1
|
McIntire LK, McKinley RA, Goodyear C, McIntire JP. The Effects of Anodal Transcranial Direct Current Stimulation on Sleep Time and Efficiency. Front Hum Neurosci 2020; 14:357. [PMID: 33192380 PMCID: PMC7481387 DOI: 10.3389/fnhum.2020.00357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/06/2020] [Indexed: 11/13/2022] Open
Abstract
A single session of anodal transcranial direct current stimulation (tDCS) has been shown to increase arousal in healthy participants for up to 24 h post-stimulation. However, little is known about the effects of tDCS on subsequent sleep in this population. Based on previous clinical studies, we hypothesized that anodal stimulation to the left dorsolateral prefrontal cortex (lDLPFC) would produce higher arousal with decreased sleep time and stimulation to the primary motor cortex (M1) would have the converse effect. Thirty-six active duty military were randomized into one of three groups (n = 12/group); active anodal tDCS over the lDLPFC, active anodal tDCS over left M1, or sham tDCS. Participants answered questionnaires 3 times a day and wore a wrist activity monitor (WAM) to measure sleep time and efficiency for 3 weeks. On weeks 2 and 3 (order counterbalance), participants received stimulation at 1800 h before 26 h of sustained wakefulness testing (sleep deprived) and at 1800 h without sleep deprivation (non-sleep deprived). There were no significant effects for the non-sleep deprived portion of testing. For the sleep deprived portion of testing, there were main effects of group and night on sleep time. The DLPFC group slept less than the other groups on the second and third night following stimulation. There is no negative effect on mood or sleep quality from a single dose of tDCS when participants have normal sleep patterns (i.e., non-sleep deprived portion of testing). The results suggest that stimulation may result in faster recovery from fatigue caused by acute periods of sleep deprivation, as their recovery sleep periods were less.
Collapse
Affiliation(s)
- Lindsey K McIntire
- Infoscitex, Inc., Wright-Patterson Air Force Base, Dayton, OH, United States
| | - R Andy McKinley
- Air Force Research Laboratory/Applied Neuroscience Branch, Wright-Patterson Air Force Base, Dayton, OH, United States
| | - Chuck Goodyear
- Infoscitex, Inc., Wright-Patterson Air Force Base, Dayton, OH, United States
| | - John P McIntire
- Air Force Research Laboratory/Security and Intelligence Branch, Wright-Patterson Air Force Base, Dayton, OH, United States
| |
Collapse
|
2
|
Antal A, Alekseichuk I, Bikson M, Brockmöller J, Brunoni AR, Chen R, Cohen LG, Dowthwaite G, Ellrich J, Flöel A, Fregni F, George MS, Hamilton R, Haueisen J, Herrmann CS, Hummel FC, Lefaucheur JP, Liebetanz D, Loo CK, McCaig CD, Miniussi C, Miranda PC, Moliadze V, Nitsche MA, Nowak R, Padberg F, Pascual-Leone A, Poppendieck W, Priori A, Rossi S, Rossini PM, Rothwell J, Rueger MA, Ruffini G, Schellhorn K, Siebner HR, Ugawa Y, Wexler A, Ziemann U, Hallett M, Paulus W. Low intensity transcranial electric stimulation: Safety, ethical, legal regulatory and application guidelines. Clin Neurophysiol 2017; 128:1774-1809. [PMID: 28709880 PMCID: PMC5985830 DOI: 10.1016/j.clinph.2017.06.001] [Citation(s) in RCA: 753] [Impact Index Per Article: 94.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/29/2017] [Accepted: 06/06/2017] [Indexed: 12/11/2022]
Abstract
Low intensity transcranial electrical stimulation (TES) in humans, encompassing transcranial direct current (tDCS), transcutaneous spinal Direct Current Stimulation (tsDCS), transcranial alternating current (tACS), and transcranial random noise (tRNS) stimulation or their combinations, appears to be safe. No serious adverse events (SAEs) have been reported so far in over 18,000 sessions administered to healthy subjects, neurological and psychiatric patients, as summarized here. Moderate adverse events (AEs), as defined by the necessity to intervene, are rare, and include skin burns with tDCS due to suboptimal electrode-skin contact. Very rarely mania or hypomania was induced in patients with depression (11 documented cases), yet a causal relationship is difficult to prove because of the low incidence rate and limited numbers of subjects in controlled trials. Mild AEs (MAEs) include headache and fatigue following stimulation as well as prickling and burning sensations occurring during tDCS at peak-to-baseline intensities of 1-2mA and during tACS at higher peak-to-peak intensities above 2mA. The prevalence of published AEs is different in studies specifically assessing AEs vs. those not assessing them, being higher in the former. AEs are frequently reported by individuals receiving placebo stimulation. The profile of AEs in terms of frequency, magnitude and type is comparable in healthy and clinical populations, and this is also the case for more vulnerable populations, such as children, elderly persons, or pregnant women. Combined interventions (e.g., co-application of drugs, electrophysiological measurements, neuroimaging) were not associated with further safety issues. Safety is established for low-intensity 'conventional' TES defined as <4mA, up to 60min duration per day. Animal studies and modeling evidence indicate that brain injury could occur at predicted current densities in the brain of 6.3-13A/m2 that are over an order of magnitude above those produced by tDCS in humans. Using AC stimulation fewer AEs were reported compared to DC. In specific paradigms with amplitudes of up to 10mA, frequencies in the kHz range appear to be safe. In this paper we provide structured interviews and recommend their use in future controlled studies, in particular when trying to extend the parameters applied. We also discuss recent regulatory issues, reporting practices and ethical issues. These recommendations achieved consensus in a meeting, which took place in Göttingen, Germany, on September 6-7, 2016 and were refined thereafter by email correspondence.
Collapse
Affiliation(s)
- A Antal
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Georg August University, Göttingen, Germany.
| | - I Alekseichuk
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - M Bikson
- Department of Biomedical Engineering, The City College of New York, New York, USA
| | - J Brockmöller
- Department of Clinical Pharmacology, University Medical Center Goettingen, Germany
| | - A R Brunoni
- Service of Interdisciplinary Neuromodulation, Department and Institute of Psychiatry, Laboratory of Neurosciences (LIM-27) and Interdisciplinary Center for Applied Neuromodulation University Hospital, University of São Paulo, São Paulo, Brazil
| | - R Chen
- Division of Neurology, Department of Medicine, University of Toronto and Krembil Research Institute, Toronto, Ontario, Canada
| | - L G Cohen
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke NIH, Bethesda, USA
| | | | - J Ellrich
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark; Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, Erlangen, Germany; EBS Technologies GmbH, Europarc Dreilinden, Germany
| | - A Flöel
- Universitätsmedizin Greifswald, Klinik und Poliklinik für Neurologie, Greifswald, Germany
| | - F Fregni
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA
| | - M S George
- Brain Stimulation Division, Medical University of South Carolina, and Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA
| | - R Hamilton
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - J Haueisen
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, Germany
| | - C S Herrmann
- Experimental Psychology Lab, Department of Psychology, European Medical School, Carl von Ossietzky Universität, Oldenburg, Germany
| | - F C Hummel
- Defitech Chair of Clinical Neuroengineering, Centre of Neuroprosthetics (CNP) and Brain Mind Institute, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland; Defitech Chair of Clinical Neuroengineering, Clinique Romande de Réadaptation, Swiss Federal Institute of Technology (EPFL Valais), Sion, Switzerland
| | - J P Lefaucheur
- Department of Physiology, Henri Mondor Hospital, Assistance Publique - Hôpitaux de Paris, and EA 4391, Nerve Excitability and Therapeutic Team (ENT), Faculty of Medicine, Paris Est Créteil University, Créteil, France
| | - D Liebetanz
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - C K Loo
- School of Psychiatry & Black Dog Institute, University of New South Wales, Sydney, Australia
| | - C D McCaig
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| | - C Miniussi
- Center for Mind/Brain Sciences CIMeC, University of Trento, Rovereto, Italy; Cognitive Neuroscience Section, IRCCS Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - P C Miranda
- Institute of Biophysics and Biomedical Engineering, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - V Moliadze
- Institute of Medical Psychology and Medical Sociology, University Hospital of Schleswig-Holstein (UKSH), Campus Kiel, Christian-Albrechts-University, Kiel, Germany
| | - M A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany; Department of Neurology, University Hospital Bergmannsheil, Bochum, Germany
| | - R Nowak
- Neuroelectrics, Barcelona, Spain
| | - F Padberg
- Department of Psychiatry and Psychotherapy, Munich Center for Brain Stimulation, Ludwig-Maximilian University Munich, Germany
| | - A Pascual-Leone
- Division of Cognitive Neurology, Harvard Medical Center and Berenson-Allen Center for Noninvasive Brain Stimulation at Beth Israel Deaconess Medical Center, Boston, USA
| | - W Poppendieck
- Department of Information Technology, Mannheim University of Applied Sciences, Mannheim, Germany
| | - A Priori
- Center for Neurotechnology and Experimental Brain Therapeutich, Department of Health Sciences, University of Milan Italy; Deparment of Clinical Neurology, University Hospital Asst Santi Paolo E Carlo, Milan, Italy
| | - S Rossi
- Department of Medicine, Surgery and Neuroscience, Human Physiology Section and Neurology and Clinical Neurophysiology Section, Brain Investigation & Neuromodulation Lab, University of Siena, Italy
| | - P M Rossini
- Area of Neuroscience, Institute of Neurology, University Clinic A. Gemelli, Catholic University, Rome, Italy
| | | | - M A Rueger
- Department of Neurology, University Hospital of Cologne, Germany
| | | | | | - H R Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Y Ugawa
- Department of Neurology, Fukushima Medical University, Fukushima, Japan; Fukushima Global Medical Science Center, Advanced Clinical Research Center, Fukushima Medical University, Japan
| | - A Wexler
- Department of Science, Technology & Society, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - U Ziemann
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - M Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - W Paulus
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| |
Collapse
|
3
|
Guler S, Dannhauer M, Erem B, Macleod R, Tucker D, Turovets S, Luu P, Erdogmus D, Brooks DH. Optimization of focality and direction in dense electrode array transcranial direct current stimulation (tDCS). J Neural Eng 2016; 13:036020. [PMID: 27152752 DOI: 10.1088/1741-2560/13/3/036020] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Transcranial direct current stimulation (tDCS) aims to alter brain function non-invasively via electrodes placed on the scalp. Conventional tDCS uses two relatively large patch electrodes to deliver electrical current to the brain region of interest (ROI). Recent studies have shown that using dense arrays containing up to 512 smaller electrodes may increase the precision of targeting ROIs. However, this creates a need for methods to determine effective and safe stimulus patterns as the number of degrees of freedom is much higher with such arrays. Several approaches to this problem have appeared in the literature. In this paper, we describe a new method for calculating optimal electrode stimulus patterns for targeted and directional modulation in dense array tDCS which differs in some important aspects with methods reported to date. APPROACH We optimize stimulus pattern of dense arrays with fixed electrode placement to maximize the current density in a particular direction in the ROI. We impose a flexible set of safety constraints on the current power in the brain, individual electrode currents, and total injected current, to protect subject safety. The proposed optimization problem is convex and thus efficiently solved using existing optimization software to find unique and globally optimal electrode stimulus patterns. MAIN RESULTS Solutions for four anatomical ROIs based on a realistic head model are shown as exemplary results. To illustrate the differences between our approach and previously introduced methods, we compare our method with two of the other leading methods in the literature. We also report on extensive simulations that show the effect of the values chosen for each proposed safety constraint bound on the optimized stimulus patterns. SIGNIFICANCE The proposed optimization approach employs volume based ROIs, easily adapts to different sets of safety constraints, and takes negligible time to compute. An in-depth comparison study gives insight into the relationship between different objective criteria and optimized stimulus patterns. In addition, the analysis of the interaction between optimized stimulus patterns and safety constraint bounds suggests that more precise current localization in the ROI, with improved safety criterion, may be achieved by careful selection of the constraint bounds.
Collapse
Affiliation(s)
- Seyhmus Guler
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, USA. Center for Integrative Biomedical Computing, University of Utah, Salt Lake City, UT, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Makeyev O, Ding Q, Besio WG. Improving the accuracy of Laplacian estimation with novel multipolar concentric ring electrodes. MEASUREMENT : JOURNAL OF THE INTERNATIONAL MEASUREMENT CONFEDERATION 2016; 80:44-52. [PMID: 26693200 PMCID: PMC4683609 DOI: 10.1016/j.measurement.2015.11.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Conventional electroencephalography with disc electrodes has major drawbacks including poor spatial resolution, selectivity and low signal-to-noise ratio that are critically limiting its use. Concentric ring electrodes, consisting of several elements including the central disc and a number of concentric rings, are a promising alternative with potential to improve all of the aforementioned aspects significantly. In our previous work, the tripolar concentric ring electrode was successfully used in a wide range of applications demonstrating its superiority to conventional disc electrode, in particular, in accuracy of Laplacian estimation. This paper takes the next step toward further improving the Laplacian estimation with novel multipolar concentric ring electrodes by completing and validating a general approach to estimation of the Laplacian for an (n + 1)-polar electrode with n rings using the (4n + 1)-point method for n ≥ 2 that allows cancellation of all the truncation terms up to the order of 2n. An explicit formula based on inversion of a square Vandermonde matrix is derived to make computation of multipolar Laplacian more efficient. To confirm the analytic result of the accuracy of Laplacian estimate increasing with the increase of n and to assess the significance of this gain in accuracy for practical applications finite element method model analysis has been performed. Multipolar concentric ring electrode configurations with n ranging from 1 ring (bipolar electrode configuration) to 6 rings (septapolar electrode configuration) were directly compared and obtained results suggest the significance of the increase in Laplacian accuracy caused by increase of n.
Collapse
Affiliation(s)
- Oleksandr Makeyev
- Department of Mathematics, Diné College, 1 Circle Dr., Tsaile, AZ 86556, USA
| | - Quan Ding
- Department of Physiological Nursing, University of California San Francisco, 2 Koret Way, San Francisco, CA 94131, USA
| | - Walter G. Besio
- Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, 4 East Alumni Ave., Kingston, RI 02881, USA
| |
Collapse
|
5
|
Tremblay S, Beaulé V, Proulx S, Lafleur LP, Doyon J, Marjańska M, Théoret H. The use of magnetic resonance spectroscopy as a tool for the measurement of bi-hemispheric transcranial electric stimulation effects on primary motor cortex metabolism. J Vis Exp 2014:e51631. [PMID: 25490453 DOI: 10.3791/51631] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) is a neuromodulation technique that has been increasingly used over the past decade in the treatment of neurological and psychiatric disorders such as stroke and depression. Yet, the mechanisms underlying its ability to modulate brain excitability to improve clinical symptoms remains poorly understood. To help improve this understanding, proton magnetic resonance spectroscopy ((1)H-MRS) can be used as it allows the in vivo quantification of brain metabolites such as γ-aminobutyric acid (GABA) and glutamate in a region-specific manner. In fact, a recent study demonstrated that (1)H-MRS is indeed a powerful means to better understand the effects of tDCS on neurotransmitter concentration. This article aims to describe the complete protocol for combining tDCS (NeuroConn MR compatible stimulator) with (1)H-MRS at 3 T using a MEGA-PRESS sequence. We will describe the impact of a protocol that has shown great promise for the treatment of motor dysfunctions after stroke, which consists of bilateral stimulation of primary motor cortices. Methodological factors to consider and possible modifications to the protocol are also discussed.
Collapse
Affiliation(s)
| | | | | | | | - Julien Doyon
- Department of Psychology, University of Montréal
| | - Małgorzata Marjańska
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota;
| | - Hugo Théoret
- Department of Psychology, University of Montréal;
| |
Collapse
|
6
|
Truong DQ, Hüber M, Xie X, Datta A, Rahman A, Parra LC, Dmochowski JP, Bikson M. Clinician accessible tools for GUI computational models of transcranial electrical stimulation: BONSAI and SPHERES. Brain Stimul 2014; 7:521-4. [PMID: 24776786 DOI: 10.1016/j.brs.2014.03.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 03/17/2014] [Accepted: 03/24/2014] [Indexed: 10/25/2022] Open
Abstract
Computational models of brain current flow during transcranial electrical stimulation (tES), including transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS), are increasingly used to understand and optimize clinical trials. We propose that broad dissemination requires a simple graphical user interface (GUI) software that allows users to explore and design montages in real-time, based on their own clinical/experimental experience and objectives. We introduce two complimentary open-source platforms for this purpose: BONSAI and SPHERES. BONSAI is a web (cloud) based application (available at neuralengr.com/bonsai) that can be accessed through any flash-supported browser interface. SPHERES (available at neuralengr.com/spheres) is a stand-alone GUI application that allow consideration of arbitrary montages on a concentric sphere model by leveraging an analytical solution. These open-source tES modeling platforms are designed go be upgraded and enhanced. Trade-offs between open-access approaches that balance ease of access, speed, and flexibility are discussed.
Collapse
Affiliation(s)
- Dennis Q Truong
- Department of Biomedical Engineering, The City College of New York, City University of New York, New York, NY, USA.
| | - Mathias Hüber
- Department of Biomedical Engineering, The City College of New York, City University of New York, New York, NY, USA
| | - Xihe Xie
- Department of Biomedical Engineering, The City College of New York, City University of New York, New York, NY, USA
| | | | - Asif Rahman
- Department of Biomedical Engineering, The City College of New York, City University of New York, New York, NY, USA
| | - Lucas C Parra
- Department of Biomedical Engineering, The City College of New York, City University of New York, New York, NY, USA
| | - Jacek P Dmochowski
- Department of Biomedical Engineering, The City College of New York, City University of New York, New York, NY, USA
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, City University of New York, New York, NY, USA
| |
Collapse
|
7
|
Pripfl J, Neumann R, Köhler U, Lamm C. Effects of transcranial direct current stimulation on risky decision making are mediated by 'hot' and 'cold' decisions, personality, and hemisphere. Eur J Neurosci 2013; 38:3778-85. [PMID: 24124667 DOI: 10.1111/ejn.12375] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/27/2013] [Accepted: 09/03/2013] [Indexed: 02/01/2023]
Abstract
Previous results point towards a lateralization of dorsolateral prefrontal cortex (DLPFC) function in risky decision making. While the right hemisphere seems involved in inhibitory cognitive control of affective impulses, the left DLPFC is crucial in the deliberative processing of information relevant for the decision. However, a lack of empirical evidence precludes definitive conclusions. The aim of our study was to determine whether anodal transcranial direct current stimulation (tDCS) over the right DLPFC with cathodal tDCS over the lDLPFC (anodal right/cathodal left) or vice versa (anodal left/cathodal right) differentially modulates risk-taking in a task [the Columbia Card Task (CCT)] specifically engaging affect-charged (Hot CCT) vs. deliberative (Cold CCT) decision making. The facilitating effect of the anodal stimulation on neuronal activity was emphasized by the use of a small anode and a big cathode. To investigate the role of individual differences in risk-taking, participants were either smokers or non-smokers. Anodal left/cathodal right stimulation decreased risk-taking in the 'cold' cognition version of the task, in both groups, probably by modulating deliberative processing. In the 'hot' version, anodal right/cathodal left stimulation led to opposite effects in smokers and non-smokers, which might be explained by the engagement of the same inhibitory control mechanism: in smokers, improved controllability of risk-seeking impulsivity led to more conservative decisions, while inhibition of risk-aversion in non-smokers resulted in riskier choices. These results provide evidence for a hemispheric asymmetry and personality-dependent tDCS effects in risky decision making, and may be important for clinical research on addiction and depression.
Collapse
Affiliation(s)
- Jürgen Pripfl
- Social, Cognitive and Affective Neuroscience (SCAN) Unit, Faculty of Psychology, University of Vienna, A-1010, Vienna, Austria
| | | | | | | |
Collapse
|
8
|
Kronberg G, Bikson M. Electrode assembly design for transcranial Direct Current Stimulation: a FEM modeling study. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2013; 2012:891-5. [PMID: 23366036 DOI: 10.1109/embc.2012.6346075] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Despite accelerating progress in transcranial Direct Current Stimulation clinical and cognitive research, there remains remarkably little consistency in the control of electrode design and preparation. Electrode assembly design determines skin sensation and failure at the electrode can lead to skin burns. Though tDCS is generally well tolerated, the desire for rigor in electrode design is motivated by applications in increasingly diverse environments and populations. Generally the tDCS electrode assembly consists of a flat rubber or metal electrode and a saline/water saturated sponge. Here we show using FEM simulations, that each of these factors should be controlled to regulate current flow density across the skin: 1) sponge thickness 2) solution salinity 3) electrode size, 4) electrode placement in the sponge (including surface or pocket configuration) 5) control of excess fluid at the skin surface 6) use of rivets. Two general patterns of current distribution emerge as a result of integrated design: edge concentration or center concentration. Poor control over any of these electrode assembly parameters will result in unpredictable current density at the skin during tDCS.
Collapse
Affiliation(s)
- Greg Kronberg
- City College of New York Neural Engineering Department, New York, NY 10031, USA.
| | | |
Collapse
|
9
|
Schestatsky P, Morales-Quezada L, Fregni F. Simultaneous EEG monitoring during transcranial direct current stimulation. J Vis Exp 2013. [PMID: 23851401 PMCID: PMC3727533 DOI: 10.3791/50426] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) is a technique that delivers weak electric currents through the scalp. This constant electric current induces shifts in neuronal membrane excitability, resulting in secondary changes in cortical activity. Although tDCS has most of its neuromodulatory effects on the underlying cortex, tDCS effects can also be observed in distant neural networks. Therefore, concomitant EEG monitoring of the effects of tDCS can provide valuable information on the mechanisms of tDCS. In addition, EEG findings can be an important surrogate marker for the effects of tDCS and thus can be used to optimize its parameters. This combined EEG-tDCS system can also be used for preventive treatment of neurological conditions characterized by abnormal peaks of cortical excitability, such as seizures. Such a system would be the basis of a non-invasive closed-loop device. In this article, we present a novel device that is capable of utilizing tDCS and EEG simultaneously. For that, we describe in a step-by-step fashion the main procedures of the application of this device using schematic figures, tables and video demonstrations. Additionally, we provide a literature review on clinical uses of tDCS and its cortical effects measured by EEG techniques.
Collapse
Affiliation(s)
- Pedro Schestatsky
- Programa de Pós-Graduação em Ciências Médica, Universidade Federal do Rio Grande do Sul
| | | | | |
Collapse
|
10
|
Herrmann CS, Rach S, Neuling T, Strüber D. Transcranial alternating current stimulation: a review of the underlying mechanisms and modulation of cognitive processes. Front Hum Neurosci 2013; 7:279. [PMID: 23785325 PMCID: PMC3682121 DOI: 10.3389/fnhum.2013.00279] [Citation(s) in RCA: 511] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 05/28/2013] [Indexed: 11/22/2022] Open
Abstract
Brain oscillations of different frequencies have been associated with a variety of cognitive functions. Convincing evidence supporting those associations has been provided by studies using intracranial stimulation, pharmacological interventions and lesion studies. The emergence of novel non-invasive brain stimulation techniques like repetitive transcranial magnetic stimulation (rTMS) and transcranial alternating current stimulation (tACS) now allows to modulate brain oscillations directly. Particularly, tACS offers the unique opportunity to causally link brain oscillations of a specific frequency range to cognitive processes, because it uses sinusoidal currents that are bound to one frequency only. Using tACS allows to modulate brain oscillations and in turn to influence cognitive processes, thereby demonstrating the causal link between the two. Here, we review findings about the physiological mechanism of tACS and studies that have used tACS to modulate basic motor and sensory processes as well as higher cognitive processes like memory, ambiguous perception, and decision making.
Collapse
Affiliation(s)
- Christoph S Herrmann
- Experimental Psychology Lab, Center of excellence Hearing4all, Department for Psychology, Faculty for Medicine and Health Sciences, Carl von Ossietzky Universität, Ammerländer Heerstr Oldenburg, Germany ; Research Center Neurosensory Science, Carl von Ossietzky Universität Oldenburg, Germany
| | | | | | | |
Collapse
|
11
|
Brunoni AR, Nitsche MA, Bolognini N, Bikson M, Wagner T, Merabet L, Edwards DJ, Valero-Cabre A, Rotenberg A, Pascual-Leone A, Ferrucci R, Priori A, Boggio PS, Fregni F. Clinical research with transcranial direct current stimulation (tDCS): challenges and future directions. Brain Stimul 2012; 5:175-195. [PMID: 22037126 PMCID: PMC3270156 DOI: 10.1016/j.brs.2011.03.002] [Citation(s) in RCA: 957] [Impact Index Per Article: 73.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Revised: 01/25/2011] [Accepted: 03/03/2011] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) is a neuromodulatory technique that delivers low-intensity, direct current to cortical areas facilitating or inhibiting spontaneous neuronal activity. In the past 10 years, tDCS physiologic mechanisms of action have been intensively investigated giving support for the investigation of its applications in clinical neuropsychiatry and rehabilitation. However, new methodologic, ethical, and regulatory issues emerge when translating the findings of preclinical and phase I studies into phase II and III clinical studies. The aim of this comprehensive review is to discuss the key challenges of this process and possible methods to address them. METHODS We convened a workgroup of researchers in the field to review, discuss, and provide updates and key challenges of tDCS use in clinical research. MAIN FINDINGS/DISCUSSION We reviewed several basic and clinical studies in the field and identified potential limitations, taking into account the particularities of the technique. We review and discuss the findings into four topics: (1) mechanisms of action of tDCS, parameters of use and computer-based human brain modeling investigating electric current fields and magnitude induced by tDCS; (2) methodologic aspects related to the clinical research of tDCS as divided according to study phase (ie, preclinical, phase I, phase II, and phase III studies); (3) ethical and regulatory concerns; and (4) future directions regarding novel approaches, novel devices, and future studies involving tDCS. Finally, we propose some alternative methods to facilitate clinical research on tDCS.
Collapse
Affiliation(s)
- Andre Russowsky Brunoni
- Department of Neurosciences and Behavior, Institute of Psychology, University of São Paulo, São Paulo, Brazil
| | - Michael A Nitsche
- Department of Clinical Neurophysiology, Georg-August University, Goettingen, Germany
| | - Nadia Bolognini
- Department of Psychology, University of Milano-Bicocca, Milan, Italy; Neuropsychological Laboratory, IRCCS Instituto Auxologico Italiano, Milan, Italy
| | - Marom Bikson
- The City College of City University of New York, New York, New York
| | - Tim Wagner
- Massachusetts Institute of Technology, Boston, Massachusetts
| | - Lotfi Merabet
- Massachusets Eye and Ear Infirmary, Harvard University, Boston, Massachusetts
| | | | | | - Alexander Rotenberg
- Department of Neurology, Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Alvaro Pascual-Leone
- Berenson-Allen Center for Non-invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Roberta Ferrucci
- Centro Clinico per la Neurostimolazione, le Neurotecnologie ed i Disordini del Movimento, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano Dipartimento di Scienze Neurologiche, Milan, Italy
| | - Alberto Priori
- Centro Clinico per la Neurostimolazione, le Neurotecnologie ed i Disordini del Movimento, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano Dipartimento di Scienze Neurologiche, Milan, Italy
| | - Paulo Sergio Boggio
- Social and Cognitive Neuroscience Laboratory and Developmental Disorders Program, Center for Health and Biological Sciences, Mackenzie Prebyterian University, Sao Paulo, Brazil
| | - Felipe Fregni
- Laboratory of Neuromodulation, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
12
|
Kabakov AY, Muller PA, Pascual-Leone A, Jensen FE, Rotenberg A. Contribution of axonal orientation to pathway-dependent modulation of excitatory transmission by direct current stimulation in isolated rat hippocampus. J Neurophysiol 2012; 107:1881-9. [PMID: 22219028 PMCID: PMC3331663 DOI: 10.1152/jn.00715.2011] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 01/03/2012] [Indexed: 11/22/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) is a method for modulating cortical excitability by weak constant electrical current that is applied through scalp electrodes. Although often described in terms of anodal or cathodal stimulation, depending on which scalp electrode pole is proximal to the cortical region of interest, it is the orientation of neuronal structures relative to the direct current (DC) vector that determines the effect of tDCS. To investigate the contribution of neural pathway orientation, we studied DCS-mediated neuromodulation in an in vitro rat hippocampal slice preparation. We examined the contribution of dendritic orientation to the direct current stimulation (DCS) neuromodulatory effect by recording field excitatory postsynaptic potentials (fEPSPs) in apical and basal dendrites of CA1 neurons within a constant DC field. In addition, we assessed the contribution of axonal orientation by recording CA1 and CA3 apical fEPSPs generated by stimulation of oppositely oriented Schaffer collateral and mossy fiber axons, respectively, during DCS. Finally, nonsynaptic excitatory signal propagation was measured along antidromically stimulated CA1 axons at different DCS amplitudes and polarity. We find that modulation of both the fEPSP and population spike depends on axonal orientation relative to the electric field vector. Axonal orientation determines whether the DC field is excitatory or inhibitory and dendritic orientation affects the magnitude, but not the overall direction, of the DC effect. These data suggest that tDCS may oppositely affect neurons in a stimulated cortical volume if these neurons are excited by oppositely orientated axons in a constant electrical field.
Collapse
Affiliation(s)
- Anatoli Y Kabakov
- Department of Neurology, Children's Hospital Boston, 300 Longwood Ave., Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
13
|
Neuling T, Wagner S, Wolters CH, Zaehle T, Herrmann CS. Finite-Element Model Predicts Current Density Distribution for Clinical Applications of tDCS and tACS. Front Psychiatry 2012; 3:83. [PMID: 23015792 PMCID: PMC3449241 DOI: 10.3389/fpsyt.2012.00083] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 09/04/2012] [Indexed: 11/13/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) has been applied in numerous scientific studies over the past decade. However, the possibility to apply tDCS in therapy of neuropsychiatric disorders is still debated. While transcranial magnetic stimulation (TMS) has been approved for treatment of major depression in the United States by the Food and Drug Administration (FDA), tDCS is not as widely accepted. One of the criticisms against tDCS is the lack of spatial specificity. Focality is limited by the electrode size (35 cm(2) are commonly used) and the bipolar arrangement. However, a current flow through the head directly from anode to cathode is an outdated view. Finite-element (FE) models have recently been used to predict the exact current flow during tDCS. These simulations have demonstrated that the current flow depends on tissue shape and conductivity. To face the challenge to predict the location, magnitude, and direction of the current flow induced by tDCS and transcranial alternating current stimulation (tACS), we used a refined realistic FE modeling approach. With respect to the literature on clinical tDCS and tACS, we analyzed two common setups for the location of the stimulation electrodes which target the frontal lobe and the occipital lobe, respectively. We compared lateral and medial electrode configuration with regard to their usability. We were able to demonstrate that the lateral configurations yielded more focused stimulation areas as well as higher current intensities in the target areas. The high resolution of our simulation allows one to combine the modeled current flow with the knowledge of neuronal orientation to predict the consequences of tDCS and tACS. Our results not only offer a basis for a deeper understanding of the stimulation sites currently in use for clinical applications but also offer a better interpretation of observed effects.
Collapse
Affiliation(s)
- Toralf Neuling
- Experimental Psychology Lab, University of Oldenburg Oldenburg, Germany
| | | | | | | | | |
Collapse
|
14
|
Faria P, Hallett M, Miranda PC. A finite element analysis of the effect of electrode area and inter-electrode distance on the spatial distribution of the current density in tDCS. J Neural Eng 2011; 8:066017. [PMID: 22086257 DOI: 10.1088/1741-2560/8/6/066017] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We investigated the effect of electrode area and inter-electrode distance on the spatial distribution of the current density in transcranial direct current stimulation (tDCS). For this purpose, we used the finite element method to compute the distribution of the current density in a four-layered spherical head model using various electrode montages, corresponding to a range of electrode sizes and inter-electrode distances. We found that smaller electrodes required slightly less current to achieve a constant value of the current density at a reference point on the brain surface located directly under the electrode center. Under these conditions, smaller electrodes also produced a more focal current density distribution in the brain, i.e. the magnitude of the current density fell more rapidly with distance from the reference point. The combination of two electrodes with different areas produced an asymmetric current distribution that could lead to more effective and localized neural modulation under the smaller electrode than under the larger one. Focality improved rapidly with decreasing electrode size when the larger electrode sizes were considered but the improvement was less marked for the smaller electrode sizes. Also, focality was not affected significantly by inter-electrode distance unless two large electrodes were placed close together. Increasing the inter-electrode distance resulted in decreased shunting of the current through the scalp and the cerebrospinal fluid, and decreasing electrode area resulted in increased current density on the scalp under the edges of the electrode. Our calculations suggest that when working with conventional electrodes (25-35 cm(2)), one of the electrodes should be placed just 'behind' the target relative to the other electrode, for maximum current density on the target. Also electrodes with areas in the range 3.5-12 cm(2) may provide a better compromise between focality and current density in the scalp than the traditional electrodes. Finally, the use of multiple small return electrodes may be more efficient than the use of a single large return electrode.
Collapse
Affiliation(s)
- Paula Faria
- Institute of Biophysics and Biomedical Engineering, University of Lisbon, Lisbon, Portugal.
| | | | | |
Collapse
|