1
|
Galbert A, Buis A. Active, Actuated, and Assistive: a Scoping Review of Exoskeletons for the Hands and Wrists. CANADIAN PROSTHETICS & ORTHOTICS JOURNAL 2024; 7:43827. [PMID: 39628640 PMCID: PMC11609922 DOI: 10.33137/cpoj.v7i1.43827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/31/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Assistive technology is often incorporated into rehabilitation and support for those impacted by upper limb impairments. When powered, these devices provide additional force to the joints of users with muscle weakness. Actuated devices allow dynamic movement compared to splints, therefore improving the ability to complete activities of daily living. However, these devices are not often prescribed and are underrepresented in research and clinical settings. OBJECTIVE This review examined the existing literature on devices developed to support hand and wrist functionality in daily activities. Focusing on active, powered, and actuated devices, to gain a clearer understanding of the current limitations in their design and prescription. METHODOLOGY The scoping review was conducted using the PRISMA-ScR guidelines. A systematic search was done on MEDLINE, EMBASE, Scopus, Web of Science, and NHS the Knowledge Network from inception to May 2023. Articles were included if the device was portable; supported the hands and wrist actively using an actuator; and could be used for assistive living during or post-rehabilitation period. FINDINGS A total of 135 studies were included in the analysis of which 34 were clinical trials. The design and control methods of 121 devices were analyzed. Electrical stimulation and direct mechanical transmission were popular actuation methods. Electromyography (EMG) and joint movement detection were highly used control methods to translate user intentions to device actuation. A total of 226 validation methods were reported, of which 44% were clinically validated. Studies were often not conducted in operational environments with 69% at technology readiness levels ≤ 6, indicating that further development and testing is required. CONCLUSION The existing literature on hand and wrist exoskeletons presents large variations in validation methods and technical requirements for user-specific characteristics. This suggests a need for well-defined testing protocols and refined reporting of device designs. This would improve the significance of clinical outcomes and new assistive technology.
Collapse
Affiliation(s)
- A. Galbert
- Department of Biomedical Engineering, Faculty of Engineering, University of Strathclyde, Glasgow, Scotland
| | - A. Buis
- Department of Biomedical Engineering, Faculty of Engineering, University of Strathclyde, Glasgow, Scotland
| |
Collapse
|
2
|
Guo C, Cun Y, Xia B, Chen S, Zhang C, Chen Y, Shan E, Zhang P, Tai X. An analysis of stimulation methods used in rehabilitation equipment for children with cerebral palsy. Front Neurol 2024; 15:1371332. [PMID: 38966084 PMCID: PMC11223519 DOI: 10.3389/fneur.2024.1371332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/31/2024] [Indexed: 07/06/2024] Open
Abstract
OBJECTIVE This paper summarizes the research progress into stimulation methods used in rehabilitation equipment for pediatric cerebral palsy (CP) for the past 20 years from 2003 to 2023. We also provide ideas for innovative research and development of artificial intelligence-based rehabilitation equipment. METHODS Through a certain search strategy, Keywords are searched in the China National Knowledge Network Database (CNKI), the Wanfang Database knowledge service platform, the Chongqing VIP information service, PubMed, Web of Science, Cochrane, ScienceDirect, Medline, Embase, and IEEE database. A total of 3,049 relevant articles were retrieved, and 49 articles were included that mentioned research and development of rehabilitation equipment. We excluded articles that were not specific to children with CP, were duplicated or irrelevant literature, were missing data, the full article was not available, the article did not describe the method of stimulation used with the rehabilitation equipment on children with CP, were not Chinese and English, and were the types of reviews and commentaries. RESULTS Physical stimulation is the main stimulation method of rehabilitation equipment for children with CP. Force stimulation is the main mode of physical stimulation, and there are 17 articles that have verified the clinical efficacy of force stimulation-based equipment. CONCLUSION Research on the stimulation mode of pediatric cerebral palsy rehabilitation equipment is likely to focus on simulating the force of the Chinese medicine called "tuina manipulation." When this method is combined with artificial intelligence and personalized direction we believe this will lay the foundation for future development of a novel therapy for children with CP.
Collapse
Affiliation(s)
- Cunxiao Guo
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture and Tuina Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yongdan Cun
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture and Tuina Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan College of Business Management, Kunming, China
| | - Bo Xia
- Master of Science in Computer Science, Sofia University, Palo Alto, CA, United States
| | - Suyu Chen
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture and Tuina Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Can Zhang
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture and Tuina Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yiping Chen
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture and Tuina Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Exian Shan
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture and Tuina Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Pengyue Zhang
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture and Tuina Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Xiantao Tai
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture and Tuina Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| |
Collapse
|
3
|
Dierwechter B, Kolakowsky-Hayner SA. Journey to 1 Million Steps: A Retrospective Case Series Analyzing the Implementation of Robotic-Assisted Gait Training Into an Outpatient Pediatric Clinic. Pediatr Phys Ther 2024; 36:285-293. [PMID: 38349640 DOI: 10.1097/pep.0000000000001097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
PURPOSE To describe the implementation of an exoskeleton program in a rehabilitation setting using a Design Thinking framework. METHODS This is a retrospective case series of 3 randomly selected children who participated in skilled physical therapy using a pediatric exoskeleton that occurred on our journey to walking 1 000 000 steps in the exoskeleton devices. Participants ranged in age from 3 to 5 years, and all had neurologic disorders. RESULTS All participants improved toward achieving their therapy goals, tolerated the exoskeleton well, and had an increased number of steps taken over time. CONCLUSION The implementation of new technology into pediatric care and an established outpatient therapy clinic is described. The Design Thinking process applies to health care professionals and improves clinical care. Exoskeletons are effective tools for use in pediatric physical therapy.
Collapse
Affiliation(s)
- Brittany Dierwechter
- Outpatient Physical Therapy Department (Dr Dierwechter) and Research and Clinical Outcomes Department (Dr Kolakowsky-Hayner), Good Shepherd Rehabilitation Network, Allentown, Pennsylvania
| | | |
Collapse
|
4
|
Yu J, Luo L, Zhu W, Li Y, Xie P, Zhang L. A Novel Low-Pressure Robotic Glove Based on CT-Optimized Finger Joint Kinematic Model for Long-Term Rehabilitation of Stroke Patients. IEEE Trans Neural Syst Rehabil Eng 2024; 32:53-62. [PMID: 38032787 DOI: 10.1109/tnsre.2023.3337827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Wearing robotic gloves has become increasingly crucial for hand rehabilitation in stroke patients. However, traditional robotic gloves can exert additional pressure on the hand, such as prolonged use leading to poor blood circulation and muscle stiffness. To address these concerns, this work analyzes the finger kinematic model based on computerized tomography (CT) images of human hands, and designs a low-pressure robotic glove that conforms to finger kinematic characteristics. Firstly, physiological data on finger joint flexion and extension were collected through CT scans. The equivalent rotation centers of finger joints were obtained using the SURF and RANSAC algorithms. Furthermore, the trajectory of finger joint end and the correlation equation of finger joint motion were fitted, and a comprehensive finger kinematic model was established. Based on this finger kinematic model, a novel under-actuated exoskeleton mechanism was designed using a human-machine integration approach. The novel robotic glove fully aligns with the equivalent rotation centers and natural motion trajectories of the fingers, exerting minimal and evenly distributed dynamic pressure on the fingers, with a theoretical static pressure value of zero. Experiments involving gripping everyday objects demonstrated that the novel robotic glove significantly reduces the overall pressure on the fingers during grasping compared to the pneumatic glove and the traditional exoskeleton robotic glove. It is suitable for long-term use by stroke patients for rehabilitation training.
Collapse
|
5
|
Dittli J, Meyer JT, Gantenbein J, Bützer T, Ranzani R, Linke A, Curt A, Gassert R, Lambercy O. Mixed methods usability evaluation of an assistive wearable robotic hand orthosis for people with spinal cord injury. J Neuroeng Rehabil 2023; 20:162. [PMID: 38041135 PMCID: PMC10693050 DOI: 10.1186/s12984-023-01284-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/18/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Robotic hand orthoses (RHO) aim to provide grasp assistance for people with sensorimotor hand impairment during daily tasks. Many of such devices have been shown to bring a functional benefit to the user. However, assessing functional benefit is not sufficient to evaluate the usability of such technologies for daily life application. A comprehensive and structured evaluation of device usability not only focusing on effectiveness but also efficiency and satisfaction is required, yet often falls short in existing literature. Mixed methods evaluations, i.e., assessing a combination of quantitative and qualitative measures, allow to obtain a more holistic picture of all relevant aspects of device usability. Considering these aspects already in early development stages allows to identify design issues and generate generalizable benchmarks for future developments. METHODS We evaluated the short-term usability of the RELab tenoexo, a RHO for hand function assistance, in 15 users with tetraplegia after a spinal cord injury through a comprehensive mixed methods approach. We collected quantitative data using the Action Research Arm Test (ARAT), the System Usability Scale (SUS), and timed tasks such as the donning process. In addition, qualitative data were collected through semi-structured interviews and user observations, and analyzed with a thematic analysis to enhance the usability evaluation. All insights were attributed and discussed in relation to specifically defined usability attributes such as comfort, ease of use, functional benefit, and safety. RESULTS The RELab tenoexo provided an immediate functional benefit to the users, resulting in a mean improvement of the ARAT score by 5.8 points and peaking at 15 points improvement for one user (clinically important difference: 5.7 points). The mean SUS rating of 60.6 represents an adequate usability, however, indicating that especially the RHO donning (average task time = 295 s) was perceived as too long and cumbersome. The participants were generally very satisfied with the ergonomics (size, dimensions, fit) of the RHO. Enhancing the ease of use, specifically in donning, increasing the provided grasping force, as well as the availability of tailoring options and customization were identified as main improvement areas to promote RHO usability. CONCLUSION The short-term usability of the RELab tenoexo was thoroughly evaluated with a mixed methods approach, which generated valuable data to improve the RHO in future iterations. In addition, learnings that might be transferable to the evaluation and design of other RHO were generated, which have the potential to increase the daily life applicability and acceptance of similar technologies.
Collapse
Affiliation(s)
- Jan Dittli
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Lengghalde 5, 8008, Zurich, Switzerland.
| | - Jan T Meyer
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Lengghalde 5, 8008, Zurich, Switzerland
| | - Jessica Gantenbein
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Lengghalde 5, 8008, Zurich, Switzerland
| | - Tobias Bützer
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Lengghalde 5, 8008, Zurich, Switzerland
| | - Raffaele Ranzani
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Lengghalde 5, 8008, Zurich, Switzerland
| | - Anita Linke
- Spinal Cord Injury Center, Balgrist University Hospital, Forchstrasse 340, 8008, Zurich, Switzerland
| | - Armin Curt
- Spinal Cord Injury Center, Balgrist University Hospital, Forchstrasse 340, 8008, Zurich, Switzerland
| | - Roger Gassert
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Lengghalde 5, 8008, Zurich, Switzerland
- Singapore-ETH Centre, Future Health Technologies Programme, CREATE campus, 1 Create Way, #06-01 CREATE Tower, 138602, Singapore, Singapore
| | - Olivier Lambercy
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Lengghalde 5, 8008, Zurich, Switzerland
- Singapore-ETH Centre, Future Health Technologies Programme, CREATE campus, 1 Create Way, #06-01 CREATE Tower, 138602, Singapore, Singapore
| |
Collapse
|
6
|
Dittli J, Goikoetxea-Sotelo G, Lieber J, Gassert R, Meyer-Heim A, Van Hedel HJA, Lambercy O. A Tailorable Robotic Hand Orthosis to Support Children with Neurological Hand Impairments: a Case Study in a Child's Home. IEEE Int Conf Rehabil Robot 2023; 2023:1-6. [PMID: 37941220 DOI: 10.1109/icorr58425.2023.10304752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Neurological disorders such as traumatic brain injuries (TBI) can lead to hand impairments in children, negatively impacting their quality of life. Fully wearable robotic hand orthoses (RHO) have been proposed to actively support children and promote the use of the impaired limb in daily life. Here we report a case study on the feasibility of using the pediatric RHO PEXO for assistance at home in a 13- year-old child with hand impairment after TBI. The size and functionalities of the RHO were first fully tailored to the child's needs. We trained the child and their parent on independently using the RHO before taking it home for a period of two weeks. The use of the RHO improved hand ability. Additionally, the tailoring and training benefited the unimanual capacity (Box and Block Test score +2 after tailoring) and bimanual performance (Assisting Hand Assessment score +4) of the child with PEXO. Further, it increased device acceptance by the child and the parent. The child used PEXO at home for 76 minutes distributed over three days during eating and drinking tasks. Personal and environmental factors caused the moderate use. No adverse events or safety-related issues occurred. This study highlights the value of tailoring an assistive RHO and, for the first time, demonstrates the feasibility of home use of a pediatric RHO by children with neurological hand impairments.
Collapse
|