1
|
Vatsyayan R, Lee J, Bourhis AM, Tchoe Y, Cleary DR, Tonsfeldt KJ, Lee K, Montgomery-Walsh R, Paulk AC, U HS, Cash SS, Dayeh SA. Electrochemical and electrophysiological considerations for clinical high channel count neural interfaces. MRS BULLETIN 2023; 48:531-546. [PMID: 37476355 PMCID: PMC10357958 DOI: 10.1557/s43577-023-00537-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 04/10/2023] [Indexed: 07/22/2023]
Abstract
Electrophysiological recording and stimulation are the gold standard for functional mapping during surgical and therapeutic interventions as well as capturing cellular activity in the intact human brain. A critical component probing human brain activity is the interface material at the electrode contact that electrochemically transduces brain signals to and from free charge carriers in the measurement system. Here, we summarize state-of-the-art electrode array systems in the context of translation for use in recording and stimulating human brain activity. We leverage parametric studies with multiple electrode materials to shed light on the varied levels of suitability to enable high signal-to-noise electrophysiological recordings as well as safe electrophysiological stimulation delivery. We discuss the effects of electrode scaling for recording and stimulation in pursuit of high spatial resolution, channel count electrode interfaces, delineating the electrode-tissue circuit components that dictate the electrode performance. Finally, we summarize recent efforts in the connectorization and packaging for high channel count electrode arrays and provide a brief account of efforts toward wireless neuronal monitoring systems.
Collapse
Affiliation(s)
- Ritwik Vatsyayan
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California, San Diego, San Diego, USA
| | - Jihwan Lee
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California, San Diego, San Diego, USA
| | - Andrew M. Bourhis
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California, San Diego, San Diego, USA
| | - Youngbin Tchoe
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California, San Diego, San Diego, USA
| | - Daniel R. Cleary
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California, San Diego, San Diego, USA; Department of Neurological Surgery, School of Medicine, Oregon Health & Science University, Portland, USA
| | - Karen J. Tonsfeldt
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California, San Diego, San Diego, USA; Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California, San Diego, San Diego, USA
| | - Keundong Lee
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California, San Diego, San Diego, USA
| | - Rhea Montgomery-Walsh
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California, San Diego, San Diego, USA; Department of Bioengineering, University of California, San Diego, San Diego, USA
| | - Angelique C. Paulk
- Department of Neurology, Harvard Medical School, Boston, USA; Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, USA
| | - Hoi Sang U
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California, San Diego, San Diego, USA
| | - Sydney S. Cash
- Department of Neurology, Harvard Medical School, Boston, USA; Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, USA
| | - Shadi A. Dayeh
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California, San Diego, San Diego, USA; Department of Bioengineering, University of California, San Diego, San Diego, USA
| |
Collapse
|
2
|
Felice CJ, Ruiz GA, Saad L, Nanni P, Madrid RE, Goy C, Zamora M. A new method for optimising polarisation point in electrochemical impedance based measurements. J APPL ELECTROCHEM 2023. [DOI: 10.1007/s10800-023-01879-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
4
|
Raslan A, Ciriza J, Ochoa de Retana AM, Sanjuán ML, Toprak MS, Galvez-Martin P, Saenz-del-Burgo L, Pedraz JL. Modulation of Conductivity of Alginate Hydrogels Containing Reduced Graphene Oxide through the Addition of Proteins. Pharmaceutics 2021; 13:1473. [PMID: 34575549 PMCID: PMC8470000 DOI: 10.3390/pharmaceutics13091473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 11/17/2022] Open
Abstract
Modifying hydrogels in order to enhance their conductivity is an exciting field with applications in cardio and neuro-regenerative medicine. Therefore, we have designed hybrid alginate hydrogels containing uncoated and protein-coated reduced graphene oxide (rGO). We specifically studied the adsorption of three different proteins, BSA, elastin, and collagen, and the outcomes when these protein-coated rGO nanocomposites are embedded within the hydrogels. Our results demonstrate that BSA, elastin, and collagen are adsorbed onto the rGO surface, through a non-spontaneous phenomenon that fits Langmuir and pseudo-second-order adsorption models. Protein-coated rGOs are able to preclude further adsorption of erythropoietin, but not insulin. Collagen showed better adsorption capacity than BSA and elastin due to its hydrophobic nature, although requiring more energy. Moreover, collagen-coated rGO hybrid alginate hydrogels showed an enhancement in conductivity, showing that it could be a promising conductive scaffold for regenerative medicine.
Collapse
Affiliation(s)
- Ahmed Raslan
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain;
| | - Jesús Ciriza
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine, CIBER-BBN, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain;
- Tissue Microenvironment (TME) Lab, Aragón Institute of Engineering Research (I3A), University of Zaragoza, C/Mariano Esquillor s/n, 50018 Zaragoza, Spain
- Institute for Health Research Aragón (IIS Aragón), 50009 Zaragoza, Spain
| | - Ana María Ochoa de Retana
- Department of Organic Chemistry I, Faculty of Pharmacy and Lascaray Research Center, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain;
| | - María Luisa Sanjuán
- Instituto de Ciencia de Materiales de Aragón (Universidad de Zaragoza-CSIC), Facultad de Ciencias, 50009 Zaragoza, Spain;
| | - Muhammet S. Toprak
- Biomedical and X-ray Physics, Department of Applied Physics, KTH-Royal Institute of Technology, 10691 Stockholm, Sweden;
| | | | - Laura Saenz-del-Burgo
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain;
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine, CIBER-BBN, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain;
- Bioaraba Health Research Institute, Jose Atxotegi, s/n, 01009 Vitoria-Gasteiz, Spain
| | - Jose Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain;
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine, CIBER-BBN, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain;
- Bioaraba Health Research Institute, Jose Atxotegi, s/n, 01009 Vitoria-Gasteiz, Spain
| |
Collapse
|