at the lead's tip. Maximum heating was observed when the IPG was moved to a left lateral abdominal position of patient, and minimum heating was observed when the IPG was positioned directly under the heart. Clinical Relevance- This study examines the role of device configuration on MRI-induced RF heating of an epicardial CIED in a pediatric phantom. Results could help pediatric cardiac surgeons to modify device implantation to reduce future risks of MRI in patients.
Collapse
|