1
|
Tanczak N, Yurkewich A, Missiroli F, Wee SK, Kager S, Choi H, Cho KJ, Yap HK, Piazza C, Masia L, Lambercy O. Soft Robotics in Upper Limb Neurorehabilitation and Assistance: Current Clinical Evidence and Recommendations. Soft Robot 2025. [PMID: 39761022 DOI: 10.1089/soro.2024.0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025] Open
Abstract
Soft robotics is gaining interest in rehabilitation applications, bringing new opportunities to offset the loss of upper limb motor function following neurological, neuromuscular, or traumatic injuries. Unlike conventional rigid robotics, the added softness in linkages or joints promises to make rehabilitation robots compliant, which translates into higher levels of safety, comfort, usability, and portability, opening the door for these rehabilitation technologies to be used in daily life. While several reviews documented the different technical implementations of soft rehabilitation robots, it is essential to discuss the growing clinical evidence on the feasibility and effectiveness of using this technology for rehabilitative and assistive purposes, whether softness brings the expected advantages from the perspective of end users, and how we should proceed in the future of this field. In this perspective article, we present recent clinical evidence on how 13 different upper limb devices were used in both controlled (clinical) and uncontrolled (at home) settings in more than 37 clinical studies. From these findings and our own experience, we derive recommendations for future developers and end users regarding the design, application, and evaluation of soft robotics for upper limb rehabilitation and assistance.
Collapse
Affiliation(s)
- Natalie Tanczak
- Singapore-ETH Centre, Future Health Technologies Programme, Singapore, Singapore
- Department of Health Sciences and Technology, Rehabilitation Engineering Laboratory, ETH Zurich, Zurich, Switzerland
| | - Aaron Yurkewich
- Mechatronics Engineering, Ontario Tech University, Oshawa, Canada
| | - Francesco Missiroli
- Institute of Computer Engineering (ZITI), Faculty of Engineering Sciences, Heidelberg University, Heidelberg, Germany
| | - Seng Kwee Wee
- Clinic for Advanced Rehabilitation Therapeutics (CART), Tan Tock Seng Hospital, Singapore, Singapore
- Institute of Rehabilitation Excellence (IRex), Tan Tock Seng Hospital, Singapore, Singapore
- Singapore Institute of Technology, Singapore, Singapore
| | - Simone Kager
- Singapore-ETH Centre, Future Health Technologies Programme, Singapore, Singapore
- Department of Health Sciences and Technology, Rehabilitation Engineering Laboratory, ETH Zurich, Zurich, Switzerland
| | - Hyungmin Choi
- Department of Mechanical Engineering, Soft Robotics Research Centre (SRRC), Seoul National University, Seoul, Republic of Korea
| | - Kyu-Jin Cho
- Department of Mechanical Engineering, Soft Robotics Research Centre (SRRC), Seoul National University, Seoul, Republic of Korea
| | | | - Cristina Piazza
- School of Computation, Information and Technology and Munich Institute of Robotics and Machine Intelligence (MIRMI), Technical University of Munich, Munich, Germany
| | - Lorenzo Masia
- School of Computation, Information and Technology and Munich Institute of Robotics and Machine Intelligence (MIRMI), Technical University of Munich, Munich, Germany
| | - Olivier Lambercy
- Singapore-ETH Centre, Future Health Technologies Programme, Singapore, Singapore
- Department of Health Sciences and Technology, Rehabilitation Engineering Laboratory, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Dierwechter B, Kolakowsky-Hayner SA. Journey to 1 Million Steps: A Retrospective Case Series Analyzing the Implementation of Robotic-Assisted Gait Training Into an Outpatient Pediatric Clinic. Pediatr Phys Ther 2024; 36:285-293. [PMID: 38349640 DOI: 10.1097/pep.0000000000001097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
PURPOSE To describe the implementation of an exoskeleton program in a rehabilitation setting using a Design Thinking framework. METHODS This is a retrospective case series of 3 randomly selected children who participated in skilled physical therapy using a pediatric exoskeleton that occurred on our journey to walking 1 000 000 steps in the exoskeleton devices. Participants ranged in age from 3 to 5 years, and all had neurologic disorders. RESULTS All participants improved toward achieving their therapy goals, tolerated the exoskeleton well, and had an increased number of steps taken over time. CONCLUSION The implementation of new technology into pediatric care and an established outpatient therapy clinic is described. The Design Thinking process applies to health care professionals and improves clinical care. Exoskeletons are effective tools for use in pediatric physical therapy.
Collapse
Affiliation(s)
- Brittany Dierwechter
- Outpatient Physical Therapy Department (Dr Dierwechter) and Research and Clinical Outcomes Department (Dr Kolakowsky-Hayner), Good Shepherd Rehabilitation Network, Allentown, Pennsylvania
| | | |
Collapse
|
3
|
Dittli J, Goikoetxea-Sotelo G, Lieber J, Gassert R, Meyer-Heim A, Van Hedel HJA, Lambercy O. A Tailorable Robotic Hand Orthosis to Support Children with Neurological Hand Impairments: a Case Study in a Child's Home. IEEE Int Conf Rehabil Robot 2023; 2023:1-6. [PMID: 37941220 DOI: 10.1109/icorr58425.2023.10304752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Neurological disorders such as traumatic brain injuries (TBI) can lead to hand impairments in children, negatively impacting their quality of life. Fully wearable robotic hand orthoses (RHO) have been proposed to actively support children and promote the use of the impaired limb in daily life. Here we report a case study on the feasibility of using the pediatric RHO PEXO for assistance at home in a 13- year-old child with hand impairment after TBI. The size and functionalities of the RHO were first fully tailored to the child's needs. We trained the child and their parent on independently using the RHO before taking it home for a period of two weeks. The use of the RHO improved hand ability. Additionally, the tailoring and training benefited the unimanual capacity (Box and Block Test score +2 after tailoring) and bimanual performance (Assisting Hand Assessment score +4) of the child with PEXO. Further, it increased device acceptance by the child and the parent. The child used PEXO at home for 76 minutes distributed over three days during eating and drinking tasks. Personal and environmental factors caused the moderate use. No adverse events or safety-related issues occurred. This study highlights the value of tailoring an assistive RHO and, for the first time, demonstrates the feasibility of home use of a pediatric RHO by children with neurological hand impairments.
Collapse
|
4
|
Ragni LB, Dlugacz SK, Sadowsky C, Cammarata G, Sala DA, Bill V, Sukhov R, Chu A. Design and Use of a 3D-Printed Dynamic Upper Extremity Orthosis for Children With Cerebral Palsy and Severe Upper Extremity Involvement: A Pilot Study. Am J Occup Ther 2023; 77:7704205060. [PMID: 37611318 DOI: 10.5014/ajot.2023.050095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023] Open
Abstract
IMPORTANCE Children with cerebral palsy (CP) and severe hand impairment have limited options for upper extremity (UE) orthoses. OBJECTIVE To (1) design and fabricate a customized low-cost, functional, three-dimensional (3D) printed dynamic upper extremity orthosis (DUEO) and (2) examine, using a comprehensive evaluation, the effect of the orthosis on the UE function of children with unilateral UE CP, Manual Ability Classification System (MACS) Levels III to V. DESIGN Pilot study. Assessments were performed pretreatment and immediately posttreatment. SETTING Hospital-based outpatient occupational therapy department. PARTICIPANTS Five patients, ages 13 to 17 yr, with CP and unilateral UE involvement MACS Levels III to V. INTERVENTION Custom forearm thumb opponens orthosis and the DUEO were designed and fabricated by a multidisciplinary team for use during eight 1-hr occupational therapy sessions targeting bimanual UE training. OUTCOMES AND MEASURES Pretreatment and posttreatment assessments included the Assisting Hand Assessment (AHA), Melbourne Assessment 2 (MA-2), Pediatric Motor Activity Log-Revised (PMAL-R), and the Pediatric Quality of Life Inventory: CP Module (PedsQL:CP). RESULTS All participants had higher posttreatment scores on at least one measure. Four had minimal clinically important differences (MCID) on the AHA. Three met MCID criteria on MA-2 subtests (one negative change). Four demonstrated improvement on the PMAL-R (one participant achieved an MCID score), and three reported improvements in more than one PedsQL:CP domain. CONCLUSIONS AND RELEVANCE This novel 3D-printed device, in combination with occupational therapy, shows promising evidence that children who score in lower MACS levels can show gains in UE function. What This Article Adds: This study demonstrates that a customized, 3D-printed dynamic orthosis, in combination with occupational therapy intervention, can facilitate UE function in children with severe hand impairment.
Collapse
Affiliation(s)
- Lori B Ragni
- Lori B. Ragni, MS, OTR/L, BCP, is Supervisor, Pediatric Occupational Therapy, Rusk Rehabilitation, NYU Langone Health, NYU Langone Orthopedic Hospital, New York, NY
| | - Stacy Kirsch Dlugacz
- Stacy Kirsch Dlugacz, MS, OTR/L, C/NDT, is Clinical Specialist, Pediatric Occupational Therapy, Rusk Rehabilitation, NYU Langone Health, NYU Langone Orthopedic Hospital, New York, NY
| | - Cali Sadowsky
- Cali Sadowsky, MS, OTR/L, is Senior Occupational Therapist, Pediatric Occupational Therapy, Rusk Rehabilitation, NYU Langone Health, NYU Langone Orthopedic Hospital, New York, NY
| | - Gabriella Cammarata
- Gabriella Cammarata, MS, is Studio Research Coordinator, Tandon School of Engineering, New York University, Brooklyn, NY
| | - Debra A Sala
- Debra A. Sala, MS, PT, is Research Coordinator, Division of Pediatric Orthopedics, Hassenfeld Children's Hospital, NYU Langone Health, New York, NY
| | - Victoria Bill
- Victoria Bill, MS, is Director, MakerSpace, and Adjunct Professor, Tandon School of Engineering, New York University, Brooklyn, NY
| | - Renat Sukhov
- Renat Sukhov, MD, is Clinical Research Associate Professor of Rehabilitation Medicine, NYU Langone Health, New York, NY
| | - Alice Chu
- Alice Chu, MD, is Associate Professor of Orthopedic Surgery and Chief, Division of Pediatric Orthopedics, Rutgers New Jersey Medical School, Newark, NJ;
| |
Collapse
|
5
|
Dittli J, Vasileiou C, Asanovski H, Lieber J, Lin JB, Meyer-Heim A, Van Hedel HJA, Gassert R, Lambercy O. Design of a compliant, stabilizing wrist mechanism for a pediatric hand exoskeleton. IEEE Int Conf Rehabil Robot 2022; 2022:1-6. [PMID: 36176168 DOI: 10.1109/icorr55369.2022.9896550] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Children affected by hand impairment due to cerebral palsy or stroke experience serious difficulties when performing activities of daily life (ADL), which reduces their quality of life and development. Wearable robots such as hand exoskeletons have been proposed to support people with hand impairment in therapy as well as daily tasks. While numerous actuated wearable robots have been developed, few designs support both fingers and wrist function, despite being mutually relevant for reach-to-grasp tasks. A recent feasibility study investigating the use of PEXO, a lightweight and fully wearable pediatric hand exoskeleton, showed that a wrist fixed in a slightly extended position may limit the user's ability to reach and grasp during ADL and restrict the user group. These insights and further interactions with clinicians inspired a novel design of PEXO that features an additional degree of freedom in the wrist. In this paper, we present a compliant wrist mechanism extending the existing leaf spring finger mechanism of the device. The novel design provides both wrist motion capability of 60° in flexion and extension and wrist stabilization at the same time while actively supporting finger motion. Preliminary results suggest that the adjustability in the wrist enables a larger variety of grasping gestures. The implemented wrist support has the potential to allow for a more versatile use of PEXO and increase the potential target user group.
Collapse
|
6
|
Gantenbein J, Dittli J, Meyer JT, Gassert R, Lambercy O. Intention Detection Strategies for Robotic Upper-Limb Orthoses: A Scoping Review Considering Usability, Daily Life Application, and User Evaluation. Front Neurorobot 2022; 16:815693. [PMID: 35264940 PMCID: PMC8900616 DOI: 10.3389/fnbot.2022.815693] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Wearable robotic upper limb orthoses (ULO) are promising tools to assist or enhance the upper-limb function of their users. While the functionality of these devices has continuously increased, the robust and reliable detection of the user's intention to control the available degrees of freedom remains a major challenge and a barrier for acceptance. As the information interface between device and user, the intention detection strategy (IDS) has a crucial impact on the usability of the overall device. Yet, this aspect and the impact it has on the device usability is only rarely evaluated with respect to the context of use of ULO. A scoping literature review was conducted to identify non-invasive IDS applied to ULO that have been evaluated with human participants, with a specific focus on evaluation methods and findings related to functionality and usability and their appropriateness for specific contexts of use in daily life. A total of 93 studies were identified, describing 29 different IDS that are summarized and classified according to a four-level classification scheme. The predominant user input signal associated with the described IDS was electromyography (35.6%), followed by manual triggers such as buttons, touchscreens or joysticks (16.7%), as well as isometric force generated by residual movement in upper-limb segments (15.1%). We identify and discuss the strengths and weaknesses of IDS with respect to specific contexts of use and highlight a trade-off between performance and complexity in selecting an optimal IDS. Investigating evaluation practices to study the usability of IDS, the included studies revealed that, primarily, objective and quantitative usability attributes related to effectiveness or efficiency were assessed. Further, it underlined the lack of a systematic way to determine whether the usability of an IDS is sufficiently high to be appropriate for use in daily life applications. This work highlights the importance of a user- and application-specific selection and evaluation of non-invasive IDS for ULO. For technology developers in the field, it further provides recommendations on the selection process of IDS as well as to the design of corresponding evaluation protocols.
Collapse
Affiliation(s)
- Jessica Gantenbein
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Jan Dittli
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Jan Thomas Meyer
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Roger Gassert
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Future Health Technologies, Singapore-ETH Centre, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
| | - Olivier Lambercy
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Future Health Technologies, Singapore-ETH Centre, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
| |
Collapse
|
7
|
Lieber J, Dittli J, Lambercy O, Gassert R, Meyer-Heim A, van Hedel HJA. Clinical utility of a pediatric hand exoskeleton: identifying users, practicability, and acceptance, and recommendations for design improvement. J Neuroeng Rehabil 2022; 19:17. [PMID: 35148786 PMCID: PMC8832660 DOI: 10.1186/s12984-022-00994-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 01/21/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Children and adolescents with upper limb impairments can experience limited bimanual performance reducing daily-life independence. We have developed a fully wearable pediatric hand exoskeleton (PEXO) to train or compensate for impaired hand function. In this study, we investigated its appropriateness, practicability, and acceptability. METHODS Children and adolescents aged 6-18 years with functional limitations in at least one hand due to a neurological cause were selected for this cross-sectional evaluation. We characterized participants by various clinical tests and quantified bimanual performance with the Assisting Hand Assessment (AHA). We identified children whose AHA scaled score increased by ≥ 7 points when using the hand exoskeleton and determined clinical predictors to investigate appropriateness. The time needed to don each component and the number of technical issues were recorded to evaluate practicability. For acceptability, the experiences of the patients and the therapist with PEXO were evaluated. We further noted any adverse events. RESULTS Eleven children (median age 11.4 years) agreed to participate, but data was available for nine participants. The median AHA scaled score was higher with PEXO (68; IQR: 59.5-83) than without (55; IQR: 37.5-80.5; p = 0.035). The Box and Block test, the Selective Control of the Upper Extremity Scale, and finger extensor muscle strength could differentiate well between those participants who improved in AHA scaled scores by ≥ 7 points and those who did not (sensitivity and specificity varied between 0.75 and 1.00). The median times needed to don the back module, the glove, and the hand module were 62, 150, and 160 s, respectively, but all participants needed assistance. The most critical failures were the robustness of the transmission system, the electronics, and the attachment system. Acceptance was generally high, particularly in participants who improved bimanual performance with PEXO. Five participants experienced some pressure points. No adverse events occurred. CONCLUSIONS PEXO is a safe exoskeleton that can improve bimanual hand performance in young patients with minimal hand function. PEXO receives high acceptance. We formulated recommendations to improve technical issues and the donning before such exoskeletons can be used under daily-life conditions for therapy or as an assistive device. Trial registration Not appropriate.
Collapse
Affiliation(s)
- Jan Lieber
- Swiss Children's Rehab - Research Department, University Children's Hospital Zurich, Mühlebergstrasse 104, CH-8910, Affoltern am Albis, Switzerland.,Children's Research Center, University Children's Hospital Zurich, University of Zurich, Steinwiesstrasse 75, 8032, Zurich, Switzerland
| | - Jan Dittli
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, 8008, Zurich, Switzerland
| | - Olivier Lambercy
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, 8008, Zurich, Switzerland
| | - Roger Gassert
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, 8008, Zurich, Switzerland
| | - Andreas Meyer-Heim
- Swiss Children's Rehab - Research Department, University Children's Hospital Zurich, Mühlebergstrasse 104, CH-8910, Affoltern am Albis, Switzerland.,Children's Research Center, University Children's Hospital Zurich, University of Zurich, Steinwiesstrasse 75, 8032, Zurich, Switzerland
| | - Hubertus J A van Hedel
- Swiss Children's Rehab - Research Department, University Children's Hospital Zurich, Mühlebergstrasse 104, CH-8910, Affoltern am Albis, Switzerland. .,Children's Research Center, University Children's Hospital Zurich, University of Zurich, Steinwiesstrasse 75, 8032, Zurich, Switzerland.
| |
Collapse
|
8
|
Chen W, Li G, Li N, Wang W, Yu P, Wang R, Xue X, Zhao X, Liu L. Soft Exoskeleton With Fully Actuated Thumb Movements for Grasping Assistance. IEEE T ROBOT 2022. [DOI: 10.1109/tro.2022.3148909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Gonzalez A, Garcia L, Kilby J, McNair P. Robotic devices for paediatric rehabilitation: a review of design features. Biomed Eng Online 2021; 20:89. [PMID: 34488777 PMCID: PMC8420060 DOI: 10.1186/s12938-021-00920-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/06/2021] [Indexed: 01/11/2023] Open
Abstract
Children with physical disabilities often have limited performance in daily activities, hindering their physical development, social development and mental health. Therefore, rehabilitation is essential to mitigate the adverse effects of the different causes of physical disabilities and improve independence and quality of life. In the last decade, robotic rehabilitation has shown the potential to augment traditional physical rehabilitation. However, to date, most robotic rehabilitation devices are designed for adult patients who differ in their needs compared to paediatric patients, limiting the devices' potential because the paediatric patients' needs are not adequately considered. With this in mind, the current work reviews the existing literature on robotic rehabilitation for children with physical disabilities, intending to summarise how the rehabilitation robots could fulfil children's needs and inspire researchers to develop new devices. A literature search was conducted utilising the Web of Science, PubMed and Scopus databases. Based on the inclusion-exclusion criteria, 206 publications were included, and 58 robotic devices used by children with a physical disability were identified. Different design factors and the treated conditions using robotic technology were compared. Through the analyses, it was identified that weight, safety, operability and motivation were crucial factors to the successful design of devices for children. The majority of the current devices were used for lower limb rehabilitation. Neurological disorders, in particular cerebral palsy, were the most common conditions for which devices were designed. By far, the most common actuator was the electric motor. Usually, the devices present more than one training strategy being the assistive strategy the most used. The admittance/impedance method is the most popular to interface the robot with the children. Currently, there is a trend on developing exoskeletons, as they can assist children with daily life activities outside of the rehabilitation setting, propitiating a wider adoption of the technology. With this shift in focus, it appears likely that new technologies to actuate the system (e.g. serial elastic actuators) and to detect the intention (e.g. physiological signals) of children as they go about their daily activities will be required.
Collapse
Affiliation(s)
- Alberto Gonzalez
- BioDesign Lab, School of Engineering, Computer and Mathematical Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Lorenzo Garcia
- BioDesign Lab, School of Engineering, Computer and Mathematical Sciences, Auckland University of Technology, Auckland, New Zealand.
| | - Jeff Kilby
- BioDesign Lab, School of Engineering, Computer and Mathematical Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Peter McNair
- Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
10
|
Kubiak CA, Svientek SR, Dehdashtian A, Lawera NG, Nadarajan V, Bratley JV, Kung TA, Cederna PS, Kemp SWP. Physiologic signaling and viability of the muscle cuff regenerative peripheral nerve interface (MC-RPNI) for intact peripheral nerves. J Neural Eng 2021; 18. [PMID: 34359056 DOI: 10.1088/1741-2552/ac1b6b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/06/2021] [Indexed: 11/11/2022]
Abstract
Background. Robotic exoskeleton devices have become a promising modality for restoration of extremity function in individuals with limb loss or functional weakness. However, there exists no consistent or reliable way to record efferent motor action potentials from intact peripheral nerves to control device movement. Peripheral nerve motor action potentials are similar in amplitude to that of background noise, producing an unfavorable signal-to-noise ratio (SNR) that makes these signals difficult to detect and interpret. To address this issue, we have developed the muscle cuff regenerative peripheral nerve interface (MC-RPNI), a construct consisting of a free skeletal muscle graft wrapped circumferentially around an intact peripheral nerve. Over time, the muscle graft regenerates, and the intact nerve undergoes collateral axonal sprouting to reinnervate the muscle. The MC-RPNI amplifies efferent motor action potentials by several magnitudes, thereby increasing the SNR, allowing for higher fidelity signaling and detection of motor intention. The goal of this study was to characterize the signaling capabilities and viability of the MC-RPNI over time.Methods. Thirty-seven rats were randomly assigned to one of five experimental groups (Groups A-E). For MC-RPNI animals, their contralateral extensor digitorum longus (EDL) muscle was harvested and trimmed to either 8 mm (Group A) or 13 mm (Group B) in length, wrapped circumferentially around the intact ipsilateral common peroneal (CP) nerve, secured, and allowed to heal for 3 months. Additionally, one 8 mm (Group C) and one 13 mm (Group D) length group had an epineurial window created in the CP nerve immediately preceding MC-RPNI creation. Group E consisted of sham surgery animals. At 3 months, electrophysiologic analyses were conducted to determine the signaling capabilities of the MC-RPNI. Additionally, electromyography and isometric force analyses were performed on the CP-innervated EDL to determine the effects of the MC-RPNI on end organ function. Following evaluation, the CP nerve, MC-RPNI, and ipsilateral EDL muscle were harvested for histomorphometric analysis.Results. Study endpoint analysis was performed at 3 months post-surgery. All rats displayed visible muscle contractions in both the MC-RPNI and EDL following proximal CP nerve stimulation. Compound muscle action potentials were recorded from the MC-RPNI following proximal CP nerve stimulation and ranged from 3.67 ± 0.58 mV to 6.04 ± 1.01 mV, providing efferent motor action potential amplification of 10-20 times that of a normal physiologic nerve action potential. Maximum tetanic isometric force (Fo) testing of the distally-innervated EDL muscle in MC-RPNI groups producedFo(2341 ± 114 mN-2832 ± 102 mN) similar to controls (2497 ± 122 mN), thus demonstrating that creation of MC-RPNIs did not adversely impact the function of the distally-innervated EDL muscle. Overall, comparison between all MC-RPNI sub-groups did not reveal any statistically significant differences in signaling capabilities or negative effects on distal-innervated muscle function as compared to the control group.Conclusions. MC-RPNIs have the capability to provide efferent motor action potential amplification from intact nerves without adversely impacting distal muscle function. Neither the size of the muscle graft nor the presence of an epineurial window in the nerve had any significant impact on the ability of the MC-RPNI to amplify efferent motor action potentials from intact nerves. These results support the potential for the MC-RPNI to serve as a biologic nerve interface to control advanced exoskeleton devices.
Collapse
Affiliation(s)
- Carrie A Kubiak
- Department of Surgery, Section of Plastic Surgery, The University of Michigan Health System, 1150 W Medical Center Drive, Medical Sciences Research Building II, Rm.A570A, Ann Arbor, MI 48109-5456, United States of America
| | - Shelby R Svientek
- Department of Surgery, Section of Plastic Surgery, The University of Michigan Health System, 1150 W Medical Center Drive, Medical Sciences Research Building II, Rm.A570A, Ann Arbor, MI 48109-5456, United States of America
| | - Amir Dehdashtian
- Department of Surgery, Section of Plastic Surgery, The University of Michigan Health System, 1150 W Medical Center Drive, Medical Sciences Research Building II, Rm.A570A, Ann Arbor, MI 48109-5456, United States of America
| | - Nathan G Lawera
- Department of Surgery, Section of Plastic Surgery, The University of Michigan Health System, 1150 W Medical Center Drive, Medical Sciences Research Building II, Rm.A570A, Ann Arbor, MI 48109-5456, United States of America
| | - Vidhya Nadarajan
- Department of Surgery, Section of Plastic Surgery, The University of Michigan Health System, 1150 W Medical Center Drive, Medical Sciences Research Building II, Rm.A570A, Ann Arbor, MI 48109-5456, United States of America
| | - Jarred V Bratley
- Department of Surgery, Section of Plastic Surgery, The University of Michigan Health System, 1150 W Medical Center Drive, Medical Sciences Research Building II, Rm.A570A, Ann Arbor, MI 48109-5456, United States of America
| | - Theodore A Kung
- Department of Surgery, Section of Plastic Surgery, The University of Michigan Health System, 1150 W Medical Center Drive, Medical Sciences Research Building II, Rm.A570A, Ann Arbor, MI 48109-5456, United States of America
| | - Paul S Cederna
- Department of Surgery, Section of Plastic Surgery, The University of Michigan Health System, 1150 W Medical Center Drive, Medical Sciences Research Building II, Rm.A570A, Ann Arbor, MI 48109-5456, United States of America.,Department of Biomedical Engineering, The University of Michigan, Ann Arbor, MI, United States of America
| | - Stephen W P Kemp
- Department of Surgery, Section of Plastic Surgery, The University of Michigan Health System, 1150 W Medical Center Drive, Medical Sciences Research Building II, Rm.A570A, Ann Arbor, MI 48109-5456, United States of America.,Department of Biomedical Engineering, The University of Michigan, Ann Arbor, MI, United States of America
| |
Collapse
|
11
|
Gaudet G, Raison M, Achiche S. Current Trends and Challenges in Pediatric Access to Sensorless and Sensor-Based Upper Limb Exoskeletons. SENSORS (BASEL, SWITZERLAND) 2021; 21:3561. [PMID: 34065366 PMCID: PMC8161080 DOI: 10.3390/s21103561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 12/21/2022]
Abstract
Sensorless and sensor-based upper limb exoskeletons that enhance or support daily motor function are limited for children. This review presents the different needs in pediatrics and the latest trends when developing an upper limb exoskeleton and discusses future prospects to improve accessibility. First, the principal diagnoses in pediatrics and their respective challenge are presented. A total of 14 upper limb exoskeletons aimed for pediatric use were identified in the literature. The exoskeletons were then classified as sensorless or sensor-based, and categorized with respect to the application domain, the motorization solution, the targeted population(s), and the supported movement(s). The relative absence of upper limb exoskeleton in pediatrics is mainly due to the additional complexity required in order to adapt to children's growth and answer their specific needs and usage. This review highlights that research should focus on sensor-based exoskeletons, which would benefit the majority of children by allowing easier adjustment to the children's needs. Sensor-based exoskeletons are often the best solution for children to improve their participation in activities of daily living and limit cognitive, social, and motor impairments during their development.
Collapse
Affiliation(s)
- Guillaume Gaudet
- Department of Mechanical Engineering, Polytechnique Montréal, Montréal, QC H3T 1J4, Canada; (M.R.); (S.A.)
- Marie-Enfant Rehabilitation Center, Research Center of Ste-Justine University Hospital Center, Montreal, QC H1T 1C9, Canada
| | - Maxime Raison
- Department of Mechanical Engineering, Polytechnique Montréal, Montréal, QC H3T 1J4, Canada; (M.R.); (S.A.)
- Marie-Enfant Rehabilitation Center, Research Center of Ste-Justine University Hospital Center, Montreal, QC H1T 1C9, Canada
| | - Sofiane Achiche
- Department of Mechanical Engineering, Polytechnique Montréal, Montréal, QC H3T 1J4, Canada; (M.R.); (S.A.)
| |
Collapse
|
12
|
Dittli J, Hofmann UAT, Bützer T, Smit G, Lambercy O, Gassert R. Remote Actuation Systems for Fully Wearable Assistive Devices: Requirements, Selection, and Optimization for Out-of-the-Lab Application of a Hand Exoskeleton. Front Robot AI 2021; 7:596185. [PMID: 33585573 PMCID: PMC7876397 DOI: 10.3389/frobt.2020.596185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/06/2020] [Indexed: 01/26/2023] Open
Abstract
Wearable robots assist individuals with sensorimotor impairment in daily life, or support industrial workers in physically demanding tasks. In such scenarios, low mass and compact design are crucial factors for device acceptance. Remote actuation systems (RAS) have emerged as a popular approach in wearable robots to reduce perceived weight and increase usability. Different RAS have been presented in the literature to accommodate for a wide range of applications and related design requirements. The push toward use of wearable robotics in out-of-the-lab applications in clinics, home environments, or industry created a shift in requirements for RAS. In this context, high durability, ergonomics, and simple maintenance gain in importance. However, these are only rarely considered and evaluated in research publications, despite being drivers for device abandonment by end-users. In this paper, we summarize existing approaches of RAS for wearable assistive technology in a literature review and compare advantages and disadvantages, focusing on specific evaluation criteria for out-of-the-lab applications to provide guidelines for the selection of RAS. Based on the gained insights, we present the development, optimization, and evaluation of a cable-based RAS for out-of-the-lab applications in a wearable assistive soft hand exoskeleton. The presented RAS features full wearability, high durability, high efficiency, and appealing design while fulfilling ergonomic criteria such as low mass and high wearing comfort. This work aims to support the transfer of RAS for wearable robotics from controlled lab environments to out-of-the-lab applications.
Collapse
Affiliation(s)
- Jan Dittli
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Urs A. T. Hofmann
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Tobias Bützer
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Gerwin Smit
- Department of BioMechanical Engineering, Delft University of Technology, Delft, Netherlands
| | - Olivier Lambercy
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Roger Gassert
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
13
|
Lambelet C, Temiraliuly D, Siegenthaler M, Wirth M, Woolley DG, Lambercy O, Gassert R, Wenderoth N. Characterization and wearability evaluation of a fully portable wrist exoskeleton for unsupervised training after stroke. J Neuroeng Rehabil 2020; 17:132. [PMID: 33028354 PMCID: PMC7541267 DOI: 10.1186/s12984-020-00749-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Chronic hand and wrist impairment are frequently present following stroke and severely limit independence in everyday life. The wrist orientates and stabilizes the hand before and during grasping, and is therefore of critical importance in activities of daily living (ADL). To improve rehabilitation outcomes, classical therapy could be supplemented by novel therapies that can be applied in unsupervised settings. This would enable more distributed practice and could potentially increase overall training dose. Robotic technology offers new possibilities to address this challenge, but it is critical that devices for independent training are easy and appealing to use. Here, we present the development, characterization and wearability evaluation of a fully portable exoskeleton for active wrist extension/flexion support in stroke rehabilitation. METHODS First we defined the requirements, and based on these, constructed the exoskeleton. We then characterized the device with standardized haptic and human-robot interaction metrics. The exoskeleton is composed of two modules placed on the forearm/hand and the upper arm. These modules weigh 238 g and 224 g, respectively. The forearm module actively supports wrist extension and flexion with a torque up to 3.7 Nm and an angular velocity up to 530 deg/s over a range of 154∘. The upper arm module includes the control electronics and battery, which can power the device for about 125 min in normal use. Special emphasis was put on independent donning and doffing of the device, which was tested via a wearability evaluation in 15 healthy participants and 2 stroke survivors using both qualitative and quantitative methods. RESULTS All participants were able to independently don and doff the device after only 4 practice trials. For healthy participants the donning and doffing process took 61 ±15 s and 24 ±6 s, respectively. The two stroke survivors donned and doffed the exoskeleton in 54 s/22 s and 113 s/32 s, respectively. Usability questionnaires revealed that despite minor difficulties, all participants were positive regarding the device. CONCLUSIONS This study describes an actuated wrist exoskeleton which weighs less than 500 g, and which is easy and fast to don and doff with one hand. Our design has put special emphasis on the donning aspect of robotic devices which constitutes the first barrier a user will face in unsupervised settings. The proposed device is a first and intermediate step towards wearable rehabilitation technologies that can be used independently by the patient and in unsupervised settings.
Collapse
Affiliation(s)
- Charles Lambelet
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Damir Temiraliuly
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Marc Siegenthaler
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Marc Wirth
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Daniel G. Woolley
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Olivier Lambercy
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Roger Gassert
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Nicole Wenderoth
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|