1
|
Taghlabi KM, Cruz-Garza JG, Hassan T, Potnis O, Bhenderu LS, Guerrero JR, Whitehead RE, Wu Y, Luan L, Xie C, Robinson JT, Faraji AH. Clinical outcomes of peripheral nerve interfaces for rehabilitation in paralysis and amputation: a literature review. J Neural Eng 2024; 21:011001. [PMID: 38237175 DOI: 10.1088/1741-2552/ad200f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 01/18/2024] [Indexed: 02/02/2024]
Abstract
Peripheral nerve interfaces (PNIs) are electrical systems designed to integrate with peripheral nerves in patients, such as following central nervous system (CNS) injuries to augment or replace CNS control and restore function. We review the literature for clinical trials and studies containing clinical outcome measures to explore the utility of human applications of PNIs. We discuss the various types of electrodes currently used for PNI systems and their functionalities and limitations. We discuss important design characteristics of PNI systems, including biocompatibility, resolution and specificity, efficacy, and longevity, to highlight their importance in the current and future development of PNIs. The clinical outcomes of PNI systems are also discussed. Finally, we review relevant PNI clinical trials that were conducted, up to the present date, to restore the sensory and motor function of upper or lower limbs in amputees, spinal cord injury patients, or intact individuals and describe their significant findings. This review highlights the current progress in the field of PNIs and serves as a foundation for future development and application of PNI systems.
Collapse
Affiliation(s)
- Khaled M Taghlabi
- Department of Neurological Surgery, Houston Methodist Hospital, Houston, TX 77030, United States of America
- Center for Neural Systems Restoration, Houston Methodist Research Institute, Houston, TX 77030, United States of America
- Clinical Innovations Laboratory, Houston Methodist Research Institute, Houston, TX 77030, United States of America
| | - Jesus G Cruz-Garza
- Department of Neurological Surgery, Houston Methodist Hospital, Houston, TX 77030, United States of America
- Center for Neural Systems Restoration, Houston Methodist Research Institute, Houston, TX 77030, United States of America
- Clinical Innovations Laboratory, Houston Methodist Research Institute, Houston, TX 77030, United States of America
| | - Taimur Hassan
- Department of Neurological Surgery, Houston Methodist Hospital, Houston, TX 77030, United States of America
- Center for Neural Systems Restoration, Houston Methodist Research Institute, Houston, TX 77030, United States of America
- Clinical Innovations Laboratory, Houston Methodist Research Institute, Houston, TX 77030, United States of America
- School of Medicine, Texas A&M University, Bryan, TX 77807, United States of America
| | - Ojas Potnis
- Department of Neurological Surgery, Houston Methodist Hospital, Houston, TX 77030, United States of America
- Center for Neural Systems Restoration, Houston Methodist Research Institute, Houston, TX 77030, United States of America
- Clinical Innovations Laboratory, Houston Methodist Research Institute, Houston, TX 77030, United States of America
- School of Engineering Medicine, Texas A&M University, Houston, TX 77030, United States of America
| | - Lokeshwar S Bhenderu
- Department of Neurological Surgery, Houston Methodist Hospital, Houston, TX 77030, United States of America
- Center for Neural Systems Restoration, Houston Methodist Research Institute, Houston, TX 77030, United States of America
- Clinical Innovations Laboratory, Houston Methodist Research Institute, Houston, TX 77030, United States of America
- School of Medicine, Texas A&M University, Bryan, TX 77807, United States of America
| | - Jaime R Guerrero
- Department of Neurological Surgery, Houston Methodist Hospital, Houston, TX 77030, United States of America
- Center for Neural Systems Restoration, Houston Methodist Research Institute, Houston, TX 77030, United States of America
- Clinical Innovations Laboratory, Houston Methodist Research Institute, Houston, TX 77030, United States of America
| | - Rachael E Whitehead
- Department of Academic Affairs, Houston Methodist Academic Institute, Houston, TX 77030, United States of America
| | - Yu Wu
- Rice Neuroengineering Initiative, Rice University, Houston, TX 77005, United States of America
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, United States of America
| | - Lan Luan
- Rice Neuroengineering Initiative, Rice University, Houston, TX 77005, United States of America
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, United States of America
| | - Chong Xie
- Rice Neuroengineering Initiative, Rice University, Houston, TX 77005, United States of America
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, United States of America
| | - Jacob T Robinson
- Rice Neuroengineering Initiative, Rice University, Houston, TX 77005, United States of America
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, United States of America
| | - Amir H Faraji
- Department of Neurological Surgery, Houston Methodist Hospital, Houston, TX 77030, United States of America
- Center for Neural Systems Restoration, Houston Methodist Research Institute, Houston, TX 77030, United States of America
- Clinical Innovations Laboratory, Houston Methodist Research Institute, Houston, TX 77030, United States of America
- Rice Neuroengineering Initiative, Rice University, Houston, TX 77005, United States of America
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, United States of America
| |
Collapse
|
2
|
Koppaka S, Hess-Dunning A, Tyler DJ. Directed stimulation with interfascicular interfaces for peripheral nerve stimulation. J Neural Eng 2021; 18. [PMID: 34706351 DOI: 10.1088/1741-2552/ac33e8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 10/27/2021] [Indexed: 01/10/2023]
Abstract
Objective.Computational models have shown that directional electrical contacts placed within the epineurium, between the fascicles, and not penetrating the perineurium, can achieve selectivity levels similar to point source contacts placed within the fascicle. The objective of this study is to test, in a murine model, the hypothesis that directed interfascicular contacts are selective.Approach.Multiple interfascicular electrodes with directional contacts, exposed on a single face, were implanted in the sciatic nerves of 32 rabbits. Fine-wire intramuscular wire electrodes were implanted to measure electromyographic (EMG) activity from medial and lateral gastrocnemius, soleus, and tibialis anterior muscles.Main results.The recruitment data demonstrated that directed interfascicular interfaces, which do not penetrate the perineurium, selectively activate different axon populations.Significance.Interfascicular interfaces that are inside the nerve, but do not penetrate the perineurium are an alternative to intrafascicular interfaces and may offer additional selectivity compared to extraneural approaches.
Collapse
Affiliation(s)
- Smruta Koppaka
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America.,Louis Stokes Cleveland VA Medical Center, Rehabilitation R&D, Cleveland, OH, United States of America.,Advanced Platform Technology (APT) Center, Cleveland, OH, United States of America
| | - Allison Hess-Dunning
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America.,Louis Stokes Cleveland VA Medical Center, Rehabilitation R&D, Cleveland, OH, United States of America.,Advanced Platform Technology (APT) Center, Cleveland, OH, United States of America
| | - Dustin J Tyler
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America.,Louis Stokes Cleveland VA Medical Center, Rehabilitation R&D, Cleveland, OH, United States of America.,Advanced Platform Technology (APT) Center, Cleveland, OH, United States of America
| |
Collapse
|
3
|
Tigra W, Dali M, William L, Fattal C, Gélis A, Divoux JL, Coulet B, Teissier J, Guiraud D, Azevedo Coste C. Selective neural electrical stimulation restores hand and forearm movements in individuals with complete tetraplegia. J Neuroeng Rehabil 2020; 17:66. [PMID: 32429963 PMCID: PMC7236876 DOI: 10.1186/s12984-020-00676-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 04/01/2020] [Indexed: 11/15/2022] Open
Abstract
Background We hypothesized that a selective neural electrical stimulation of radial and median nerves enables the activation of functional movements in the paralyzed hand of individuals with tetraplegia. Compared to previous approaches for which up to 12 muscles were targeted through individual muscular stimulations, we focused on minimizing the number of implanted electrodes however providing almost all the needed and useful hand movements for subjects with complete tetraplegia. Methods We performed acute experiments during scheduled surgeries of the upper limb with eligible subjects. We scanned a set of multicontact neural stimulation cuff electrode configurations, pre-computed through modeling simulations. We reported the obtained isolated and functional movements that were considered useful for the subject (different grasping movements). Results In eight subjects, we demonstrated that selective stimulation based on multicontact cuff electrodes and optimized current spreading over the active contacts provided isolated, compound, functional and strong movements; most importantly 3 out of 4 had isolated fingers or thumb flexion, one patient performed a Key Grip, another one the Power and Hook Grips, and the 2 last all the 3 Grips. Several configurations were needed to target different areas within the nerve to obtain all the envisioned movements. We further confirmed that the upper limb nerves have muscle specific fascicles, which makes it possible to activate isolated movements. Conclusions The future goal is to provide patients with functional restoration of object grasping and releasing with a minimally invasive solution: only two cuff electrodes above the elbow. Ethics Committee / ANSM clearance prior to the beginning of the study (inclusion period 2016–2018): CPP Sud Méditerranée, #ID-RCB:2014-A01752–45, first acceptance 10th of February 2015, amended 12th of January 2016. Trial registration (www.clinicaltrials.gov): #NCT03721861, Retrospectively registered on 26th of October 2018.
Collapse
Affiliation(s)
- Wafa Tigra
- INRIA, University of Montpellier, CNRS, Montpellier, France.,MXM group, Sophia-Antipolis, France
| | - Mélissa Dali
- INRIA, University of Montpellier, CNRS, Montpellier, France
| | - Lucie William
- INRIA, University of Montpellier, CNRS, Montpellier, France
| | - Charles Fattal
- La Châtaigneraie Rehabilitation Center, Menucourt, France
| | | | | | | | | | - David Guiraud
- INRIA, University of Montpellier, CNRS, Montpellier, France. .,NEURINNOV SAS, Montpellier, France.
| | | |
Collapse
|
4
|
Fisher LE, Tyler DJ, Triolo RJ. Optimization of selective stimulation parameters for multi-contact electrodes. J Neuroeng Rehabil 2013; 10:25. [PMID: 23442372 PMCID: PMC3599334 DOI: 10.1186/1743-0003-10-25] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 02/21/2013] [Indexed: 11/15/2022] Open
Abstract
Background Multi-contact stimulating electrodes are gaining acceptance as a means for interfacing with the peripheral nervous system. These electrodes can potentially activate many independent populations of motor units within a single peripheral nerve, but quantifying their recruitment properties and the overlap in stimulation between contacts is difficult and time consuming. Further, current methods for quantifying overlap between contacts are ambiguous and can lead to suboptimal selective stimulation parameters. This study describes a novel method for optimizing stimulation parameters for multi-contact peripheral stimulating electrodes to produce strong, selective muscle contractions. The method is tested with four-contact spiral nerve-cuff electrodes implanted on bilateral femoral nerves of two individuals with spinal cord injury, but it is designed to be extendable to other electrode technologies with higher densities of contacts. Methods To optimize selective stimulation parameters for multi-contact electrodes, first, recruitment and overlap are characterized for all contacts within an electrode. Recruitment is measured with the twitch response to single stimulus pulses, and overlap between pairs of contacts is quantified by the deviation in their combined response from linear addition of individual responses. Simple mathematical models are fit to recruitment and overlap data, and a cost function is defined to maximize recruitment and minimize overlap between all contacts. Results Results are presented for four-contact nerve-cuff electrodes stimulating bilateral femoral nerves of two human subjects with spinal cord injury. Knee extension moments between 11.6 and 43.2 Nm were achieved with selective stimulation through multiple contacts of each nerve-cuff with less than 10% overlap between pairs of contacts. The overlap in stimulation measured in response to selective stimulation parameters was stable at multiple repeated time points after implantation. Conclusions These results suggest that the method described here can provide an automated means of determining stimulus parameters to achieve strong muscle contractions via selective stimulation through multi-contact peripheral nerve electrodes.
Collapse
Affiliation(s)
- Lee E Fisher
- Case Western Reserve University, Cleveland, OH 44106, USA.
| | | | | |
Collapse
|